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A fluctuation theory for Markov chains on an ordered countable state space is developed,
using ladder processes. These are shown to be Markov renewal processes. Results are given for
the joint distribution of the extremum (maximum or minimum) and the first time the extremum
is achieved. Also a new classification of the states of a Markov chain is suggested. Two examples
are given,

Markov chains maximum and minimum functionals
ladder processes Wiener-Hopf factorization |

1. Introduction

In this paper we develop a fluctuation theory for discrete time Markov chains
with an ordered countable state space, using ladder processes. Dinges [4] has
obtained a Wiener-Hopf factorization for Markov chains. Arjas and Speed [1] and
Kaspi [6] obtained this factorization for Markov-additive processes in discrete time
and continuous time respectively. A factorization has also been obtained for the
generator matrix of a continuous time Markov chain by Barlow, Rogers and
Williams [2]. For a review of results for ladder phenomena in Levy processes, see
Prabhu [7]. Qur concern here is not with the Wiener—Hopf factorization per se,
but with the distribution of maximum and minimum functionals of the Markov
chain. Stone [8,9] has dealt with the supremum of Markov and semi-Markov
chains, but he does not use ladder processes. Our techniques and results can also
be extended to semi-Markov chains on a continuous state space.

2. Ladder processes

Let {X,,n =0} be a time homogeneous Markov chain on the state space § =
{..,-2,-1,0,1,2,...} with the transition probability matrix P = (P;) and the
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initial distribution {m, j € S}. For n =0 let
Mn:maX(X(),Xl,-..,Xn), mnzmin(X(),Xl,---an) (1)

be the maximum and minimum functionals of the chain. We shall denote by P,
and E, the conditional probability distribution and expectation with the initial
distribution 7. For convenience we shall aiso write P; and E; for these quantities
in the case where 7 is concentrated at j € S. Let

N,=0, N, =min{n: X, > Xy, |} (r=1), (2)
H =Xy, (r=0), (3)

where we use the convention that the minimum of an empty set is +00, We shall

call {(H,, N,), r =0} the ascending ladder process. If the inequalities are reversed
in (2) we obtain the descending ladder process. We shall here consider the ascending
ladder process and derive properties that connect it with the maximum functional
M.,. Similar properties can be derived for the descending ladder process, bui we
shall illustrate these by means of an example.

Theorem 1. The ascending ladder process is a Markov renewal process, i.e.,
P{Hr~! -:k, I\rr+l :n‘Hr :ijr =m, Hr th S EIRIIR Y H(h N()}
=P,-{H,:k,N1=n—-m}. (4)

Proof. The definition of (H,, N,) shows that given (H,,, N,,) (O=sm =<r),(H, .1, N, .y)
depends only on (H,, N,) because of the Markov property. Also

PlH,..=k,N,,y=n|H, =], N, =m}
=P{Xp 1</, Xu S5 X0 = kX, =5}
=PXi<f ..., Xp m 1<}, Xn m =kiXo=/}
=P{H,=k,N,=n -m}

as desired. ]

From the theory of Markov renewal processes (sec, for example, Cinlar 3,
p. 320}) it follows that the probabilistic behavior of the ladder process is completely
desc *ed by that of the first ladder point (H,, N,). For |s| <1 we now define the
fo'.c wing strictly upper triangular square matrix:

Ed{s™: H, =k} itk >j,
[Pos)iw =] ‘ , (5)
0 otherwise;
we shall call P.(s) the (ascending) ladder matrix. For ready refercnce we record
the following result without proof.
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Theorem 2. For |s|<1 andr=0

Els™; H, =k} =[P.(s)]x. (6)

For convenience let us denote the distribution of (H;, N;) by
fi'=P{H,=k,N,=n} (k>j,n=1). (7)
Also, let ul' =8y,

up' =P{Xn <X, 0sm<n-1),X,=k} (n=1) (8)

and
,(s)—( ¥ u',ﬂ's"). (9)
Theorem 3 below establishes the renewal-theoretic relation between (7) and (8).

Theorem 3. Let R . (s) be the upper triangular matrix defined by (8) and (9). Then
R.s)=[I-P.(s)]"". (10)

Proof. For n = 1 we have

x

Z ln\ n Z E[S XN,:k]: Z [‘Df(s)];k’
r=0

n =0

which leads to the desired result. O

As the counterpart of {7) we '=fine the probability
g =Pi{Xm <X, (1=sm=n—-1),X,=k} fork<jn=1
=0 otherwise. (11)

Also, let

P 's)::(i g},ﬂ”s"). 12)

n -1

It is not evident that I — P (s) has an inverse, but ;t turns out that [/ —P (s)] =
R (s), where

R (S):( )_, v',,'\”s") (13)

n =0
. {h
with vz =8, and

v}ﬂ'=P,{Xm$Xo(1<m$n),X,,=k} (n=1). (14)
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Clearly, P_(s) and R _(s) are lower triangular matrices. This result will be proved
in section 4, where it will be shown that the probabilities (7), (8), (11) and (14) are
special cases of certain taboo probabilites.

3. The maximum process

Let F, =min{m <n: X,, =M,} be the index of the first maximum. We have the
following:

Theorem 4. For 0<m =n and | = max(j, k) we have

P{F,=m M, =0 X,=k}=ui"vy ™. (15)

Proof. We have
P{F, =m,M, =1, X, =k}
=PAX <L Xo<l,... . X 1<, X, =1}
PXa=sh.o X, asLX =klX, =1
)

=u PAXi<sl ., Xy o 1 =0LX, o =k)

ey tnoomh
=ui v . 0

Corollary 1. We have
PAE, =m,M, =1, X, =k} =P{F, =m. X, ={} - P{F, ., =0 X, m =k}

(16)
Proof. From (15) we find that
PiF, =0, X, =k}=viy' (k<))
PAF, =n, X, =k}=uy' (k=)
From these the desired result follows. [
Theorem 5. Let a; = P{N, =0} =0. Then
lim PAF, =m, M, =1} =uy" a,. (17

Let im, .,y M, =M -2 . The distribution of M is given by

X

PM=1l}=7% uya, (18)

it
nocy
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Proof. From (15) we obtain

PiF,=m,M,=0D=u;" ¥ v ™.

k=l

The desired results follow from the fact that
kglv‘lﬂ' =P{Xm<Xo (1=m=<n)}=P{N,>n}
\ >P{N,=} asn-o0. O
Classification of states. Let

D={1T=(--sz,ﬂ-~|,#(),ﬂ1,ﬂz,---)1 m =0, ¥ 7Tk=1}; (19)

D 1s a set of all nondefective probability mass functions on $. We shall say that a
state k € § is maximal if there exists a = € D such that P, {M =k}>>0.

From the definition it is obvious that the support of M is a subset of the set of
maximal states. The following proposition gives one way of determining whether
a given state is maximal or not.

Theorem 6. A state k is maximal iff a; > 0.

Proof. Suppose a; > 0. Then for the = € D which is concentrated at k we have
P,,{M = k}= Pk{M zk}:ﬂk >0,

so that the state k is maximal.
Next suppose the staie k is maximal. Then there exists a 7w €D such that
P.{M =k}>0. We have

PAM =k}= 3 WtPi{M:k}z( 2: )} w,u}ﬁ’)ak.

jes n=0je8

This gives a, >0, as required. ]

A state may be maximal or minimal or both or neither. It can be easily seen that
an absorbing state is both maximal and minimal. (The converse is not true: a state
which is both maximal and minimal need not be absorbing.) Also, every recurrent
class (null or positive) of a Markov chain has at most one maximal state. Unfortu-
nately, no such statement can be made about transient states.

4. Some taboo probabilities

LetI ={i,i+1,...}beasubset of S, and
IP(I;CH :Pi{XmE[ (‘1$m =n —1)9Xn zk} (n 22) (20)
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the probability of transition from j to k in n steps, avoiding the set I en route.
Also, let "P},:’ = P,;.. As particular cases of (20) we have forn =1,

PR = fork > ),

(21)
=viy forks=j
and
Pt =up' fork >j,
(22)
=g’ fork=<j.
We have the following:
Lemma 1. for n =2 we have
n ol
:P};:) — }: E { (,;nl _I*IP(”: ml. (23)

moo1ld

Proof. Let ‘
M, () =max{(X, X ..... X, 0 Xmelil=sm=n-1)}
F, «DH=minfm:1l<sm=n-1X,, =M, (I}
Then
PiF, «y=m M, (D=1 X, =k}
=PUX <L X<l o X 1< X = U
SPAX L Xo om =0 X, 0=k}
=P PR M s msn - L <),

Adding this probability over 1 =m <n -1 and [ </ we obtain the result (23). O

Theorem 7. We have the following:

no\

ST ST P 1 (241
mo ey
n ot

vepd - . [N T R b . -

G = X X " kgm0, (25)
(I Y Y N
n A1

AR IR} . > [RIIRIFUE Py - .

W= NN W k> jon = (26)
moo0 ey
n !

R - . LR ! s

v = S Yot M tk=in =1 27
moo Lk
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Proof. The identities (24) and (25) are special cases of Lemma 1 withi=j+i<k
and i = k <j respectively. To prove (26) we use Lemma 1 with i =k > and obtain

(ni_ Z 2. ;'ml Qllr‘l'-mb+ Z 2. lm) (n m
m=11=j+1 m=11<j
whese the second sum on the right side equals £}z’ on account of (24). This leads
to (25). The remaining result (27) follows from Lemma 1 withi=j+1>k. O

Theorem 8. Let R .(s) be the lower triangular matrix defined by (13) and (14). Then
=[I-P.(s)]"". (28)

Proof. From (27) we obtain

x i x oc
z U““ n =6,‘k + Z ( Z gl]_;n)sm)( z U‘l;: mlsn-~m)
n -4 I=k \m~=1 n=m
or R (s)=1+P (s)R .(s), which leads to (28). []

Theorem 9. For i >max(j, k) we have

n i—1
ipny __ (m} (n-m)
Pi' = ¥ Yoowitew ™, (29)
m =0 = maxtjk)

and

X

n
] -~ ¥y
P:;: - “\-‘ v l‘ ;'") l“)(l "II' (3(‘)

t—t
mo 0 maxip k)

Proof. We shali prove (29) in the case j <k </, the proof being similar for k <j <i.
Letting i - o in (29) we obtain (30).
For j <k <i the right side of (23) equals

n-1i-1 n-1 k-1

n-1
" ~ ims (oo v anipin -m) A (mie(en--m)
Y Yugew ™M+ Y ¥ wyp fw U+ YL Logn fu
m o=l ik m=11l=7+1 m=11,

n bl

- - tmi anomj (n) ln) (rn)
YooY up vn " +[u v 1+ fik
moay ok

Ml

noo 1

- - (il wom
=Y X u v
m=-11-k

where we have used (26) and (24). This proves (29). [

Corollary 2 (Wiener-Hopf factorization). We have
I-sP=[I-P (s)][I~P.(s)] (31)

where the matrices P.(s) and P (s} defined by (5) and (12) respectively.
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Proof. LetR(s)=(Xn-0Pit's"). From (30) we obtain R(s) = R.(s)R _(s). This gives
the desired result, since R(s) '=7—sP, and by Theorems 3 and 8, R.(s) ‘=
[-P.stand R_(s) '=1-P.(s). O

The above factorization is equivalent to the one established by Dinges [4]. See
also Arjas and Speed [1]. The identity (29} also lcads to a factorization of the same
type with the elements of P_(s) and P, (s) restricted to the complement of the set
L. It can be proved that the factorization (31) is unique. This property can be used
in principle to compute the ladder matrix 2.(s). In practice, however, it is very
difficult to obtain the factorization of / —sP. Numerical methods are useless when
either s has to be left as a variable or P itself is not numerical. An alternate method,
called the determinant method, is developed in the next section to overcome this
difficulty. We need the following resuits.

Lemma 2. We have

fil=Y el "Pe k>jn=1), (32)

[~
and

(e - n b
gin = .\_. P,:Hlk
i~k

tk<jn=1). (33)

. . L1 .
Proof. For n =1 the right side of (32) reduces to P, =fj' since vy =8, For
n =2 we have

fi' =P{Xn<jllsm=n-1,X,=k)}
=Y PiX,<jdsmsn-21X, \=1}PX,=k|X, =1}
-

—\® ,inh
'—}..‘L,l PHﬁ

e

as required. The proof of (33) is similar. 7]

5. The determinant method

In this we assume that the state space is § ={0,1,2....}. Let A =7 — P, and

A(jlk) = submatrix of A formed by taking rows indexed by O.1..... J
and columns indexed by 0. 1.. .., J—Lkifk>j or
=submatrix of A formed by taking rows indexed by 0.1.....
k—1,j and columns indexed by 0, 1,..., k if k<.

The A{jlk} are square matrices. Their determinants will be denoted by Dy (s) =
det Atjik). The main result we need is the following.
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Theorem 10. For s| <1 we have
Dik(s)
D,~,-(S )

Dy s)
Di-14-1(s)

(P.(s)x =~ tk>j=0), (34)

[Pk =8 — 0=k <j). 35

Proof. Let P(j) be the submatrix of P formed by taking rows and columns indexed
by 0, 1,....j. From Lemma 2 we obtain

- ) ! - ] 1} 1

i rn n n— n-—
Z f,-kS =5 (Z Uj S )Pu(
n=1

=0 \n=1

i i
=s L U=sP()li'Pu=s X [AGIN)'Pa

1 i o N
h _Dm’(s) (Z,:a {adjoint of (A (j|/)]i;(—sPik)

1 ! rvy . ol
= D) E,n((~1) " minor of [A(f|/)1,; {—sP.).
Since the last sum is just the expansion of det A(jlk) using the last column of
A(jlk), it equals D;.. Thus we have proved (34), and the proof of (35) is similar. [}

Remark 1. Theorem 10 is a powerful computational tool for extremum processes
in Markov chains. For finite chains it is possibie to write computer programs to
compute D (s). In most applications it is possible to compute Dy (s) and D (1) by
using a recursion. We shall illustrate this by examples in Sections 6 and 7.2.

Remark 2. Theorem 10 gives an algebraic result for factorizing [ — sP. Gantmacher
[5] mentions this theorem for finitc matrices. The result here is valid for infinite
matrices, and the surprising feature that its proof is probabilistic.

6. A birth and death process

Consider a birth and death process {X (1), t =0} with birth parameters {4, j = 0}
and death parameters {uo = 0; i;; j = 1}. Let 1, be the nth jump epoch of {X (z), ¢ = 0}
and define X¥ = X1, +). Then {X* n =0} is a discrete *ime Markov chain on
state space {0, 1, 2, ..} with transition probabilties

A,
. (k =j+1),
Aty
* = ,
PRm) e w=j-,
Aj i
L0 otherwise.
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Let X¥ =i and definc T¥ =inf{n =0: X} =0}. Our aim is to study M} =
max{X¥:0<sn<T}¥,; X% =i}]. To do this we define a Markov chain {X,, n =0}
with transition probabilities

A; ) .
k=j+1,7=1),
Ajt
1 k =7=0),
P,'k = (36)
() : ;
—— (k=j-1,j=1),
Aj+
0 otherwise.

Then M¥ has the same distribution as that of M, = max,- ...{X,} with Xy =1.
The determinants D, ; (s) needed for using theorem 10 can be computed recursively
as follows:

Du.l)(S) :Dl,l(s) =1-s5,

(37
2 AI'l"'l . ~
; = : sh—s ———D, . ~(8) (=2
D, s)=D, ,; is)—5s TR ;o2 als ,
Thus we find that
A .
D,_,-.u.n:—.;/\ﬁ’ﬂjD, oats) =1, (38)
D, 1is)=-s——D. ., L) (j=1 (39)
i N} . A,+#’ jo2g 2\ v
D,is)=0 (k—jl>1. (40)

By letting s > 1 -, the equations for D,,(s)/(1-s) can be solved explicitly. Then
P, can be computed explicitly and Theorem 4 can be used to compute the distribu-
tion of M;. We shall give only the final results below. Define

d,=1+Y 1Y and d=limd, (41)
Pl LA o
Then
PIM, =k} =d, [1/dy 1~ 1/di] k=i, (42)

[t is instructive to compute P{M,; <} which also is the probability that T is
finite. Using (39) and (41) above we find that

P{T! <o} =PM} <o}=P{M, <} =1-d, /d ifd<x,

43)
=1 if d =00,

But ¢ = iff the birth and death process is recurrent. Thus the first passage
time is finite a.s. itf the birth and death process is r. current,



V.G. Kulkarni, N.U. Prabhu } Fluciuation theory for Markov chains 49
7. A Markov chain arising in queuing theory

Consider the Markov chain {X,,} with the transition probabilities
Por = Ay, Py=xi-inn k=j-129) (44)

}vhich arises in the imbedded chain analysis of a modified M/G/1 queue (single
terver queue with Poisson arrivals), where tt.e customers who start a busy period
are special in the sense that their service times have a distribution different from
uther (ordinary) customers. Here A, represents the probability that there are k
arrivals during the service time of a special customer and y, the probability of &
arrivals during the service time of an ordinary customer. Clearly, {A; j =0} and
{x;,j =0} are probability distributions on (0,1,2,...). Let L(z)=Y, Az’ and
K(z)=2:,° xizi (0<z <1). It is known that the equation £ =sK (£) has a unique
continuous solution £ =£(s)in (0, 1) with £(s)>0ass >0+, Also£(s)>{ass>1—,
where { <1iff p = K'(1)> 1. We proceed to investigate the descending and ascend-
ing ladder processes of this Markov chain.

7.1. Descending ladder process

To investigate the descending ladder process and the minimum functional of the
given Markov chain {X,}, we start with the first descending ladder epoch N =
min{n: X, <X,}. Let H, =Xy, and

fT(,;:,“P,'{Hl—‘-k,Nl:"}

=P{Xm=Xollsmsn-1),X,=k} (k<j), (45)
i =P{Xn>X, 0=sm<n-1),X,=k} (k<j), (46)
g =P{X.>X,(lsm<n-1),X,=k} (k=)), (47)
o = Pi{Xm=Xo(lsm=n), X, =k} (k =J). (48)

The transition probabilities j >k (j >0, k =0) are space-homogeneous; that is,
Py =P ;1 (k =] —1=0). Using this fact it can be proved that (as is well known in
queuing theory)

m) fllnq)) 1fk :]._ l,
= () otherwise

and
3 f‘{I.‘ "=gls) (D<s<l).

Thus
[P isV]u=288, 1x (j=1,k=0. (49)
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and hence
= -1 i~k .
Y oagps"=[{I-P.()]x =& O=<ks=j). (50)
n=0
From the analog of Lemma 2 for descending ladder processes we obtain

g;."(”z )y let-l(l:mh k=j,n=1).

[=k+1
This gives
[P+(S)]jk = Z g};:)'q" =S lzk P"‘El-k' (51)
n=1 =

In particular

[Pos) ok =s ¥ A& ¥,
{=k

[P.(s)li=s ’X xie' 5,
~k

[Pk =[Pk o1 tk=j=1)

- tn)
\ —

The space-homogeneity of transitions mentioned above gives @ =
Ok ;+1 (k=j=1). From the analog of the identity (27) for descending ladder
processes we obtain

k
YT “ St = -
Cip = }_‘ Lgll Uik (k = ],”?’1)-
m =t =y

This gives

M k

-y S ) i om)

VA MBI SHR A RIS
L1

hr =

and

2 " k
{n) \~ _(nxl.;ln m) N Yot et ome

ok = 2, Loo Uik DD I R
m -1 m -1 {=1

To solve for g;' and ¢, from the above relations it is best to introduce the
generating functions (0<s <1,0<z <1)

b W X
+ ~ . ) k
gis o)=Y ¥ gn's"zh, (52)
not k~j
X X A
eits, )= Y Y ops"s (53)
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We then obtain

X V- N K( ‘K
gfisz)=z"""gfs,2) (j=1), g’n"(s,Z):sz——%)-:Z—Q, (54)
L(&)—-zL
g?;‘(s,z)=s§—(—§£—_—§——(—zl. (55)
Also
vFs 2 =2 o 2) (=1, vk z)=2—at, (56)
! z—sK(z)
* _z—-sK(z)—sz[L(§)-L(z)]
B ) T K I ~sLi&)] 57
Finally we have
Pim. =1, X, =k}= ¥ agiy ™ (58)
m=0
for n =1, I <=min(j, k). This gives
Y Eiziz3ns" =% & zhef (s, 20, (59)

"0 =1

B z212a—~¢&  z:-sK(z:) 1-—-sL(§) zo—sK(z2)
(60)
This gives in particular
R | P
(1-)Ys"Ej(z™)=¢"+2z(1 ~f<’)'f z . (61)
Q _f‘—:
Letting s » 1 - in (61) we find that
E " =1 ifp<1,
b
=t;'*:(l*§){ = if p>1.
-z
It follows that if p <1 then m,=0, while if p > 1, then
Pims =0} =", (62)

Pim.=ky=i1-0" % (1=k=j. (63)
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7.2. Ascending ladder process

We next investigate the ascending ladder process and the maximum functional
of the modified M/G/1 queue during a busy period. This is accomplished by sztting

Ao=1, Ay =0 (k=1) (64)

and leaving the rest of the matrix unchanged. We derive the expressions for the
matrices P., P_, R, and R _. The algebraic details of the derivation are somewhat
tedious and are omitted. Let D;(s) but the determinants defined in Section 5, and
define

_Dy(s)

1
D 1(5)*1—:;, D;(s) 1—s

(j=0). (65)

It is found that

Dyis)=1, D;(s)=1-“SX1, D:_(S‘)=(1—S,\’l)z_,\’u,\’p_s2

and generally

D,is)= Y (-1)Ag.s* (66)
X =0
where
n—iy! » (X‘)('
A'n:z(‘ll“ ! .

‘ el R (7
the sum being taken over all sequences (7, /1, ..., i) such that ¥ i, =k and
Y7 wji, = k. Using Theorem 10 we find that

[P ()i =1=-Di(s)/D; (s} (k=f=0),
= Sxo k=j-1=0), (68)
=) (k <~ 1),
and hence
[R ()], «=lsx)'D. « 1(8)/Dits) (0sk <)) (69)
The determinants D, .. (s) (k = 1) can be computed by using the relation
DM ,k(S) = - }_: (3"\'())‘ ’(S,\', k r)Dr 18, {70)
ro1

Again from Theorem 10 we find that for k = 1

{P,(S)],,,;k:“D“'»,US)/D,‘{S) (71
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and hence

- Dk(s)Dj+k—l(s) - Dk—l(S)Dj+k(s)
(R ()L (X0 Dynr(5) ‘ (72)

We have thus obtained all the basic results necessary to compute all functionals of
the ladder process and the maximum. In particular we have the following results:
(i) If xo>0, then every state is maximal for the modified chain, since in that case

a; =P,~{N1 = w} =1 "kgl [P+(S)]”4,k=X{)/D,'(1) >0. (73)

(i) PAM <o}=1if p=<1 and ¢'if p>1. This is clearly the probability that the
busy period initiated by j customers terminates, and the result is well known in

queueing theory. To show that it is a consequence of our results we note from
Theorem § that

PAM <j+k}=x0Di(1)/D; .1 (1), (74)
Using the relation

Dy (s)= (1 —sx)Dy (s1—(sxo)sx2)Dx 2(5)

= (sx0) (sx3)Dy 3(s) =+ - - —(sxa)" (sx)Dofs)
we obtain
tim xS £LS)
k-x Dy sy sxa
and hence
i
2252

The desired result now follows from (75).
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