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Use of nanomaterials in 
water purification

Improving water quality provides social and economic benefits to 

developing countries. For example, chlorination, filtration, solar 

disinfection, or combined flocculation and chlorination can yield 

benefits of $5 to $140 for each $1 that is invested1. In developing 

countries, large-scale municipal water treatment systems face 

problems such as inadequate maintenance, intermittent delivery, 

contamination with microorganisms, and lack of chlorination3-6. 

The high cost of water transportation and the high cost of 

constructing centralized water systems also have limited the use 

of centralized water purification4,5.

Disinfecting water after collection, which is commonly referred 

to as point-of-use disinfection, enables individuals to improve water 

obtained from unsafe sources6-9. Low-cost point-of-use technologies 

are being developed to convert water from untreated sources such as 

springs, wells, community taps, and rivers7. At this time, chlorination, 

flocculation, boiling, and filtration are the most commonly used point-

The recent earthquake in Haiti has focused worldwide attention on the 
need for improved water purification materials and systems. Numerous 
individuals, religious charities, non-governmental organizations, and 
private companies have sent water purifications systems to Haiti in 
recent months in order to stem the spread of waterborne diseases. 
This recent tragedy has placed a spotlight on the ongoing problem of 
inadequate access to safe water in developing countries. The United 
Nations estimates that 1.1 billion people, or eighteen per cent of the 
world population, cannot obtain safe water at this time1. In developing 
countries, waterborne diseases such as cholera, dysentery, enteric 
fever, and hepatitis A are quite common2. Endemic diarrheal diseases 
place individuals, particularly children, at risk of  arrested growth, 
malnutrition, and neurological conditions. The World Health Organization 
states that 1.6 million individuals, mostly young children, die from 
diarrheal diseases each year1.
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of-use water purification technologies. 30−40% reductions in diarrheal 

disease have been attributed to point-of-use treatments10. In addition, 

point-of-use water treatment involves lower energy costs and provides 

more straightforward control over water treatment than conventional 

methods.

In recent years, the use of nanostructured materials in point-of-

use water purification devices has been considered11. Nanostructured 

materials exhibit several advantages over conventional microstructured 

materials for water purification, including larger relative surface areas12. 

These chlorine-free water purification methods are of particular interest 

since carcinogenic disinfection byproducts may be formed when 

components of natural water interact with chloramines or chlorine13.

For example, Van de Bruggen et al. have described using 

nanoporous membranes for removal of arsenic, bacteria, organic 

material, nitrates, salinity, and viruses from groundwater and surface 

water14. Srivastava et al. demonstrated the use of membranes 

containing radially aligned carbon nanotube walls for removal of 

viruses and bacteria, including Poliovirus sabin 1, Escherichia coli, and 

Staphylococus aureus15. Thermal processes may be used to regenerate 

carbon nanotube membranes16.

Micro-organisms may form biofilms on the surfaces of water 

purification membranes. These biofilms decrease membrane 

permeability and increase water purification costs17-19. In addition, 

some microorganisms may release substances that degrade water 

quality, such as metabolic products and biological toxins20,21. 

Conventional methods for preventing the formation of microbial 

biofilms involve treating membranes with biocidal agents; however, 

biocidal agents may not be effective in eliminating rapidly growing 

Fig.1 Plan-view scanning electron micrograph obtained from the large pore side of a zinc oxide-coated 20 nm pore size nanoporous alumina membrane.

Fig. 2 Cross-sectional scanning electron micrograph obtained after fracturing a 60 μm thick nanoporous alumina membrane.
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bacteria22,23. In addition, biocidal agents may destroy the surfaces of 

water purification membranes23. Several investigators have described 

fabrication of nanostructured ceramic membranes containing zinc oxide 

and the anatase phase of titania24-26. Zinc oxide and the anatase phase 

of titania have been shown to photocatalytically degrade pollutants 

as well as prevent growth of microorganisms24-28. Unlike conventional 

polymeric membranes, ceramic membranes do not undergo 

degradation when exposed to heat or ultraviolet light25.

Functionalization of nanoporous membranes with photocatalytic 

titania coatings has attracted significant interest over the past few years. 

When irradiated by an ultraviolet A light source (e.g., solar energy), 

titania is able to degrade organic contaminants as well as destroy 

microorganisms24,29. For example, Zhang et al. demonstrated that silica/

titania nanotube composite membranes on porous alumina support 

membranes removed Direct Black 168 dye by means of membrane 

separation and photocatalysis25. In another study, Ma et al. used a sol-

gel method in order to coat silicon-doped titania layers on commercial 

alumina membranes11. These membranes demonstrated removal and 

photocatalytic degradation of a model pollutant (Reactive Red ED-2B). 

Zhang et al. grafted anatase titania nanotubes within the channels 

of alumina microfiltration membranes by means of a liquid-phase 

deposition method30. Membranes with titania nanotube inner diameters 

between 5 nm and 100 nm were obtained using this technique. 

These titania nanotube membranes demonstrated photocatalytic 

degradation of humic acid as well as reductions in membrane biofouling.  

Antimicrobial coatings and photocatalytic coatings have also been 

deposited on nanoporous membranes using atomic layer deposition26,31. 

For example, atomic layer deposition was used to deposit anatase titania 

coatings on nanoporous alumina membranes, which exhibit straight 

pores, high pore densities, and small pore sizes. Scanning electron 

microscopy of cross-sectional samples revealed that titania nanocrystals 

extended to the middle of the 60 mm thick nanopores. Titania-coated 

20 nm pore size nanoporous alumina membranes that were exposed 

to ultraviolet light demonstrated activity against Escherichia coli and 

Staphylococus aureus bacteria. Atomic layer deposition may be useful 

in creating membranes with extremely small pore sizes for preventing 

penetration of viruses.

Nanoporous membranes with biocidal properties as well as 

other nanostructured materials may be useful in the development 

of point-of-use water purification systems for developing countries 

and emergency situations. It should be noted that nanostructured 

material-based water purification technologies are also being 

incorporated within centralized water systems in developed countries32. 

For example, use of nanofiltration in a large distribution system 

was shown to reduce the amount of microorganisms and organic 

material33. In addition, fouling-resistant membranes may be used 

in distributed optimal technology networks; these networks are 

being considered as an alternative to centralized water treatment 

facilities34. Efforts are also underway to develop nanostructured 

materials for water purification with other functionalities, including 

removal of radionuclides and desalination35,36. For these efforts 

to have a significant impact, it will be necessary to reduce the 

processing costs for nanostructured water purification materials so 

that they are similar to those for conventional ceramic and polymeric 

water purification materials. In addition, comparisons between 

nanostructured water purification materials and their conventional 

counterparts with regard to effectiveness over extended periods of 

time are also needed.  
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