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Let {X,, n z 0) and { Y,, n 3 0} be two stochastic processes such that Y,, depends on X, in a 

stationary manner, i.e. P( Y, E A 1 X,) does not depend on n. Sufficient conditions are derived for 

Y,, to have a limiting distribution. If X, is a Markov chain with stationary transition probabilities 

and Y,, = f(X,, ,X,+,) then Y, depends on X, is a stationary way. Two situations are 

considered: (i) {X,,, n 2 0) has a limiting distribution (ii) {X,, n 2 0) does not have a limiting 

distribution and exits every finite set with probability I Several examples are considered including 

that of a non-homogeneous Poisson process with periodic rate function where we obtain the 
limiting distribution of the interevent times. 

Markov chains * limiting distributions * periodic nonhomogeneous Poisson processes 

Section 1 

Let {X,, n 2 0) be a discrete time Markov chain with stationary transition prob- 

abilities. Consider a process {Y,,, n 2 0) defined by 

Y, =f(X,, Xntl, . *. , XI+,). (1.1) 

It should be emphasized that f and k do not depend upon n. In this paper we 

address the following question: under what conditions on the Markov chain {X,, n 2 

0) and the function f will {Y,,, n a 0) have a limiting distribution? 

As a first example of the above situation, suppose {X,,, n b 0) is a random walk 

i.e.X,=OandX,=Z,+Z,+. * . +Z, where {Z,,, n 3 0) is a sequence of i.i.d. random 

variables. Let Y, =f(X,,, X,,,) =X,,+, -X,. Here {X,,, n 2 0) itself does not possess 

a limiting distribution (except in the trivial case where Z,, = 0 w.p. 1 for all n 2 0), 

but { Y,, n 3 0) does have a limiting distribution (in fact it is a sequence of i.i.d. T.v.) 

As a second example consider a nonhomogeneous Poisson process with rate 

function A(t). Suppose that A(t) is a periodic function of t. Let X, be the nth event 
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occurrence time and let Y, =f(X,, X,,,,) =X,+, -X, be the nth interevent time. 

Now, {X,,, n 20) is a transient Markov chain, but due to the periodic nature of 

h(f), one expects { Y,, n 5 0) to have a limiting distribution. This example is treated 

in detail in Example 2 of Section 3. 

Though we have stated the problem for a Markov chain {X,,, n 2 0} and its 

functional process {Y,, n 2 0}, the theory that we develop in the next section, in 

fact, does not use the Markov property of {X,, n 10) or the functional dependence 

of Y, on X,, . . . , X,,,. The general structure that we assume is as follows: 

Let {X,, n 3 0} be a sequence of random variables and {Y,,, n 2 0) be another 

sequence of random variables with the property that 

P( Y,, E A IX,,) does not depend on n. (1.2) 

We derive a sufficient condition under which {Y,, n 2 0) has a limiting distribution. 

Notice that if {X,, n ~0) is a Markov chain with stationary transition probabilities 

and Y, is defined by (1.1) then condition (1.2) is automatically satisfied. 

In Theorem 1 in the next section we state a sufficient condition for the existence 

of limiting distribution of {Y,,, n ~0). We also show with an example that the 

condition is not necessary. In the general setting of the theorem is seems difficult 

to derive a useful necessary condition. Even though the condition stated in Theorem 

1 is only sufficient, it is nonetheless a powerful tool to unify several cases as is 

shown by the material in Sections 3 and 4. 

In Section 3 we consider stochastic processes {X”, n 2 0} having a limiting distribu- 

tion. From Theorem 1 we obtain Proposition 1 which gives the limiting distribution 

of { Y,, n 2 0). In Section 4 we consider countable state space stochastic processes 

{XII, n 2 0) which do not possess a limiting distribution and have the property that 

1X,, n > 0) exits every finite set with probability 1. In Proposition 2 we state a 

sufficient condition for { Y,, n > 0) to have a limiting distribution in this case. Several 

examples are given to illustrate both the propositions. Although the results are 

derived for general stochastic processes, the examples deal with Markov chains 

{X,, n 2 0). This is purely for the sake of computational ease. 

Limit theorems have been studied in the literature for the case when {X,,, n 3 0) 
is a Markov chain and Y, =f(X,,). These limit theorems deal with the partial sums 

I:=, Yp (See [31.) W e are not aware of any theorems for { Y,,, n 2 0) itself. Another 

specific problem that has been addressed in the literature is: If {X,, n 3 0) is a 

Markov chain, under what conditions is Y, =f(X,,) also a Markov chain? (See [4].) 

In this paper we are interested in the limiting behavior and not the Markov nature 

of { Y,, n 3 0). 

Section 2 

Let (0, 9, P) be a probability space and let (E, 8) be a measurable space. Let 

{X”, n 2 0) be a sequence of (E, $) valued random variables on (Q %, P). Let S be 
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a complete separable metric space and let C%‘(S) be its Bore1 a-field and A(S) be 

the space of probability measures on (S, a(S)). Let { Y,,, n 2 0) be a sequence of 

(S, C?Z?( S)) valued random variables on (C!, 9, P) such that 

P(Y,EA]~+(XJ)=P~.(A) (2.1) 

where p.( * ) is a mapping from E x 93(S) + Iw such that 

for allxEE,px(.)E.M(S), (2.2) 

for all A E 93(S), p.(A) is a measurable function on (E, ‘8). (2.3) 

Here, cr(X,,) denotes the smallest a-field on R with respect to which X,, is 

measurable. 

Let S* = A(S) be equipped with the topology of weak convergence. (See [ 1,6]). 

Recall that pu, + p in S* iff for all bounded continuous functions f on S If dpu, -+ 

If dp. S* itself is a complete separable metric space under this topology. (See [6].) 

Let %(S*) and .A(S*) denote the Bore1 a-field on S* and the space of probability 

measures on (S*, %(S*)) respectively. Ju(S*) is also equipped with the topology 

of weak convergence. 

Using (2.2) and (2.3) it can be shown that x+p, is a measurable mapping from 

(E, ‘8’) into (S*, 93(S*)) and hence px, is a (S*, .%(S*)) valued random variable. 

Let I’,, denote the distribution of px,, i.e., for B E a(S*), 

r,(w=P(Px,,(.)EB). (2.4) 

With these notations we have the following 

Theorem 1. Suppose 

r, + r (say) weakly in Jl(S*), 

then Y,, converges in distribution to a measure v E S* given by 

(2.5) 

v(A) = J P(A) dW) (A E a(s)) 
s* 

(2.6) 

Proof. Let f be a bounded continuous function on S and let F: S* + R be defined by 

F(P)= f dp. J (2.7) 

Then, by the definition of weak convergence, it follows that F is a bounded 

continuous function. Thus, from (2.5), we get 

I 
F(P) dr,(p)+ F(P) d&CL). 

I 
(2.8) 

Now 

J HP) drnb) = HF(px,(.))l= E 
[I 

f(z)px,(dz) 
1 
. (2.9) 
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From (2.1), (2.2) and (2.3) it follows that 

and hence by (2.9) 

i 
F(~L)dT,(~U)=E[Elf(Y,)Ia(X,)ll=Elf(Y,)l. (2.10) 

Also, 

I F(P) drb) = f(z) d/44) d%u) = I,f(l) ddz). (2.11) 

The last equality in (2.11) follows from the definition of Y for a simple function f 

and then, by the usual arguments for a general function J: 

Thus from (2.8), (2.10) and (2.11) we have, for all bounded continuous functions 

fans, 

(2.12) 

and hence, Y, converges in distribution to V. 0 

Remark. The condition (2.5) is not necessary as is shown by the following example. 

Let E = (0, & 1) and let {X,,, n 2 0) be such that, for n 2 0, 

P(X*, =O) = P(X*, = 1) =;, P(X,,+, =$, = 1. 

Let S = (0, 1) and define px( .) as follows: 

~,({01) = x = 1 -~x({ll) (XE El. 

Let {Y,,, n 2 0) be S valued random variables satisfying (2.1). Then, for all n 2 0, 

P(Y,,=O)=EX,,=; 

and hence, trivially, Y,, converges in distribution. However, it is easy to see that r, 

does not converge weakly. 

The above theorem provides a general framework to study the problems mentioned 

in the introduction. In later sections, we discuss several special problems and obtain 

sufficient conditions for convergence in distribution of {Y,, n 3 0). In each of these 

cases, the results could be proved by alternate techniques, but the above theorem, 

whose proof is simple, provides a unified view of the problem. 

Section 3 

In this section we restrict ourselves to the class of stochastic processes {X,, n a 0) 

which possess limiting distributions, i.e. X,, converges in distribution to some 
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measure v as n -+oo. In the framework of Section 2, suppose that E is a metric 

space and 8 is its Bore1 g-field. The following is an easy consequence of Theorem 

1: 

Proposition 2. Suppose that 

x--f px is a continuous function from E into S* and 

x, converges in distribution to some measure T on (E, 8). 

Then Y,, converges in distribution to a measure v on (S, C%(S)) dejined by 

(3.1) 

(3.2) 

v(A) = 
I 

P,(A) dn(x) (A E a(S)). (3.3) 
E 

Proof. Equations (3.1) and (3.2) imply that p x. converges in distribution to r = 

dPY> which is the same as r,, + r weakly. Hence Y,, converges in distribution 

to v given by, for A E a(S), 

V(A) = 
I 

P(A) WE”) = 
I 

P(A) d4p.)-‘(p) = P,(A) dr(x). 0 
S” S’ I E 

We now give two examples illustrating the above result. In the remaining paper, all 

finite or countable sets will be equipped with the discrete topology. Our first example 

is that of a positive recurrent Markov chain. 

Example 1. Let E = (0, 1,2, . . .} and let {X,, n 2 0} be an E-valued Markov chain 

with stationary transition probabilities given by 

F’(X,=k+llX,=k)=p (kzl), 

P(X,=k-l]X,=k)=a=l-p (kal), P(X,=l)X,=O)=l. 

Let S={-l,l} and Y,,=X,+, -X,,. Then (2.1) is satisfied with 

~k({l))=P (ka I), pk({-l)) = Q (ka l), PO({ll) = 1. 

Since the sets E and S are equipped with discrete topology, conditions (2.3) and 

(3.1) are trivially satisfied. Now suppose (Y > p > 0. Then {X,, n 2 0) is positive 

recurrent and its stationary distribution is given by 

a-P a-P P k 
TO=- -- 

2a ’ 5-lC= 2ap CY 0 
(ka 1). 

Hence {X,, n 2 0) converges in distribution to rr. Hence, by Proposition 2, Y,, 

converges in distribution to Y where 
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and 

v({-l})=lim P(Y,=-l)=$. 
II-CC 

Thus, Y, converges in distribution to (i, 4). Note that Y,,, the increment of the 

{Xl, n 2 0) process, has a stationary distribution independent of LY ! 

Our next example is that of a nonhomogeneous Poisson process. 

Example 2. Let {N(t), t 2 0) be a nonhomogeneous Poisson process with strictly 

positive rate function A(t). Assume that A(f) is periodic with period 7, i.e., 

h(t+7)=A(t) for all 220. 

Let Z,,=O and Z,, be the time that the nth event occurs, i.e. 

Z “+I =inf{tzZ,: N(t)>N(Z,)}, nS0. 

and let Y, = Z,,,, - Z,, be the nth interevent time. Now, for 0 S o, s uzG * . . S ~1, s u, 

P(Z+, > u/z, = u,, . . .) z,* = u,) 

=P(N(u)=njN(s):OGss~~,N(u,)=n)=exp (-j-IA(r)ds). 

Hence {Z,,, n 2 0) is a Markov chain. As Z,, increases with n, it is a transient Markov 

chain. 

Let [x] denote the largest integer dx and define 

x, = z, -[Z,/7]7. 

Also, for t 3 0, define 

f 
n(t) = 

l 
A(s) ds. 

0 

Now, for OSJJYK), 

p(Y,>YIZ,)=p(Z,+,>Z,+YIZ,) 

=exp(-(A(Z,+y)-A(Z,)))=exp(-(A(X+y)-A(X))). 

For 05 x < 7, let pX denote the probability measure on (R+, B(R+)) given by 

~~((y,a))=exp(-(A(x+y)-A(x))). (3.4) 

Then for A E CB(R’), we have 

P(Y,EA(Z,)=P(Y,EA(X,)=P~.(A). 

Let E = [0, 7). Equip E with a topology which makes the mapping x + exp(i2vx/~) 

a homeomorphism from E onto the unit circle in the complex plane. Thus 

x, + x iff exp(i2nx,/T) --f exp(i2nx/T). 



R.L. Karandikar, V.G. Kulkarni / Functionals of Markov chains 231 

Under this topology E is a complete separable metric space and it can be easily 

checked that the mapping x+p, in (3.4) from E + JzI(R) is continuous. 

We shall now show that {X,, n > 0) converges in distribution to some measure 

on E. In fact, it can be shown that {X,, n 2 0) is a Markov chain on E with stationary 

transition probabilities given by 

P(X,+, >y)X,=x)=e ye-A(Y)-@/(l _B) 

=1-Be A(X)( 1 _ ,_A’Y’)/( 1 - B) 

where B = exp(-A(T)). 

ifOSx<y<T, 

ifOGySx<T. (3.5) 

Let f( . , x) be the conditional density of X ,,+, given X,, =x. Then from (3.5) we get 

A(Y) exp(A(x)-A(y))l(l -B) ifOGx<y<r, 

f.(y’x)z{B*(y)exp(A(x)-A(y))/(lS) ifOGySx<T. 
(3.6) 

By a slight modification of the arguments in Example (6) of VII.7 of Feller Vol. 2 

[2], one can show that {X,, n 3 0) has a limiting distribution. Let g( .) be the limiting 

density of X,,. Then g( *) satisfies 

g(y) = 

Thus 

g(y) = h(y) exP(-A(Y)) 
1-B 

eA’“‘g(x) dx+B 

4(x)g(x) dx . 1 
Now let h(y) = g(y) exp(A(y)). Then 

h(x) dx+B 1,: h(x) dx]. 

Differentiating the above equation we get 

h’(y) = 

which has a unique solution 

h(y) = A(Y) edA(y 

Hence we get g(y) = CA(y), the constant of integration C is found by using 

I 

T 

g(y) dy = 1. 
0 

Thus g(y) = A (y)/A (7) (0 s y < T) is the limiting density of X,,. 

Now, using Proposition 2, we get the following: { Y,,, n 3 0) has a limiting distribu- 

tion given by 

;_y P( Y” > y) = Texp(-(A(x+y)-A(x)))A(x)dx/A(~). (3.7) 
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Section 4 

In this section we consider the case in which {X,,, n 20) does not converge in 

distribution, but {Y,,, n 2 0) does. First we give a general result and then consider 

some specific examples. 

Suppose that E is a countable set and that 

!iJl& P( X” E B) = 0 (4.1) 

for all finite subsets B of E. Furthermore, suppose that there exists a partition 

{E,,jeJ} of E, where either J={1,2 ,..., k} or J={1,2,3 ,... }, and each E, is a 

countable set such that 

and 

lim P(X, E Ej) = aj exists (4.2) n-u? 

1 Q;-=l. (4.3) 
jeJ 

NOW, let {x,}, ia be an enumeration of E, and suppose that 

lim p+ = Pj 
i-m 

(4.4) 

exists. (Recall that A(S) is equipped with the topology of weak convergence.) With 

this structure we get the following 

Proposition 3. Let (4.1)-(4.4) hold. Then {Y,, n ~0) converges in distribution to u 

given by 

v(A)= C pj(A)aj (AE %3(S)). (4.5) 

Proof. The desired conclusion will follow from Theorem 1 if we show that 

r, + r in A(S*) (4.6) 

where r is given by 

T(B)= IjI lB(P-j)cyi tBE s3(s*)). 

J~J 

Let f be a bounded continuous function on S”. Then 

G C IEf(P~,)lI,~~.,,-f(~j)LYil 
jtJ 

‘j:J IECf(P~.)-f(~j))l~X.FEi~I+J~J If(/-‘j)IIP(Xti E Ej)-a;I 

= 1 UT+ 1 VT (say). 
jsJ jcJ 

(4.7) 
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Let f$ = P(X, E Ej). Then 

C l’Y;-~j/=j~,~l+j~,~j-2j~,ru~n~j 
js3 

=2-2 1 aj”hffj+2-2 c ‘yJ=o. (4.9) 
jsJ jeJ 

(By dominated convergence theorem.) Since f is bounded, (4.9) implies that 

lim C Vy=O. (4.10) 
n*cc jczJ 

Equation (4.9) also implies that, given E,,> 0, there exists a finite subset Jo of J such 

that, 

sup c (Yjn<&o (4.11) 
” jsJ1 

where J, = J\&. Equation (4.11) is actually the assertion that L’-convergence implies 

uniform integrability. 

Next we show that, for J’ E J 

lim Uy = 0. (4.12) 
n-a, 

Recall that px,, += pi as i + ~0 and f is continuous on S*, SO that f(p+) +f(pj). Thus, 

given E > 0, there is an i, such that, for all i > io, 

If(Px,,) --f(Pj)l < &i2. (4.13) 

Let B = {x,: 1 G is io}. Then in view of (4.1), there is an n, such that for n 3 no, 

P{X,EB}G &/4K (4.14) 

where K is such that k1 G K. Then for n a no, we have 

uj”=E{lf(p,“)-f(CLj)ll(,~~,,~} 

=E{lf(Px”)-f(~j)l{l(X.EB)+ l{XneE,\B)ll 

~2KP(x"d?)+;P(x"EEj\B) 

5s c/2+&/2 (by (4.13) and (4.14)) 

= E. 

This proves (4.12). Now, for a given E > 0, define &o = e/2K. For this so get Jo and 

J, as above, so that (4.11) holds. Then 

c u;s 1 U;+Eo. 
jeJ jEJo 

Since Jo is finite, we have, using (4.12) and (4.15) 

(4.15) 

lim sup 1 UT G s. 
“-+‘X ieJ 

(4.16) 



234 R.L. Karandikar, V.G. Kulkarni / Functionals of Markov chains 

Since E > 0 is arbitrary, this shows that 

lim C Uj”=O. 
*+* jeJ 

In view of (4.8), (4.9) and (4.10) we get 

which implies r, + I’ weakly, and this completes the proof. 0 

We now take two examples illustrating the above proposition. 

Example 3. Consider the same Markov chain {X,,, n 2 0) from Example 1, and 

suppose (Y < p. Then {X,, n L 0) is a transient Markov chain and hence (4.1) holds. 

Sincelim,,,p,=p, where~,({l})=p andp.,({-l}=a,theconditionsofPropo- 
sition 3 are satisfied if we take El = E and Xi, = i (i~0). Then Y, =X,,+, -X,, 

converges in distribution to pi, i.e. 

hrirP(Y,=l)=p, hrirP(Y,=-l)=cu. 

Example 4. Let E = {(j, i): j, i integers, 0 --J .C . s i < co}. Let {X,} be a Markov chain 

with state space E and stationary transition probabilities given by 

P{X,+, =(l,i+l)lX,=(O,i)}=l, i20. 

ex+, = (j+l,i+l)(X,=(j,i)}=p, O<jGi<oO. 

P{xl+, = G-l,i)IX,=(j,i)}=(~, O<jGi<cO. 

Where (Y + p = 1, 0 <p < a < 1. For this chain all states are inessential, as (i, i) + 

(j+l,i+l) but G+l,i+l)+(,j,i). Hence {X,,nsO} is transient and (4.1) is 

satisfied. 

Let {Y,, n 2 0) be a real valued process such that the conditional distribution of 

Y, given X, = (j, i) is normal with mean j + l/ ( i + 1) and variance 1 /(j + 1) + 22’. Thus 

PG,~)= N ( j+ . -$&+2-‘) 

where N(p, u*) denotes the normal distribution with mean I_L and variance a2 on 

6% %3(H)). 
Now let J={O, 1,2,3,. ..} and 

Ej = {(j, i): i aj}. 

Also let xij = (j, j+ i) be an enumeration of ET Then from the properties of the 

normal distribution it follows that 

lim P+, 
i-rm 
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Now let Z,, = j if X,, E Ek It is easily seen that Z,, itself is a Markov chain with 

stationary transition probabilities as described in Example 1. Thus 

!iz P(X, E Ej) = hl P(Z, = j) = rj 

where 

Thus C,cO n; = 1 and hence (4.2) and (4.3) hold. Hence, by Proposition 3, { Y,, n 5 0) 

converges in distribution to a measure I/ given by 

Section 5 

The results in Sections 2, 3 and 4 can be extended to continuous time stochastic 

processes in a straightforward manner. Extension of the results in Section 4 to more 

general state spaces seems possible but presents many technical difficulties. The 

results in Section 4 also suggest a relationship between our approach and the 

boundary theory for Markov chains, but at this stage we have not been able to make 

it precise. It should be mentioned that the result in Section 3 about the periodic 

nonhomogeneous Poisson processes is of interest in itself. 

The problem considered in this paper is of interest in the theory of partially 

observable processes. In this context one can think of {X,,, n 2 0) as the core process 

and { Y,, n z 0) as the observation process. (See [5]). For example X,, may represent 

the ‘state’ of the internal components of a machine at time n while Y,, may represent 

its ‘performance’, which may be the only observable quantity about the machine. 

The limiting behavior of the observation process {Y,, n 3 0) is obviously of 

importance in the design of the machine. 
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