
Stochastic Processes and their Applications 21 (1986) 251-273 

North-Holland 

251 

ESTIMATION IN NONLINEAR TIME SERIES MODELS 

Dag TJ0STHEIM 

Department of Mathematics, University of Bergen, 5000 Bergen, Norway, 

and Department of Statistics, University of North Carolina, Chapel Hill, NC 27514, USA 

Received 10 December 1984 

Revised 30 August 1985 

A general framework for analyzing estimates in nonlinear time series is developed. General 

conditions for strong consistency and asymptotic normality are derived both for conditional least 

squares and maximum likelihood types estimates. Ergodic strictly stationary processes are studied 

in the first part and certain nonstationary processes in the last part of the paper. Examples are 

taken from most of the usual classes of nonlinear time series models. 
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Introduction 

Recently there has been a growing interest in nonlinear time series models. Some 

representative references are Handel (1976) and Nicholls and Quinn (1982) on random 

coefficient autoregressive models, Granger and Andersen (1978) and Subba Rao 

and Gabr (1984) on bilinear models, Haggan and Ozaki (1981) on exponential 

autoregressive models, Tong (1983) on threshold autoregressive models, Harrison 

and Stevens (1976), Ledolter (1981) on dynamic state space models and Priestley 

(1980) on general state dependent models. A review has been given in Tjostheim 

(1985a). 

To be able to use nonlinear time series models in practice one must be able to 

fit the models to data and estimate the parameters. Computational procedures for 

determining parameters for various model classes are outlined in the above referen- 

ces. Often these are based on a minimization of a least squares or a maximum 

likelihood type criterion. However, very little is known about the theoretical proper- 

ties of these procedures and the resulting estimates. An exception is the class of 

random coefficient autoregressive processes for which a fairly extensive theory of 

estimation exists (Nicholls and Quinn 1982). See also the special models treated by 

Robinson (1977) and Aase (1983). Sometimes properties like consistency and 

asymptotic normality appear to be taken for granted also for other model classes, 

but some of the simulations performed indicate that there are reasons for being 

cautious. 
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In this paper we will try to develop a more systematic approach and discuss a 

general framework for nonlinear time series estimation. The approach is based on 

Taylor expansion of a general penalty function which is subsequently specialized 

to a conditional least squares and a maximum likelihood type criterion. Klimko 

and Nelson (1978) have previously considered such Taylor expansions in the 

conditional least squares case in a general (non-time series) context. 

Our approach yields the estimation results of Nicholls and Quinn (1982) as special 

cases, and, in fact, we are able to weaken their conditions in the maximum likelihood 

case. The results derived are also applicable to other classes of nonlinear time series. 

Although the conditions for consistency and asymptotic normality are not always 

easy to verify, they seem to give a good indication of the specific problems that 

arise for each class of series. 

An outline of the paper is as follows: In Section 2 we present some results on 

consistency and asymptotic normality using a general penalty function. In Sections 

3-5 we specialize to conditional least squares and to a maximum likelihood type 

penalty function for stationary processes and give examples. In Sections 6 and 7 

we consider conditional least squares estimates for nonstationary processes. The 

present paper is an abridged version of Tjostheim (1984a, b) to which we refer for 

more details and complete proofs. 

2. Two general results on consistency and asymptotic normality 

Let {X,, t E Z} be a discrete time stochastic process taking values in Rd and defined 

on a probability space (0, 9, P). The index set I is either the set Z of all integers 

or the set N of all positive integers. We assume that observations (X,, . . . , X,,) are 

available. We will treat the asymptotic theory of two types of estimates, namely 

conditional least squares and maximum likelihood type estimates. Both of these are 

obtained by minimizing a penalty function, and since, in our setting, the theory is 

quite similar for the two, we will formulate our results in terms of a general 

real-valued penalty function Q,, = Q,,(P) = Q,(X,, . . . , X,; p) depending on the 

observations and on a parameter vector p. 

The parameter vector p = [p,, . . , PrIT will be assumed to be lying in some open 

set B of Euclidean r-space. Its true value will be denoted by /3’. We will assume 

that the penalty function Q, is almost surely twice continuously differentiable in a 

neighborhood S of p”. We will denote by 1.1 the Euclidean norm, so that IpI = 

(PT/3)“‘. For 6 > 0, we define Nfi = {/3: I@ -/3”I < S}. We will use a.s. as an abbrevi- 

ation for almost surely, although, when no misunderstanding can arise, it will be 

omitted in identities involving conditional expectations. 

Theorems 2.1 and 2.2 are proved using the standard technique of Taylor expansion 

around p” (cf. Klimko and Nelson, 1978, and Hall and Heyde, 1980, Ch. 6). Let 

Nfi c S. Moreover, let aQ,,/dP be the column vector defined by aQ,,/ap,, i = 1,. . . , r, 

and likewise let a2Q,,/i)p2 be the r x r matrix defined by a2Q,,/itpi imp,, i, j = 1, . . , r. 
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Then 

is valid for Ip -/?“I < 6. Here /3* = p*(X,, . , . , X,; p) is an intermediate point 

between /3 and p”. 

Theorem 2.1. Assume that {X,} and Qn are such that, as n + ~0, 

*l: “-‘Fi 
"Qmtpo) a.~. 

-0, i=l,..., r. 

A2: The symmetric matrix a’Q,(/3”)/6)/3’ 

lim inf ALin Y 0 
n-cc 

is non-negative dejinite and 

where h&(/3’) is the smaflest eigenualue of n-l a’Q,,(p”)/~)/3~. 

A3: lim sup (n6)-’ 
n-m 8JO 

~(~*)-~Cp”,I ?Q3 fori,j=l,..., r. 

Then there exists a sequence of estimators p^,, = (in,, . . . , bn,)T such that p^,, + /3” 

as n + co, and such that for E > 0, there is an E event in (0, 9, P) with P(E) > 1 - .s 
I 

and an no such that on E and for n > no, aQ,,(P,,)/api = 0, i = 1, . . . , r, and Q,, attains 

a relative minimum at p^,. 

The proof is as in Klimko and Nelson (1978) since it is easily checked that the 

argument does not depend on the special conditional least squares function used 

there. 

When it comes to asymptotic normality it is essentially sufficient to prove 

asymptotic normality of aQ,(p”)/ap. 

Theorem 2.2. Assume that the conditions of Theorem 2.1 are fuljilled and that in 

addition we have that, as n + 00, 

for i, j= 1,. . . , r, where V= ( Vti) is a strictly positive dejinite matrix, and 

B2: n -,,,aQn 
,,(PO) : X(0, W) 

where N(0, W) is used to denote a multivariate normal distribution with a zero mean 

vector and covariance matrix W. Let {p,} be the estimators obtained in Theorem 2.1. 

Then 

n”‘(b, -PO): X(0, V-’ WV’). (2.1) 
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The proof is identical to the proof of Theorem 2.2 of Klimko and Nelson (1978). 

3. Conditional least squares. The stationary case 

In Sections 3-5, {X,} will be assumed to be strictly stationary and ergodic. In 

addition second moments af {X,} will always be assumed to exist, so that {X,} is 

second order stationary as well. The task of finding nonlinear models satisfying 

these assumptions is far from trivial (cf. Tjostheim, 1985a, Section 5). It should be 

realized that a strictly stationary model is capable of producing realizations with a 

distinctive nonstationary outlook (cf. e.g. Nicholls and Quinn, 1982, Section 1 and 

Tjostheim, 1985a, Section 5). 

We denote by 5: the sub a-field of 9 generated by {X,Y, s G t}, and we will use 

the notation z,,,-, = J?,,_,@) for the conditional expectation &(X, 1 SE,). We will 

often omit p for notational convenience. 

In the case where {X,} is defined for t > 1 only (this will be referred to as the 

one sided case), g,Ir-, will in general depend explicitly on t and therefore ??,,_, 

do not define a stationary process. If the index set I of {X,, t E I} comprises all the 

integers, then %,,,_, is stationary, but in general g,,,_, will depend on X,‘s not 

included in the set of observations (X,, . . . , X,,). To avoid these problems we replace 

SE’_, by @E,(m), which is the q-field generated by {X,, t - m G s G t - l}, and let 

gt,,-, = E{X, ( 9:,(m)}. Here m is an integer at our disposal, and we must have 

t 3 m + 1 in the one sided case. 

We will use the penalty function 

Qn(P) = i+, ix -~,,,-,m’ (3.1) 

and the conditional least squares estimates will be obtained by minimizing this 

function. In the important special case where g,,,_, only depends on {X,, t-p G s s 
t - l}, i.e. {X,} is a nonlinear autoregressive process of order p, we can take m = p 

and we have E(X, 1 SE,) = E{X, (s;“_,(m)}, where t 2 m + 1 in the one sided case. 

The theorems in this section are essentially obtained by reformulating and extend- 

ing the arguments of Klimko and Nelson (1978) to the multivariate case. Their 

proofs are therefore omitted and the interested reader is referred to Tjostheim 

(1984a). 

Theorem 3.1. Assume that {X,} is a d-dimensional strictly stationary ergodic process 

with E(JX,I*)<a and such that %,,,_,(/I) = E,{X,/ SE,(m)} is almost surely three 

times continuously diflerentiable in an open set B containing p”. Moreover, suppose that 

Cl: E(l~(@‘)l*} <CO and E( l$(/?0)12] <CO 

fori,j=l,..., r. 
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Let {p^“} be the estimators obtained in Theorem 3.1. Then 

r~‘/~($, -p”) : K(0, U-‘RU -‘). (3.4) 

For a large class of time series models (including the ordinary linear AR models) 

the condition Dl is implied by the condition Cl of Theorem 3.1, and hence essentially 

no extra condition is required to ensure asymptotic normality. 

Corollary 3.1. If X, - X,,,_r (PO) is independent of SE,, then Dl is implied by C 1. 

Proof. Under the stated independence assumption we have 

&I@“) = E[{X, - X,,,-,(P”)I{X, - X,,,dP”H’l (3.5) 

and the Schwarz inequality yields the conclusion. 0 

4. Examples 

For notational convenience we will omit the superscript 0 for the true value of 

the parameter vector in this section. Moreover, in all of the following {e,, -a < t < ~0) 

will denote a sequence of independent identically distributed (iid) (possibly vector) 

random variables with E( e,) = 0 and E( e,eT) = G < 00. 

4.1. Exponential autoregressive models 

These models were introduced and studied by Ozaki (1980) and Haggan and 

Ozaki (1981). They have considered the problem of numerical evaluation of the 

parameters by minimization of the sum of squares penalty function Q,, of (3.1), and 

they have done simulations. However, we are not aware of any results concerning 

the asymptotic properties of these estimates. 

To make the principles involved more transparent we will work with the first 

order model 

X,-(i)+ 7~ exp(-rX:_,)}X,_, = e, 

defined for t 2 2 with X, being an initial variable. 

(4.1) 

Theorem 4.1. Let {X,} be defined by (4.1). Assume that lt,!r +j~l< 1, and that e, has 

a density function with infinite support such that E (e:) < ~0. Then there exists a unique 

distribution for the initial variable X, such that {X,, t 2 1) is strictly stationary and 

ergodic. Moreover, there then exists a sequence of estimators {( $,,, &,,, ?,,)} minimizing 

(us described in the conclusion of Theorem 2.1) the penalty function Q,, of (3.1) and 

such that (G,,, 7;,, qn) a.b. (I/J, T, y), and (4, 7;,,, q,,) is asymptotically normal. 



D. Tjtistheim / Nonlinear models 257 

Proof. Our independence assumption on {e,} implies that {X,, t 2 1) is a Markov 

process, and the problem of existence of a strictly stationary and ergodic solution 

to the difference equation (4.1) can then be treated using Corollary 5.2 of Tweedie 

(1975). 

Since e, has a density with infinite support it follows that {X,} is +-irreducible 

(cf. Tweedie 1975) with 4 being Lebesgue measure. Since for an arbitrary Bore1 set 

B we have 

P(x,B)JP(x~~B~X,~,=x)=P(e,~B-a(x)~x) (4.2) 

where a(x) = ++ n exp(-yx’), and since the function a is continuous, it follows 

that {P(x, . )} is strongly continuous. Moreover, it is easily seen from (4.1) that 

yx 2E((lX,l - IX,-4l X,-, = ~1s {l4x)l- lC4 + EMI. (4.3) 

Here, l~~~~l~l~l+I~l~~p~-~~‘~~l~l+l~l since y 2 0. Let cY= 

E(le,l)l(l -IA-Id). Th en if I$l+lr1<1, there exists a c>O such that y,~--c for 

all x with (xl > cy. Moreover, 7x is bounded from above for all x with 1x1 G cr. It 

follows from Corollary 5.2 of Tweedie (1975) that there exists a unique invariant 

initial distribution for X, such that {X,, t 3 l} is strictly stationary and ergodic. 

Since we have a nonlinear AR(l) process, we can take m = 1 in Theorems 3.1 

and 3.2. The conditions stated in (3.3) will then be trivially fulfilled and we have 

for ts2 

.?,,_, = E(X,I SE,) = {(cl+ T exp(--yX:_,)}X,_,. (4.4) 

Furthermore, A,,-, = E(e:) = u2 such that Dl of Theorem 3.2 follows from Cl of 

Theorem 3.1, and it is sufficient to verify Cl-C3. 

Since any moment of rr exp(-yX:_,)X,_, exists, it follows from (4.1) and the 

strict stationarity of {X,} that E(ef) < ~0 implies E(Xt) < 00. From (4.4) we have 

a-$-, -=x_ 
a* r I, 

!f!+ (_2)k 
9-r exp(-yX:_,)X:_tri, 

&-l 
(4.5) 

-= exp(-yX:_,)X,_,, 
arr 

z= (-2)k exp(-rX:_,)Xf?‘_+: 

fork=l,..., while the other derivatives are zero. It is easily seen that E(Xf) <cc 

implies that Cl is satisfied. Since [$I + 1~1~ 1, we have that IX, - X,,,_,l G IX,1 + IX,_,l 

and that the above derivatives are bounded by IX,_,l, 2klX,_,lkt’, IX,_,] and 

2klX,J+‘, respectively. Successive applications of the Schwarz inequality and use 

of E(XT) < cc yield C3. 

Let a,, a2 and u3 be three arbitrary real numbers. Then 

(I &-I 
E a,- 

if&-, a-$-, 2 
w 

+ a,- - =o 
a7r 

+a3 
a? I) 

(4.6) 
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X,~,[a,+exp(-yX:_,){a,X,~,-2~,~}]~~.0, (4.7) 

and > E( ef) > 0, it follows that a, = a2 = a3 = 0. Hence C2 holds and 

the proof is completed. q 

The infinite support assumption on {e,} can be relaxed. Moreover, it is not 

absolutely critical that the model (4.1) is initiated with X, in its stationary invariant 

distribution. The critical fact is the existence of such a distribution (cf. Klimko and 

Nelson, 1978, Section 4). 

The general pth order model can be transformed to a first order vector autoregress- 

ive model, and essentially the same technique can be used as indicated in Tjostheim 

(1984a). 

4.2. Some other models 

A related class of models is the threshold autoregressive processes (Tong and 

Lim 1980). Unfortunately we have not been able to establish the existence of a 

stationary invariant initial distribution for these processes. The transition probability 

P(X, .) is not in general strongly continuous (nor is it weakly continuous), and this 

makes it difficult to apply Tweedie’s (1975) criterion. We will treat the threshold 

processes in Section 7, however. 

Another class of related processes is studied by Aase (1984) (see also Jones, 

1978). Results similar to those of Theorem 4.1 can be obtained (cf. Tjostheim, 1984a). 

Random coefficient autoregressive (RCA) models are defined by allowing random 

additive perturbations of the AR coefficients of ordinary AR models. Thus a d- 

dimensional RCA model of order p is defined by 

X,- 5 (ai+b,,)X,_,=e, 
I=, 

(4.8) 

for --CO< t < m. Here, a, i = 1,. . . , p, are deterministic d x d matrices, whereas 

{b,(p)} = {[b,,, . . , b,,]} defines a d xpd zero-mean matrix process with the b,( p)‘s 

being iid and independent of {e,}. Using the methods described in Section 3 the 

results of Nicholls and Quinn (1982) on least squares estimation, i.e. their theorems 

3.1, 3.2, 7.1 and 7.2 can easily be derived. Again we refer to Tjostheim (1984a) for 

details. 

The bilinear class of models has received considerable attention recently. We 

refer to Granger and Andersen (1978), Subba Rao and Gabr (1984) and Bhaskara 

Rao et al. (1983) and references therein. We are not aware of a theory of statistical 

inference for these models, except in rather special cases (cf. Hall and Heyde 1980, 

Section 6.5). Using our general framework we have only been able to treat (Tjostheim, 

1984a) some special bilinear series studied by Guegan (1983). 
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In general the conditions Cl, C3 and Dl essentially require mean square conver- 

gence in terms of past Xr’s of such quantities as E(e,_i 1 SE,) and their derivatives 

for general lags i and are thus intimately connected with the invertibility problem 

of bilinear models. This problem seems very complicated (cf. Granger and Andersen, 

1978, Chapter 8) and until more progress is made, it appears to be difficult to make 

substantial headway in conditional least squares estimation of bilinear series using 

the present framework. 

5. A maximum likelihood type penalty function 

In all of the following it will be assumed that the conditional prediction error 

matrix fiitPl is nonsingular and that there exists an rn such that (3.3) holds. We 

introduce the likelihood type penalty function 

(5.1) 

If {X1} is a conditional Gaussian process, then L, coincides with the log likelihood 

function except for a multiplicative constant. However, in this paper we will not 

restrict ourselves to Gaussian processes and a likelihood interpretation, but rather 

view L, as a general penalty function which, since it has (cf. Tjostheim, 1984a) the 

martingale property, e.g. E{ad,(p”)/apil SE,} =O, for a general {X,}, it can be 

subjected to the kind of analysis described in Sections 2 and 3. 

The analysis of L, will differ in an essential way from that based on conditional 

least squares only in the case where ftirel is a genuine stochastic process; i.e. when 

X,-X,,,_, is not independent of SE,. For the examples treated in Section 4 this 

is the case only for the RCA processes. More general state space models of this 

type will be treated in Section 7. As will be seen, using L, it is sometimes possible 

to relax moment conditions on {X,}. 

5.1. Consistency 

We denote by s the number of components of the parameter vector p appearing 

in L,(p). Due to the presence of f,i,_, in L,, in general s > r with I defined as in 

Theorem 3.1. The symbol 0 denotes tensor product, while vec( .) stands for 

vectorization (cf. Nicholls and Quinn, 1982, Chapter 1). 

Theorem 5.1. Assume that {X,} is a d-dimensional strictly stationary and ergodic 

process with E(1X,1*) < ~0, and that z,I,l,_,(p) and ftI,-,(/?) are almost surely three 

times continuously di#erentiable in an open set B containing /3’. Moreover, if 4, is 

defined by (5.1), assume that 

El: E(l$(fi’)l)<cc and E(I$(p’)l)<cc fori,j=l,...,s. 
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E2: For arbitrary real numbers a,, . . . , a, such that, for p = PO, 

(5.2) 

then we have a, = a, = . . . = a,5 = 0, 

E3: For p E B, there exists a function H:Jk(X,, . . . , X,) such that 

for i,j, k= 1,. . . , s. 

Then there exists a sequence of estimators {p,,} minimizing L, of (5.1) such that 

the conclusion of Theorem 2.1 holds. 

Proof. Due to stationarity and ergodicity and the first part of El, we have 

np’8L,(po)/?+p, a.5- E{aq5,(p”)/api} as n + ~0. However, because of the martingale 

increment property just mentioned for {&#+(p”)/?~p,} we have E{a+,(p”)/ap,} = 

E[E{a4,(/3”)/ap, 1 @;‘_,}I = 0 and Al of Theorem 2.1 follows. Similarly, A3 of that 

theorem follows from E3, the mean value theorem and the ergodic theorem. 

Using the last part of El and the ergodic theorem we have 

n-‘&(p’)= E[E{$(p’),“:,]] :V:,. 
I 

(5.3) 

It remains to show that E2 implies that the matrix V’= (V:j) is positive definite. It 

can be shown (Tjostheim, 1984a) that 

However, using standard rules about tensor products and trace operations we have 

for p = /3’ and arbitrary real numbers a,, . . , a, 

=2E 
(I 

fi:!: i a---- 
a&, ’ 

i=L ’ Wi I) 

+ E J;I:!: 0 f,:‘!: i ai vet 
(I i=, 

. (5.5) 

Hence the matrix V defined in (5.3) is non-negative definite, and due to the positive 

definiteness of JIr+, it now follows from (5.5) and E2 that V is in fact positive 

definite and the theorem is proved. q 
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5.2. Asymptotic normality 

To ease comparison with the results of Section 3 we introduce the matrix U’ 

defined by U’=$V’, where V’= (VL) is given by (5.3). Also we will only treat the 

scalar case. The multivariate case is considered in Tjostheim (1984a). 

Using (5.4) U’ is given for p = p” by 

(5.6) 

for i, j, . . . , s. Corresponding to Theorem 

Theorem 5.2. Assume that the conditions 

p =/3” and i, j= 1,. . . , s, 

3.2 we have 

of Theorem 5.1 are fulfilled and that, for 

(5.7) 

Let S = (S,), and let {p,,} be the estimators obtained in Theorem 5.1. Then we have 

and 

n”‘(@, -PO): X(0, (U’)-‘+( U’)-‘S( I/‘)-‘). (5.8) 

Proof. We use the same technique as in the proof of Theorem 3.2. From the 

martingale central limit theorem in the strictly stationary ergodic situation and a 

Cramer-Wold argument, it follows that n-“’ a L, (Do)/@ has a multivariate normal 

distribution as its limiting distribution if the limiting covariance of this quantity 
1 

exists. Using Theorem 2.2 this implies asymptotic normality of /3,, and what remains 

is to evaluate the covariance matrix. 

Since {aL,@“)/+3, Sf} is a martingale, it is easy to verify that 

Using the definition (5.1) of 4, it is not difficult to show that, for p = /3’, 

(5.9) 

(5.10) 
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The finiteness of E{n-“‘aL,(p”)/ap,. n-“‘t~L,(P”)/d/3,} now follows from the 

assumptions El and Fl, while the form of the covariance matrix in (5.8) follows 

from (2.1) and the definition of S and U’. cl 

In the case where frlt-, does not depend on /3 we have S = 0. Under the additional 

assumption of Corollary 3.1 we have 

U’= E[~~~~-,(P”)I~P{E(fi,,~,)}-‘~r?‘,,-,(~o)l~~l 

and estimation using L, of (5.1) or Q,, of (3.1) essentially gives identical results. 

5.3. An example: RCA processes 

The method used by Nicholls and Quinn (1982, Chapter 4) requires compactness 

of the region over which the parameter vector is allowed to vary. This necessitates 

rather restrictive conditions (cf. conditions (ci)-(cii), p. 64 of their monograph). On 

the other hand the boundedness conditions on the moments are weaker than in the 

conditional least squares case. 

Using our general theoretical framework we are able to dispense with the compact- 

ness conditions, while retaining the same weak conditions on the moments. We 

assume that conditions are fulfilled so that an ergodic strictly and second order 

stationary @TV &‘-measurable solution of (4.8) exists. Such conditions are given 

in Quinn and Nicholls (1982, Chapter 2). Moreover, we will again omit the super- 

script 0 for the true value of the parameter vector. Finally, it is clear that (3.3) is 

satisfied with m =p. 

In the scalar RCA case we have from (4.8) that g,,,_, = Y:_,a where Y’( t - 1) = 

[XI_,, . . . . X,_,] and aT= [a,, . . . , a,,] such that aX,,,_,/Ja, = X,_i. Furthermore, it 

is easy to show that 

A,,_, = YT_,AY,_, + a2 (5.11) 

where (T* = E( e:) and where A is the covariance matrix of the random perturbations 

{b,(P)> of (4.8). 

Theorem 6.1. Let {X,} be a scalar RCA process such that the above stated conditions 

are satisfied. Assume that {e,} cannot take on only two values almost surely and that 

A is positive de3nite. Then there exists a sequence of estimators {[ 6,, ii,,, &‘,I} minimiz- 

ing (as described in the conclusion of Theorem 2.1) the penalty function L, of (5.1) 

and such that [a,, A,,, G’,] a.s. [a, A, a’]. The estimates [a^,, i,,, $,I are joint 

asymptotically normal, if, in addition, we assume E(e:) < DZ and E(b:i) <CO, i = 

1,. . . ,p. 

Proof. We denote by Amin> 0 the minimum eigenvalue of A. It is seen from (5.11) 

that 

(5.12) 
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whereas 

I I V&1 
- = [2X,_,X,_,l< YT-, Y,_, 
an, 

(5.13) 

for i,j=l,..., p, and i?f;,t_l/& = 1. It follows from the assumption on {e,} that 

p2 > 0, and thus fii_, is well defined and we have from (5.12) and (5.13) that 

and 

(5.14) 

(5.15) 

Only first order derivatives of X(,I,_, and&,,_, are non-zero for the RCA case, and 

it is seen by examination on a term by term basis that each of the terms involved 

in evaluating E(la+,/apil) and E(la2+,/apia/3jl) is bounded by KE(X:) for some 

constant K. It follows that El of Theorem 5.1 is fulfilled. 

Similarly, we find (Tjostheim, 1984a) that la34,(p)/api Qj a& 4 MlX,l’ for a 

constant A4 and where this holds for all p E B. Thus, since we assume that {X,} is 

second order stationary, it follows that condition E3 of Theorem 5.1 is fulfilled. It 

remains to verify E2. But this essentially follows (Tjostheim, 1984a) from the linear 

independence properties of RCA processes. 

To prove asymptotic normality, according to Theorem 5.2, we have to prove 

finiteness of S, with S, defined as in (5.7). We only look at the term 

(5.16) 

of (5.7). The other terms can be treated likewise. 

Using the fact that {e,} and {b,(p)} = {[b,,, . . . , b,,]} are independent with E (e,) = 

E{b,(p)}=O, we have 

E{(X, - $-,,“I S;“_,> = E{(b,(p) K-1 + d41 $:,I 

+6a2 i 5 X,_,X,_,E(b,,b,,)+ E(e;). 
r=* j=1 

(5.17) 

From (5.13) and E(b:i)<a, i=l,... , p, it follows by successive applications of 

the Schwarz inequality that 
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and 

(5.19) 

for some positive constants M, and M2. Using E(e:)<co and (5.12), (5.14) and 

(5.15) it is seen that C, defined in (5.16) is bounded with probability one, and thus 

E( C,) < ~0. The other terms of (5.7) are shown to have a finite expectation using 

identical arguments, and this completes the proof. q 

6. Conditional least squares. The nonstationary case 

In the rest of the paper we will try to extend our general framework to some 

classes of nonstationary models. We will only treat certain types of nonstationarity, 

such as that arising from a nonexisting stationary initial distribution, or the non- 

stationarity arising from a nonhomogeneous generating white noise process {e,}. 

Unlike the case of consistency for stationary series, it will not be possible to condition 

on S;;“_,(m), which is the g-field generated by {X,, t - m d s s t - 1). This is because 

we will rely more on pure martingale arguments, and then we need an increasing 

sequence of c-fields. Hence, from now on we will always condition with respect to 

S”;“-, and assume that (3.3) is fulfilled. For autoregressive type processes of order 

p it will then be possible to express g,,,+,,,,, in terms of (X,, . . . , X,,) if min(n, m) ap. 

The following two theorems correspond to Theorems 3.1 and 3.2 and we use the 

penalty function Q,, defined in (3.1). 

Theorem 6.1. Assume that {x,} is a d-dimensional stochastic process wjth E{lX,l’} < CO 

andsuch that&,(B) = Ee{X,I SE,} . IS a 1 most surely twice continuously diferentiable 

in an open set B containing p”. Moreover, assume that there are two positive constants 

M, and M2 such that, for t 2 m + 1, 

CNl: E 

and 

CN2: E $$8”11;,.-,(Bn)$+ 5~ M2 

1 I ’ J I 

for i,j=l,..., r. 

CN3: lim_$f hki,(Po) “2.0 

where Eli” is the smallest eigenvalue of the symmetric non-negative de$nite matrix 

A”(P’) with matrix elements given by 

A;(PO) =’ 5 +(/j”)%!!d(flo). 
n r=m+i , I 

(6.1) 
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CN4: Let IV8 ={p : Ip - /3”I < S} be contained in B. Then 

lim sup 6-r 
n-‘X Sl 

for i,j= 1,. . . , r. 

Then there exists a sequence of estimators {p*,,}={[p,,,, . . . , p,,]‘} such that 

in * PO, and such that for E > 0, there is an event E in (0, 9, P) with P(E) > 1 - E 

and an no such that on E and for n > no, aQ,,(bn)/api = 0, i = 1,. . . , r, and Q,, attains 

a relative minimum at p^,. 

Proof. From the definition of Q,,(P) in (3.1) it is easily seen that {aQ,(p”)/ap, Sf} 

is a zero-mean martingale. The increments U, = aQ,/ap, - aQ,_,/ap, are such that 

(using CNl) 

E(I U,(/3”)[‘) =4E (6.2) 

and it follows from a martingale strong law of large numbers (cf. Stout 1974, Theorem 

3.3.8) that n-‘aQ,(p”)/@, * 0 as n + ~0, and Al of Theorem 2.1 is fulfilled. 

Computing second order derivatives we have 

Here @‘~~,-AP”)lWk WQ[X - ~t~~-~(Po)ll d fi e nes a martingale difference sequence 

with respect to (9:) and using CN2 while reasoning as above we have 

(6.4) 

as n + CO, and hence CN3 implies A2 of Theorem 2.1. Using (6.3) it is seen that 

CN4 is identical to A3, and the conclusion now follows from Theorem 2.1. q 

The conditions CNl and CN2 may be weakened in two directions as indicated 

in Tjostheim (1984b). 

When we now turn to the asymptotic distribution of pn, we cannot rely on 

Billingsley’s (1961) result for ergodic strictly stationary martingale difference sequen- 

ces which essentially is used to prove Theorem 3.2. However, there are more recent 

results from martingale central limit theory that can be applied. Typically these 

require a random scaling factor. 

Let a_?,,_,/ap be the d x r matrix having a&,/@, i = 1,. . . , r, as its column 

vectors and let R, be the r x r symmetric non-negative definite matrix given by 

R,= i E 
,=ITl+, 

(6.5) 
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Moreover, denote by T, the stochastic r x r symmetric non-negative definite matrix 

defined by 

r=m+, ap ap (6.6) 

We will denote by A-’ the Moore-Penrose inverse of a matrix A and by det(A) the 

determinant of A. Then we have 

Theorem 6.2. Assume that the conditions of Theorem 6.1 are jiuljilled and assume in 

addition that 

DNl: lim+$f n-’ det{R,(P’)} > 0 

and 

W 

{~~-~,,,~,(B”)}T~(p”) 1 R,“‘(p”) -r, I, 

where I, is the density matrix of dimension r. 

Let {in} be the estimators obtained in Theorem 6.1. Then 

Proof. Note first of all that R,(P”) is finite from CNl. Let 

(6.7) 

(6.8) 

Since we are dealing with an asymptotic result, as in the proof of Theorem 2.2 of 

Klimko and Nelson (1978), we may assume that S,,(p^,,) = 0. Taylor expanding S, 

about /3’ and subsequently normalizing with R!,‘*(p”) we have 

0= R,“‘(~“)S,,(/3”)+ R;“‘(/3”)+)(& -/3”) (6.9) 

where pz is an intermediate point between p^,, and p”. Again, reasoning as in the 

proof of Theorem 2.2 of Klimko and Nelson (1978), in the limit as n + 00 we may 

replace /3: by PO. Moreover, using DNl, the boundedness condition CN2 and the 

orthogonal increment property of a martingale difference sequence, it follows from 

Chebyshev’s inequality that there exists an n, such that 

(6.10) 
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is bounded in probability for n 2 n,. Since, from Theorem 6.1, p^n 4 Do, it follows 

that F,,(p’)(j?,, -p”) s 0, and therefore, when taking distributional limits in (6.9), 

R,“‘(/3”)dS,(p~)/dp may be replaced by 

Ri”‘(P”) ,_i+, E = K”*(P”)~n(PoL (6.11) 

and hence from (6.7) and (6.9), the theorem will be proved if we can prove that 

R,“‘(/3”)Sn(/3”) s X(0, I,). 

We use a Cramer-Wold argument. For an r-dimensional vector A of real numbers 

it is sufficient to prove that 

A’R,“‘(~“)S,(~“)~ X(0, AT/i). (6.12) 

For this purpose we introduce 

cm = _ATR+%-1 ,p(X, -X,,,-,) = ATR;“*& (6.13) 

Then ATR;“*S, =C:=,,+, &,,, and for j3 = p” we have that trn, m+ 1 G ts n, are 

martingale increments for a zero-mean square integrable martingale array -Ii,, = 

CL,, &n, m + 1 s is n. It is then sufficient to verify the following conditions (cf. 

Hall and Heyde, 1980, Theorem 3.2, where the nesting and integrability conditions 

of that theorem are trivially fulfilled) for p = p”: 

n 

(ii) C &+ATA, 
,=m+, 

(iii) E( ,E;T=, .$) is bounded in n. 

The condition (ii) follows trivially from the definition of trn and the assumption 

DN2. Moreover, 

(6.14) 

and using the definition of R, in (6.5) we have that the expectation of the extreme 

right hand side of (6.14) is ATA, and (iii) follows from this. 

Also, using the technique described in Hall and Heyde (1980, p. 53), for a given 

&>O 

(6.15) 
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where l( . ) is the indicator function. But 

= i hrR,“‘E{~,~~1(~ATR,“2~,~~R,“2h~ > e)}R;“*h, (6.16) 
r=m+, 

and using the definition of 5, in (6.8) and the conditions CNl and DNl we have 

that for a given 6 > 0, there is an n, such that for n > n, and all t, M + 1 S t G n, 

E{&~:l(lATR,“2&{:R;“2AI > F)}< 6 (6.17) 

for /3 = p”. Again using CNl and DNl there exists an n, such that IR$(p”)I S kn-’ 

for n sn.1 ,, ‘,j = 1,. . , r, and for some constant k. Let n’ = max(n,, n,). Then from 

(6.16) and (6.17) we have for p = Do and for n s n’ 

(6.18) 

where K (A, k) is a constant depending on A and k but independent of n. On the 

other hand, using CNl, DNl and (6.16) it follows at once that for p =p” 

n’ 
C E{5:nl(I&nl> &))+O (6.19) 

,=*+I 

as n + ~0. Using Chebyshev’s inequality, (6.18) and (6.19) now imply (i), and the 

proof is completed. q 

The matrix R, corresponds to the number of observations in the statement of 

Theorem 3.2. In the stationary ergodic case C’R, + R and n-IT, + U as n + ~0, 

where U and R are given by (3.2) and condition Dl of Theorem 3.2, and it is seen 

that (6.7) reduces to (3.4) then. However, in the nonstationary case we do not require 

the convergence of n-’ R, and n-’ T,,, and in fact for the examples to be treated in 

the next section these quantities do not always converge. 

7. Examples 

We will illustrate our general results on several nonlinear time series classes. The 

technical difficulties are larger than in the stationary ergodic case, and, partly to 

display the essential elements involved more clearly, we will confine ourselves to 

discussing scalar first order AR type models. Extensions to higher order and vector 

models will be relatively straightforward in some of the cases. We will generally 

omit the superscript 0 for the true value of the parameters. 

7.1. Threshold autoregressive processes 

These models were originally introduced by Tong. The underlying idea is a 

piecewise linearized autoregressive model obtained by introduction of a local thresh- 

old dependence on the amplitude X,. 
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Tong and Lim (1980) consider the numerical evaluation of maximum likelihood 

estimates of the parameters of the threshold model. 

We will only treat the first order AR case and we will assume that there is only 

one residual process {e,} consisting of zero-mean iid random variables. We can then 

write the threshold model as 

x, - i a’X,_,H,(X,_,) = e, (7.1) 
,=I 

where this equation is supposed to hold for t f > 2 with X, as an initial variable, and 

where H,(X,_,) = 1(X,_, E Fj), l( .) being the indicator function and F,, . . . , F,,, 

disjoint regions of R’ such that UF, = R’. There is no explicit time dependence in 

(7.1). The reason that we did not treat such processes in connection with our study 

of stationary processes in Section 4, is that we have not been able to prove the 

existence of an invariant stationary distribution for the initial variables in the 

threshold case. For a general initial variable Xl it is clear that the process generated 

by (7.1) will be nonstationary. 

Theorem 7.1. Let {X,} be dejned by (7.1). Assume that the threshold regions F, are 

such that there exist constants a, >O SO thatfor all t, E{X:Hj(X,)}>- Lyj, j= 1,. . . , WI. 

Moreover, assume that lajl< 1, j = 1, . . . , rn, E(X:) < CO and E( et) < ~0. Then there 

exists a strongly consistent sequence of estimators {a^,} = {[a*:, . . . , a^,“]‘} for a = 

[a’, . . . , a”]‘. These estimates are obtained by minimizing the penalty function Q,, of 

(3.1), and they are jointly asymptotically normal. 

Proof. The system of equations aQ,/aa’ =O, j= 1,. . . , m, is linear in a’, 

and it is easily verified that Q,, is minimized by taking 

where this exists with probability one since E{X:H,(X,)} 2 aJ 

Using (7.1) and the independence of the e,‘s we have 

Z,,,_, = $ ajX,_,Hj(X,_,) and 
a-&, 
-= x,-lq(x,-l), 

j=l aa’ 

m ..,a , 

(7.2) 

(7.3) 

while higher order derivatives are zero. Also, it is easily shown that ftIt-, = 

E{(X,-Z,,1,_,)2[9;Y_,}= E(e:)=u2. S’ mce a&-,/aaJ does not depend on ak, k= 

1 . . 2 m, it follows that CN2 and CN4 of Theorem 6.1 are trivially fulfilled. 

Gbreover, using la’(<l, j= l,.. ., m, E(Xf) <OO and E(ef) -COO, it follows from 

(7.1) that E(XT) G K for some constant K, and that CNl of Theorem 6.1 holds. 

From the special structure of the derivatives given in (7.3) we have that the matrix 

A” in (6.1) in the present case is a diagonal matrix and is given by 

A” = diag $ g, X:_,H,(X,_,) (7.4) 
I 
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and using the assumption E{X:H,(X,)} 2 a;- we have that CN3 of Theorem 6.1 will 

be fulfilled if we can prove that 

for i=l,..., m. This is proved (Tjostheim, 1984b) by exploiting that .-’ I:=, e:-- 

2 B.S. 0, and by using the martingale strong law on the martingale difference 

Lquence {e, C,?=, U’X,_,Hj(X,_,)}. 

Turning now to the proof of asymptotic normality, it is not difficult to verify that 

the matrix R, defined in (6.5) in the present case is given by 

R, = v2 diag i [ E{Xf_,H,(X,_,)} 1 , (7.6) 
1=2 

and using the assumption E{XS_,H,(X,_,)} 2 LYE for j = 1,. . . , m it follows at once 

that DNl of Theorem 6.2 is fulfilled. Moreover, the matrix in DN2 is seen to be 

given by 

C:=, e?Xf-,Hj(Xc-*) 
1 E{C;=, x:_,H,(x,_,)l . (7.7) 

Since E(e:) <a and lail < 1, j = 1, . . . , m, there exists a K, such that 

E{X:_,H,(X,_,)}< K2 for all j and t, and thus, using that e, is independent of SE,, 

we have E[{efXf-,Hj(Xt-,)}2] G K,.E(e:). From the martingale strong law applied 

to the martingale difference sequence {e:X:_,Hj(X,_,) - (r’X:_,H,(X,_,)} it follows 

that 

(7.8) 

Using (7.5) and an addition-subtraction argument in (7.7) it follows that II,, a.S. I,,, 

as n + ~0, and thus, from Theorem 6.2, 

X:=2 xf-lHj(xt-l) 
> 

d 

diag (T[C:=~ E{X:_,Hj(X,_,)}]“’ 
(a*, -a) + X(0, I,). 0 (7.9) 

It is not difficult to check that the above proof applies to the case where the e,‘s 

are independent and zero-mean, and where m G E( e:) c M and E( e:) s M’ for 

some positive constants m, M and M’. It should also be noted that a similar 

nonstationary generalization can be made for the exponential autoregressive model 

treated in Section 4.1. 

An example where the condition E{XfH,(X,)} b a, is satisfied, is given in Tjost- 

heim (1984b). 

7.2. Random coefficient autoregressive processes 

We assume that {X,} is given on -co < t < a by 

Xt-(a+b,)X,_,=e, (7.10) 
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where {e,} and { 6,) are zero-mean independent processes each consisting of indepen- 

dent variables such that m, s E(e:) =Z M, and E(b:) < M2, where m,, M, and M2 

are positive constants such that a2 + M2 < 1. These conditions guarantee that there 

exists a .@ v %:-measurable solution of (7.10) with uniformly bounded second 

moments. This solution can be expressed as 

X, = F C&$-i 

i=O 

(7.11) 

with U,i = njii (a + b,,) and where by definition a,, = 1. 

We consider the problem of estimating the parameter a. Since XII,-, = ax,_,, it 

is clear that there is a unique solution to aQ,/aa = 0 with Q,, as in (3.1), namely 

6, = (I:=, X,X,_,)/(Cy_, X:-,) assuming that observations (X,, . . . , X,) are avail- 

able. The following theorem is proved in Tjostheim (1984b). 

Theorem 7.2. Let {X,} be as above, If in addition E(X:) s K for some constant K, 

then 6, + a. Moreover, if we also have E (ef) SC, and E{(a+b,)‘}sC2<1 for two 

constants C, and C,, then a^, is asymptotically normal. 

The main ingredients in the proof are use of Theorems 6.1 and 6.2, the martingale 

strong law and the mixingale convergence theorem (cf. Hall and Heyde, 1980, Th. 

2.21). 

7.3. Doubly stochastic processes 

Random coefficient autoregressive processes are special cases of what we have 

termed doubly stochastic time series models in Tjostheim (1985, a, b). In the simplest 

first order case these are given by 

X,= B,X,_,+e, (7.12) 

where {a + b,} of (7.10) now is replaced by a more general stochastic process { 0,). 

The process (0,) is usually assumed to be independent of {e,} and to be generated 

by a separate mechanism. Thus (f3,) could be a Markov chain or it could itself be 

an AR process. We refer to Tjostheim (1985a, b) for a definition and properties in 

the general case. 

For the case where {e,} is an ARMA process, there is a close connection with 

Kalman type dynamic state space models (cf. Harrison and Stevens, 1976, Ledolter, 

1981, and Tjostheim, 1985b). This type of processes has attracted considerable 

attention lately, and there exist procedures (see e.g. Ledolter, 1981) for computation 

of unknown parameters, but as far as we know there are no results available 

concerning the properties of these estimates. 

We have only considered a very special case, namely the case where { 0,) is a first 

order MA process given by 

8, = a + E, + be,-,, (7.13) 
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where {E,} consists of zero-mean iid random variables independent of {e,} and with 

E( E:) < ~0. Both {e,} and {E,} will be assumed to be defined on --CO < t < ~0. 

To be able to construct Kalman-like algorithms for the predictor g,,,_,, the process 

{X,} must be conditional Gaussian and this requires (Tjostheim, 1985b) that {e,} 

and {F,} be Gaussian, and that there is an initial variable X0 such that the conditional 

distribution of 0” given X0 is Gaussian. This last requirement is achieved here by 

choosing X0=0. Obviously it implies that {X,} is nonstationary. 

Theorem 7.3. Let {X,, t2 1) be given by (7.12) and (7.13) under the aboue stated 

assumptions. Assume that E(X:) d K for some constant K, and that the MA parameter 

b is less than i in absolute value. Then there exists a sequence of estimators {a^,} such 

that 6, * a as n + CO, such that 6, is obtained by minimization of Qn in (3.1) as 

described in the conclusion of Theorem 6.1. 

The proof is given in Tj$stheim (1984b). It makes use of the same techniques as 

for Theorem 7.2 in addition to recursive relationships for the conditional mean and 

the conditional covariance of F, given SE,. 

7.4. Some other problems 

In Tjostheim (1984b) it is shown that also autoregressive models with deterministic 

time varying coefficients can in certain cases be treated within our framework. 

Moreover, as in Section 5, it is possible to introduce a maximum likelihood type 

penalty function in the nonstationary case. Again it can be shown (Tjostheim, 1984b) 

that consistency and asymptotic normality can then be obtained under weaker 

moment conditions at least for the examples treated in Sections 7.2 and 7.3. 
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