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A fluctuation theory for Markov chains on an ordered countable state space is developed, 
using ladder processes. These are shown to be Markov renewal processes. Results are given for 
the joint distribution of the extremum (maximum or minimum) and the first time the extremum 
is achieved. Also a new classification of the states of a Markov chain is suggested. Two examples 
are given. 

Markov chains maximum and minimum functionals 
l ladder processes Wiener-Hopf factorization 

1 

1. introduction 

In this paper we develop a fluctuation theory for discrete time Markov chains 

with an ordered countable state space, using ladder processes. Dinges [43 has 

obtained a Wiener-Hopf factorization for Markov chains. Arjas and Speed [l] and 

Kaspi [6] obtained this factorization for Markov-additive processes in discrete time 

and continuous time respectively. A factorization has also been obtained for the 

generator matrix of a continuous time Markov chain by Barlow, Rogers and 

Williams [2]. For a review of results for ladder phenomena in Levy processes, see 

Prabhu [7]. Our concern here is not with the Wiener-Hopf factorization per se, 

but with the distribution of maximum and minimum functionals of the Markov 

chain. Stone [S, 91 has dealt with the supremum of Markov and semi-Markov 

chains, but he does not use ladder processes. Our techniques and results can also 

be extended to semi-Markov chains on a continuous state space. 

2. Ladder processes 

Let {X”, n 2 0) be a time homogeneous Markov chain on the state space S = 

i . . . ) -2, -l,O, 1,2,. . . ) with the transition probability matrix P = (Pi,) and the 
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initial distribution (ni, j ES). For n 3 0 let 

M, = max(Xtr, XI, . . . , X,, ), m, = min(X,,, XI, . . . , X,) (1) 

be the maximum and minimum functionals of the chain. We shall denote by F, 

and E, the conditional probability distribution and expectation with the initial 

distribution 7~. For convenience we shall a&o write Pj and Ej for these quantities 

in the case where ?ir is concentrated at i E S. Let 

N,,=O, N, = min{n: X, >XN, ,} (r 3 l), (2) 

H, =X,, (r I-O), (3) 

where we use the convention that the minimum of an empty set is +a. We shall 

call {V-f,, N,), I ~0) the ascending ladder process. If the inequalities are reversed 

in (2) we obtain the descending ladder process. We shall here consider the ascending 

ladder process and derive properties that connect it with the maximum functional 

M,,. Similar properties can be derived for the descending ladder process, but we 
shall illustrate these by means of an example. 

Theorem 1. The ascending ladder process is a Markov renewal process, i.e., 

P{H,.,=k,N,+, =rt(H,=j,N,=m,H, ,,N,.l,..., H,,,N,,) 

= Pi{Hl = k. N1 =n -m}. (4) 

Proof. The definition of (If,, N,) shows that given (If ,,,, N,,,) (0 d VI < r), (H, + 1, N, + 1) 

depends only on (H,, Nr] because of the Markov property. Also 

P(H, , I = k, N, t 1 = II (H, = j, N, = III ) 

= P{X”, , , s j, . . . , X ,,-, +,X,,=k[X,,,=j} 

= P{X, G j, . . . , X,, ,,, , s j, X,, ,,, = k I,&, = j} 

=Pi{HI = k, Nl =/I --ml 

as desired. Cl 

From the theory of Markov renewal processes (see, for example, Cinlar [3, 

p. 3201) it follows that the probabilistic behavior of the ladder process is completely 
desr ;cd by that of the tirst ladder point (HI, N,). For IsI < 1 we now define the 

fo’,c. wing strictly upper triangular square matrix: 

‘%I; tf, = k) if k >j, 

otherwise; 
(5) 

we shall call P,(s) the (ascending) ladder matrix. For ready reference we record 

the following result without proof. 
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Theorem 2. For Is 1-c 1 and r 2 0 

Ej{sNr; Hr =k)=[P+(s)]i,k* (6) 

For convenience let us denote the distribution of (HI, N1) by 

f;;‘=Pj{H,=k,N,=n} (k>j,n~l). (7) 

Also, let u)C’ = Sikr 

l$’ =Pi{X,<X”(Oam~n-l),X,=k} (12~1) 

and 

R+(s)=(“$;:‘+ 

(.8) 

(9) 

Theorem 3 below establishes the renewal-theoretic relation between (7) and (8). 

Theorem 3. Let R+(S) be the upper triangular matrix defined by (8) and (9). Then 

R+(s)=[I-P+(s)]~~. (10) 

Proof. For n 2 1 we have 

c N:;:‘S” = 
,I (I 

: Ej[sN’; XN, = k] = .E,, [.%s,];k, 
, -0 

which leads to the desired result. q 

As the counterpart of (7) we .Izfine the probability 

Rii’ =Pj{X,” <X,(1 SmSn--l),X,,=k) forkGj,rtSl 

= 0 otherwise. 

Also, let 

(11) 

(12) 

It is not evident that I -P (s) has an inverse, but ,t turns out that [I -P (s)] ’ = 
R (s), where 

R (s, = (,i,, ,:;‘s”) (13) 

with u$” = cSjk and 

2’ ik “‘I = P,{Xm aXt,(l dm Sn),X, =k) (n 3 1). (14) 
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Clearly, P_(S) and R_(S) are lower triangular matrices. This result will be proved 

in section 4, where it will be shown that the probabilities (7), (8), (11) and (14) are 

special cases of certain taboo probabilites. 

3. The maximum process 

Let F, = min{m s n : X,,, = M,} be the index of the first maximum. We have the 

following: 

Theorem 4. For 0 s tn s n and I 2 max(j, k) we have 

P,{F’,, = nz, M,, = I, X,, = k} = u;;“‘v;; -“I). (15) 

Proof. We have 

f,{F,, = 111, M,, = I, X,, = k) 

= Pj{X, < 1, X2 < 1, . . . v Xv,, I < 1, LU,, = 1) 

d’{x,,,+,d ,..., X,, +I,X,,=klX,,,=I} 

= r~;;“‘P~{X, s I, . . . ,X, ,,, , s I, X,, ,,, -= k} 

on, ,,I t,,, 
= 14 j, v ;J( . n 

Corollary 1. Cl/r have 

p,f’,, = 171, M,, = I, X,, = k} = f;{F,,, = HI. X,,, = /} . f’,{F,, ,,1 = 0, X,, ,,, = k}. 

(161 

Proof. F’rom (15) we find that 

f,{F,, = 0, X,, .= k} = t$’ (k sj, 

P,{F,, “11, X,, = k} = u;;” (k >“i,. 

From these the dcsircd result follows. :I 
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Proof. From (15) we obtain 

fj{F~=f?l*M~ =l}'Uj;"' 1 Use-"'. 
ksl 

The desired results follow from the fact that 

x u’r;‘=P,{X,aX” (l<m ~n)}=P$V,>n} 
k-;l 

Cfussificaciorr of states. Let 

D = 
I 

7T = ( . . T-2, T--1,77(1,77], 7T2,. . . ): rk 20, f ?Tk = 1 ; 
--co I 

(19) 

D is a set of all nondefective probability mass functions on S. We shall say that a 

state k ES is maximal if there exists a r E D such that P,{M = k}bO. 
From the definition it is obvious that the support of A4 is a subset ot’ the set of 

maximal states. The following proposition gives one way of determining whether 

a given state Xs maximal or not. 

Theorem 6. A state k is maximal iff uR > 0. 

Proof. 

so that 

Suppose al, > 0. Then for the v E D which is concentrated at k we have 

P,{M=k}=Pk{M=k}=(2k)O, 

the state k is maximal. 

Next :;uppose the state k is maximal. Then there exists a 7r E D such that 
P,{M = k}>O. We have 

P,{M=k}= 1 niP;{M=k}=( f C rjui;i)a,. 
jeS II -I) jtsS 

This gives ak ) 0, as required. 0 

.4 state may be maximal or minimal or both or neither. It can be easily seen that 

an absorbing state is both maximal and minimal. (The converse is not true: a state 

which is both maximal and minimal need not be absorbing.) Also, every recurrent 
class (null or positive) of a Markov chain hzts at most one maximal state. Unfortu- 

natcly, no such statement can be made abo:lt transient states. 

4. Some taboo probabilities 

LetI={i,i+l,. . . } be a subset of S, and 

‘P1;:‘=P,{X,,,~1(1~~m~r?-i),X,=k} (nz2) (20) 
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the probability of transition from j to k in n steps, avoiding the set I en route. 
Also, let ‘Pi:’ = fik. As particular cases of (20) we have for n b 1, 

and 

We have the following: 

Lemma 1. for II 3 2 WE I-lnce 

(23) 

Proof. Let 

M,, ,(I) = max{(X,, X2,. . . , X,, 11: X,,, i!l (1 d 01 -5 Ii - 1 b) 

F,, ,(I)=min{~~: l~r,z--tl-l,X,,,=A4,, I(I)). 

Then 

Adding this probability ovt’r 1 c n1 s II - 1 and I ii we obtain the result (23). Cl 
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Proof. The identities (24) and (25) are special cases of Lemma 1 with i =j + 1 s k 
and i = k pi respectively. To prove (26) we use Lemma 1 with i = k >j and obtain 

n-l k~ 1 n-1 
$' = x;** u:Y)fKm'+ c II f$'flk"-"' 

m=l I5j 

where the second sum on the right side equals fiz) on account of (24). This leads 
to (261. The remaining result (27) follows from Lemma 1 with i = j + 1 > k. El 

Theorem 8. Let R .(s) be the lower triangular matrix defined by (l3) atzd (14). Then 

R e(s) = [I -P-(s)]-‘. CB) 

Proof. From (27) we obtain 

or R -(s ) = I +P. (s )R .(s), which leads to (28). 0 

Theorem 9. For i > max( j, k ) we have 

(29, 

Proof. We shah prove (29) in the case j <k < i, the proof being similar for k s i c i. 
Letting i 4 i10 in (29) we obtain (30). 

For j < k < i the right side of (23) equals 

where we have used (26) and (24). This proves (29). @ 

Corollary 2 (Wiener-Hopf factorization). We have 

I-#=[I-P (s)][l--P+(s)] 131) 

~lrew the matrices P, (s ) and P is i defined by (5 1 atld ( 12) respecticelv. 
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proof. Let R(s) = (CFZoP$‘s”). From (30) weobtain R(s) = R+(s)R-is). Thisgives 
the desired result, since R(s) -’ = I -sP,, and by Theorems 3 and 8, R+(s)-’ = 

I-P+(s)andR.(s) ‘=I-P.(s). 0 

The above factorization is equivalent to the one established by Dinges [4]. See 
also Arjas and Speed [ 11. The identity (29) also leads to a factorization ok the same 
type with the elements of P__(s) and P+(s) restricted to the complement of the set 
1. It can be proved that the factorization (31) is unique. This property can be used 
in principle to compute the ladder matrix B+(s). In practice. however, it is very 
difficult to obtain the factorization of I --SF.. Numerical methods are useless when 
either s has to be left as a variable or P itself is not numerical. An alternate method, 
called the determinant method, is developed in the next section to overcome this 
difficulty. We need the following results. 

Proof. For II = 1 the right side of 

11 -I 2 we have 
(32) reduces to f,k = j$’ since L’$” = S,,. For 

as required. The proof of [33) is similar. El 

5. The determinant method 

In this WC :issume that the state space is S = {O, 1. 2. . . . 1. Let A = I -sP, and 

.4( j[k 1 = submatrix of A formed by taking rows indexed by 0. 1. . . . . j 

and columns indexed by 0, 1.. . . , j- 1, A if k ) j, or 

= submatrix of .A formed by taking rows indexed by 0. 1. . . . . 

k - 1. j and columns indexed by II, 1, . . . , k if k s j. 

The Ac j/k I are square matrices. Their determinants will be denoted by Dil; \s ) = 

Jet .-1ijik ). The main result we need is the following. 
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Theorem IO. Fur is/ < 1 we have 

Djk(S) 
h(djk = -D--(s) (k >jaoo1, 

II 

[P-(S)]jk =ajk -Dk~~~~fs, (OG k ai). 

47 

(34) 

(35) 

Proof. Let P(j) be the submatrix of P formed by taking rows and columns indexed 

byO, I,... , j. From Lemma 2 we obtain 

,,t,f;?s” =s ,$(,(,,?, $l:“-l)P,, 

-T --A f [adjoint of (A( j[j)],,j(-s&,k) 
I.1 I (1 

1 
= -~ t (1-l jr-’ minor of [A(jIj)]l,j)(-sPl.k 1. 

DjJS 1 rzi;r 

Since the last sum is just the expansion of det A(j)k) using the last column of 

A(jlk ), it equals Dir,. Thus we have proved (34), and the proof of (35) is similar. D 

Remark 1. Theorem 10 is a powerful computational tool for extremum processes 

in Markov chains. For finite chains it is possible to write computer programs to 

COITIpUte Dik (s). In most applications it is possibIe to compute Dik (s ) and Dik ( 1) by 

using a recursion. We shall illustrate this by examples in Sections 6 and 7.2. 

Remark 2. Theorem 10 gives an algebraic result for factorizing I - sP. Gsntmacher 
[5] mentions this theorem for finite matrices. The result herr: is valid for infinite 

matrices, and the surprising feature that its proof is probabilistic. 

6. A birth and death process 

Consider a birth and death process {X(1 ), t a()} with birth parameters {A,, j ZO} 

and death parameters (c(~, = 0; pi; j b 1). Let T,, be the nth jumpepoch of (X(t). t 2 0) 

and define Xz =X(T,, + 1. Then {Xz, II 3 0) is a discrete time Markov chain on 

state space (0, 1.2, . . ) with transition probabi!ties 

i 

A, ____ 
A, +cL, 

(k =j+l), 

P$ = PI - 
A, -+Pci 

(r, =j-l,, 

0 otherwise. 
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Let Xc = i and define T" = inf{n 20: Xz = 0). Our aim is to study MT = 

max{Xz : 0 s n s TT ; X;i; = i}. To do this we define a Markov chain {X,,, 11 2 0) 

with transition probabilities 

’ A, - (k =j+l,jH), 
Ai +Pi 

1 (k =j =O), 

Pik =' 
Pi - (k =j-l,j21), 

A; +Er-i 

co otherwise. 

(36) 

Then IV: has the same distribution as that of Mi = maxo.. ,,..Jo{X,l} with X0 = i. 
The determinants Di.k (S 1 needed for using theorem 10 can be computed recursively 

as follows: 

D,,.,,is)=D*.,is)= 1 -s, 

D,.,!s) = D, ,., , Ls~-.s~--- Ailr, D 

(A, +I-%) 
, ?*, z(s) t/.32,. 

Thus we find that 

D ,., t ,(.s ) = --s A, ---D, I., i(S) (j?ll,, 
A;+/% 

D,., , is) = -.s 
CL1 ---D * z(s) (j?l), 

Ai ‘p, ’ -*’ 

(371 

(381 

(39) 

D,,,(s) =O $4 -+ 1). (40) 

By letting s -, 1 .-, the equations for Di,ktS)/(l --S) can be solved explicitly. Then 

P + can be computed explicitly and Theorem 4 can be used to compute the distribu- 
tion of AI,. We shall give only the final results below. Define 

PI I 

I/,, = 1 + !: fl 5 and d = lim (i,,. (41) 
i I/ IA, 

,t .S 

Then 

P(M, =k}=tll ,[l/tll, ,-- l/&j ck >i). (42) 

It is instructive to compute !‘{A$ <xl) which also is the probability that T;” is 
finite. Using (39) and (41) above we find that 

But rf = x: itf the birth and death process is recurrent. Thus the first passage 

time is finite a.s. iti the birth and death process is r. currant. 
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7. A Markov chain arising in queuing theory 

Consider the Markov chain (X,} with the transition probabilities 

P Ok = Ak, pik =Xk-i+l (k*j-123) (44) 

which arises in the imbedded chain analysis of a modified M/G/l queue (single 
:,erver queue with Poisson arrivals), where the customers who start a busy period 
are special in the sense that their service times have a distribution different from 
tither (ordinary) customers. Here Ak represents the probability that there are k 
arrivals during the service time of a special customer and Xk the probability of k 
arrivals during the service time of an ordinary customer. Clearly, (Aj, j 3 0) and 
(xi, j 30) are probability distributions on (0, 1,2, . . . ). Let L(z) = Cpf Api and 
K(t)=~~xizi (O<z <I). It is known that the equation e=&(t) has a unique 
continuous solution 5 = c(s) in (0,l) with e(s) --, 0 as s --, O+. Also [(s ) -, [ as s --, 1 -, 

where 6 < 1 ifI p = K’( 1) > 1. We proceed to investigate the descending and ascend- 
ing ladder processes of this Markov chain. 

7.1. Descerlding tadder proms 

To investigate the descending ladder process and the minimum functional of the 
given Markov chain {X,1, we start with the first descending ladder epoch Nl= 
min{tr : X,, <X,J. Let fir = XN, and 

f7.;:‘=P,{C-;i,=k,l$=n) 

= Pj{X,” 2x0 (1 =z m a-l),X,,=k) (k<j), (45) 

ti$’ =Pj{Xm>X,, (OSWIS~Z-~,,X~=~} (kcj), (46) 

g~;‘=Pi{Xpp,BX,* (l<?n err -1),X,, =k} (k aj), (47) 

fig = PiiXm axx,, (1 urn sn),X,, =k} (k 2 j). (48) 

The transition probabilities j + k (j > 0, k a 0) are space-homogeneous; that is, 

Pik =Pl,k it1 (k ?j- 12 0). Using this fact it can be proved that (as is well known in 

queuing theory) 

f;; j = j--y;; if k =j- 1, 

-= 0 otherwise 

and 

Thus 

(49) 
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and hence 

From the analog of Lemma 2 for descending ladder processes we obtain 

This gives 

(51) 

In particular 

.m - 

[P+(s)]Ok = s c A/( 
f--k 

, 
f-k 

x 

[P+(.s )llk = s l!k xd k, 

[fh)],k ==[f+(&k ,+, (k -2jz 1). 

The space-homogeneity of transitions mentioned above gives ti$’ = 
In) C ,.k , +, (k aj 2 1). From the analog of the identity (27) for descending ladder 

processes we obtain 

This gives 

and 

relations it is best to introduce the 

(52) 

(53) 
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We then obtain 

g~(S,f)=f’-‘gT(S,Z) +1,, gT(s,z)=sz 
US)-K(t) 

6-z ’ 

g*(s z)~smS)-zur) t; , 
S-z - 

Also 

oT(s,z,=z j ‘VT(S,Z) (ial,, UT(S,Z)‘Z Z-S 
z -SK(Z)’ 

t$(s,z)= 
z -SK(Z)-sz[L(&-L(z)] 

[z -sK(z )I[1 -sUS)l - 

Finally we have 

Pj{m, E/,X, =&}= i ~~;lt~~;~m’ 
m -0 

for tz 2 1, 1 s mini j, k 1. This gives 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

This gives in particular 

(60) 

Letting s + I- in (61) we find that 

E, ( 2 “I ’ I = I if p 5: 1, 

z <’ I,-(\ _,,il-;’ 
< -- z 

ifp>l. 

It follows that if p ~1 thenm,=O,whileifp>l,then 

P,(m, = 0) = 5’. 

(61) 

(62) 
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7.2. Ascending ladder process 

We next investigate the ascending ladder process and the maximum functional 
cf the modified M/G/ 1 queue during a busy period. This is accomplished by setting 

Ao = 1, &=O (k21) (64) 

and leaving the rest of the matrix unchanged. We derive the expressions for the 
matrices P,, P_, R, and R... The algebraic details of the derivation are somewhat 
tedious and are omitted. Let Dik(s) but the determinants defined in Section 5, and 
define 

D m=$ 
D,(s) 

Di(S)=l_s 

It is found that 

Dds) = 1, D,(s) = 1 -SXI, 

and generally 

D,l(s)= i (-l)kAkn~k 
.‘< -0 

where 

&u 
02 - iCl)! ‘1 =x (-l)lll__ ___ 
(n -k)!, 

n (Xi 1” 
-0 (i;)! ’ 

(jao). (65) 

(66) 

(67) 

the sum hcing taken over all scquenccs (i,,, i,, . . . , i,, 1 such that x,” ,, i, = k and 
\‘,I 

L,, ,, ji, = k. Using Theorem 10 we find that 

[P (~)],k = I-D;(s)/Di I(S) (k =jaO), 

= Sx’(, (k =j- 1 a(o), 

= 0 (k <j--l), 

and hence 

[R (s)],., J, = (.s&D: I, 1 (s )/D,(s) (0 s k =sj,. 

The determinants D ,,, , LLT ) tk ~~ I ) cJ:n be computed by using t!le relation 

14gain from Theorem 10 WC find that for k 2 I 

(68) 

(69) 

(70) 

(71) 
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and hence 

[R+(~)l;,~+k = 
~k(S)~,+k-l(S)-~k-*(S)~j+k(S) 

csx”)“Q+k-As> - (72) 

We have thus obtained all the basic results necessary to compute all functionals of 
the ladder process and the maximum. In particular we have the following results: 

(i) If x0 > 0, then every state is maximal for the modified chain, since in that case 

Uj=Pj{Nl=oo)=l- f [P+(S)]j.j+k=XI,IDj(l))O. (73) 
k=l 

(ii) P,{M c 00) = 1 if p s 1 and 5’ if p > 1. This is clearly the probability that the 

busy period initiated by j customers terminates, and the result is well known in 

queueing theory. To show that it is a consequence of our results we note from 

Theorem 5 that 

(74) 

Using the relation 

we obtain 

and hence 

The desired result now follows from (75). 

(75) 
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