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Let L be a linear transformation on a finite dimensional real Hilbert

space H and K be a closed convex cone with dual K∗ in H. The cone

spectrum of L relative to K is the set of all real λ for which the linear

complementarity problem

x ∈ K , y = L(x) − λx ∈ K∗, and 〈x, y〉 = 0

admits a nonzero solution x. In the setting of a Euclidean Jordan

algebra H and the corresponding symmetric cone K , we discuss the

finitenessof the cone spectrumforZ-transformations andquadratic

representations on H.
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1. Introduction

This article deals with the eigenvalues of a linear transformation relative to a cone. Given a closed

convex cone K in a finite dimensional real Hilbert space H and a linear transformation L on H, we say

that a real number λ is a K-eigenvalue of L if there exists a nonzero x in H such that

x ∈ K , L(x) − λx ∈ K∗, and 〈x, L(x) − λx〉 = 0, (1)

where K∗ denotes the dual cone of K . While the above precise formulation appears in Seeger [23]

and Lavilledieu and Seeger [16], slightly different (variational inequality) formulations have appeared

much earlier in the works of Riddel [19] on nonlinear elliptic variational inequalities on a cone, Kučera

[14,15], and Quittner [18] on bifurcation analysis of eigenvalues relative to a cone. Motivated by the
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study of contact problems in mechanics [3], recently Queiroz et al. [17] and Judice et al. [13] studied

the so-called eigenvalue complementarity problem (EiCP): Given two n × n realmatrices A and Bwith

B positive definite, find a scalar μ > 0 and a nonzero vector u such that

v = (μB − A)u, u� 0, v � 0, and 〈u, v〉 = 0,

where u� 0means that u belongs to the non-negative orthant Rn+. These two articles describe various

equivalent formulations of EiCP and computational methods for solving it. We note that when B is

symmetric, EiCP reduces to (1) with K :=√
B(Rn+), L = −(

√
B)−1A(

√
B)−1, and λ = −μ.

Goingback to (1),whenK is all ofH, aK-eigenvalueof L is nothingbut aneigenvalueof L andhence, in

this setting, Lmaynot haveK-eigenvalues. However,whenK is pointed, that is, whenK ∩ (−K) = {0},
Seeger [23] has shown, via Ky Fan’s inequality, that for any L, there is always a K-eigenvalue. Based on

this, Seeger and Torki [24] have shown that the same conclusion holds as long as K is not a subspace.

In addition, when L is symmetric (=self-adjoint), Seeger and Torki [24] show that (1) is the stationary

condition for the minimization problem

min{〈L(x), x〉 : x ∈ K , 〈x, x〉 = 1}.
For a detailed study of local minimizers of this problem, see [25]. For a given L and K , the set σ(L, K) of
allK-eigenvalues of Lwill be called theK-spectrum (or the cone spectrum) of L.WhenK is a polyhedral

set generated by p vectors, Seeger [23] has shown that

|σ(L, K)| � p2p−1.

To study the finiteness issue for nonpolyhedral cones, in [24], Seeger and Torki consider the so-

called Lorentz cone Ln+ and show that for any symmetric transformation, the Ln+-spectrum is always

finite and construct a 5 × 5 non-symmetric matrix for which the Ln+-spectrum is infinite; See Iusem

and Seeger [12] for an example of a symmetric transformation on a nonpolyhedral cone with infinite

spectrum. Influenced by this, they raise the problem of identifying cones K for which the K-spectrum

of every symmetric transformation is finite. Motivated by these considerations and the observation

that the Lorentz cone is a symmetric cone in the Euclidean Jordan algebraLn, in this articlewe consider

somespecial typesof transformationsonEuclidean Jordanalgebrasanddescribe their conespectra.Our

focus here is on Lyapunov transformations and quadratic representationswhich have been extensively

studied in the literature on complementarity problems [5–10]. Interestingly enough, for these special

transformations, the cone spectrum is contained in the spectrum, thus proving the finiteness.

A Euclidean Jordan algebra V is a finite dimensional real Hilbert space with a Jordan product.

The closed convex cone of all squares in this algebra is a symmetric cone (see Section 2 for defini-

tions). For any element a ∈ V , we consider the corresponding Lyapunov transformation and quadratic

representation, defined respectively by

La(x):=a ◦ x and Pa(x):=2a ◦ (a ◦ x) − a2 ◦ x (x ∈ V), (2)

where for any twoelements x, y ∈ V , x ◦ ydenotes the Jordanproduct and x2 :=x ◦ x. In this article,we

show that with respect to the symmetric cone in V , the cone spectrum of each of these two symmetric

transformations is contained in the spectrumand explicitly compute the cone spectrum.Moreover, we

prove thefinite cone spectrumproperty for any linear transformationonV that satisfies theZ-property:

x ∈ K , y ∈ K∗ and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 � 0.

Examples of such transformations include the well-known Lyapunov and Stein transformations, LA
and SA, where for any A ∈ Rn×n,

LA(X):= 1

2
(AX + XAT ) and SA(X):=X − AXAT (X ∈ Sn). (3)

HereSn denotes the Euclidean Jordan algebra of all n × n real symmetricmatriceswith Jordan product

X ◦ Y = 1
2
(XY + YX).

Anoutline of thepaper is as follows. In Section2,we recall Euclidean Jordanalgebra concepts and re-

sults. Section 3 deals with the finite cone spectrum result for Z-transformations. In



774 Y. Zhou, M. Seetharama Gowda / Linear Algebra and its Applications 431 (2009) 772–782

Section 4, we describe the cone spectrum of quadratic representations and of the two-sided mul-

tiplication transformationMA.

2. Preliminaries

2.1. Euclidean Jordan algebras

In this subsection, we briefly recall concepts and results from the Euclidean Jordan algebra theory.

For further details, we refer to [4,20,9].

A Euclidean Jordan algebra is a triple (V , ◦, 〈·, ·〉), where (V , 〈·, ·〉) is a finite dimensional space

over R with inner product 〈·, ·〉 and (x, y) 
→ x ◦ y : V × V → V is a bilinear mapping satisfying the

conditions x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), and 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V . We

also assume that there exists a unit element e ∈ V such that x ◦ e = x for all x ∈ V .

It is known (see Chapter V, [4]) that every Euclidean Jordan algebra is, up to an isomorphism,

a product of (some) of the following: The Jordan spin algebra Ln (n > 1) whose underlying space

is R × R(n−1) with the usual inner product and (x0, x) ◦ (y0, y) = (x0y0 + 〈x, y〉, x0y + y0x), matrix

algebras Sn of all n × n real symmetric matrices, Hn of all n × n complex Hermitian matrices, Qn

of all n × n quaternion Hermitian matrices, and O3 of all 3 × 3 octonion Hermitian matrices. In the

matrix algebras, the Jordan and inner product are given respectively by X ◦ Y := 1
2
(XY + YX) and

〈X , Y〉:=Re trace(XY). (For basic properties of quaternions and octonions, see [26,1].)

In a Euclidean Jordan algebra V , the symmetric cone is the set of squares

K :={x ◦ x : x ∈ V}.
K is a self-dual cone; in particular, 〈x, y〉 � 0 for all x, y ∈ K . When K is a cone of matrices, we use the

standard notations

X � 0 for X ∈ K and X  0 for X ∈ interior(K).

In V , an element c ∈ V is an idempotent if c2 = c; an idempotent c is a primitive idempotent if it

is nonzero and cannot be written as a sum of two nonzero idempotents. A finite set {e1, e2, . . . , em}
of primitive idempotents in V is a Jordan frame if ei ◦ ej = 0 if i /= j, and

∑m
1 ei = e. We note that a

Jordan frame is an orthogonal set.

Theorem 1 (The spectral decomposition theorem [4]). Let V be a Euclidean Jordan algebra. Then there

is a number r (called the rank of V) with the property that for every x ∈ V , there exist a Jordan frame

{e1, . . . , er} and real numbers λ1, . . . , λr such that

x = λ1e1 + · · · + λrer . (4)

We refer to (4) as the spectral decomposition (or the spectral expansion) of x. The real numbers

λ1, λ2, . . . , λr are called the eigenvaluesof x.We say that an object x inV is invertible if all its eigenvalues

are nonzero.

Let c be an idempotent in V . For γ ∈ {0, 1
2
, 1}, define the Peirce eigenspaces

V(c, γ ):={x ∈ V : x ◦ c = γ x}.
We have

Theorem 2 (Peirce decomposition theorem I, Proposition IV.1.1, [4]). V is an orthogonal direct sum of

the eigenspaces V(c, γ ) :

V = V(c, 1) ⊕ V

(
c,

1

2

)
⊕ V(c, 0).
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Moreover, V(c, 1) and V(c, 0) are subalgebras of V , and

V(c, 1) ◦ V(c, 0) = {0};
V(c, 1) ◦ V

(
c, 1

2

)
⊆ V

(
c, 1

2

)
;

V(c, 0) ◦ V
(
c, 1

2

)
⊆ V

(
c, 1

2

)
;

V
(
c, 1

2

)
◦ V

(
c, 1

2

)
⊆ V(c, 1) + V(c, 0).

Let {e1, e2, . . . , er} be a Jordan frame in V . For i, j ∈ {1, 2, . . . , r}, define the eigenspaces

Vii :={x ∈ V : x ◦ ei = x} = R ei

and when i /= j,

Vij :=
{
x ∈ V : x ◦ ei = 1

2
x = x ◦ ej

}
.

Then we have the following:

Theorem 3 (Peirce decomposition theorem II, Theorem IV.2.1, [4]). The space V is the orthogonal direct

sum of spaces Vij (i � j). Moreover,

Vij ◦ Vij ⊂ Vii + Vjj;
Vij ◦ Vjk ⊂ Vik if i /= k;
Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

In view of the above theorem, given any Jordan frame {e1, e2, . . . , er} and any x ∈ V , we have the Peirce

decomposition

x =
r∑

i=1

xiei +
∑
i<j

xij , (5)

where xi ∈ R and xij ∈ Vij .

2.2. Lyapunov transformations and quadratic representations

Let V be a Euclidean Jordan algebra. For any element a ∈ V , we define Lyapunov transformation La
and the quadratic representation Pa by

La(x):=a ◦ x and Pa(x):=2a ◦ (a ◦ x) − a2 ◦ x.

These transformations are linear and self-adjoint on V . Moreover, Pa(K) ⊆ K for all a and PPa(x) =
PaPxPa for all a and x, see Proposition III.2.2, [4] and Corollary II.3.2, [4].

For example, on the algebra Sn with A ∈ Sn, the above transformations are given by

LA(X) = A ◦ X = 1

2
(AX + XA) and PA(X) = AXA.

Sincemultiplicationofmatriceswith complexor quaternionentries satisfy the associativeproperty,

we get similar expressions on Hn and Qn.

Proposition 4. Suppose that the spectral decomposition of a ∈ V is given by a = a1e1 + a2e2 + · · · +
arer , where {e1, e2, . . . , er} is a Jordan frame. Let x be given by (5). Then

La(x) =
r∑

i=1

aixiei +
∑
i<j

ai + aj

2
xij (6)
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and

Pa(x) =
r∑

i=1

a2i xiei +
∑
i<j

aiajxij. (7)

Proof. From the properties of the Peirce spaces Vij , we have La(ei) = aiei and La(xij) = ai+aj
2

xij. Also,

Pa(ei) = a2i ei and Pa(xij) = aiajxij. The stated results follow from the linearity of La and Pa. �

We say that two objects a and b in a Euclidean Jordan algebra V operator commute if their corre-

sponding Lyapunov transformations commute, that is, LaLb = LbLa. It is known (see [4]) that a and b

operator commute if and only if a and b have their spectral decompositions with respect to a common

Jordan frame.

Proposition 5. (Proposition 6, [9]). For a and b in V , the following are equivalent:
(i) a ∈ K , b ∈ K , and 〈a, b〉 = 0.
(ii) a ∈ K , b ∈ K , and a ◦ b = 0.

In each case, a and b operator commute.

Remark 1. For a nonzero, non-unit idempotent c, consider the Peirce spaces V(c, 1) and V(c, 0). Then
any x ∈ V(c, 1) operator commutes with any w ∈ V(c, 0). This can be seen by first noting that prim-

itive idempotents in V(c, 1) and V(c, 0) are orthogonal and hence operator commute. The operator

commutativity of x and w follow from their spectral expansions in V(c, 1) and V(c, 0).

The following results are crucially used in the proof of Theorem 12.

Proposition 6. Let c be a nonzero idempotent in V with corresponding Peirce decomposition

V = V(c, 1) ⊕ V

(
c,

1

2

)
⊕ V(c, 0).

Let a = u + v + w,where u ∈ V(c, 1), v ∈ V
(
c, 1

2

)
, and w ∈ V(c, 0). Then for any x ∈ V(c, 1), we have

the following:

(1) Px(v) = 0 and u ◦ (x ◦ v) + x ◦ (u ◦ v) = (u ◦ x) ◦ v.
(2) Pv(x) ∈ V(c, 0).

(3) Pa(x) = Pu(x) + 4u ◦ (v ◦ x) + Pv(x) with Pu(x) ∈ V(c, 1) and 4u ◦ (v ◦ x) ∈ V
(
c, 1

2

)
.

(4) [Pu(x) = λx, λ /= 0, x invertible in V(c, 1)] ⇒ u invertible in V(c, 1).

(5) [x ◦ z = 0, x invertible in V(c, 1) and z ∈ V
(
c, 1

2

)]
⇒ z = 0. Hence, [u ◦ (v ◦ x) = 0, u and x

invertible in V(c, 1), and v ∈ V
(
c, 1

2

)]
⇒ v = 0.

Proof. Fix an x ∈ V(c, 1). As V(c, 1) is a Euclidean Jordan algebra, there exists a Jordan frame

{f1, f2, . . . , fk} in V(c, 1) such that the spectral decomposition of x is given by

x = x1f1 + x2f2 + · · · + xkfk. (8)

As c is the unit element in V(c, 1), we have

f1 + f2 + · · · + fk = c. (9)

Let {fk+1, fk+2, . . . , fr} be a (fixed) Jordan frame in V(c, 0) = V(e − c, 1). Then {f1, f2, . . . , fk ,
fk+1, . . . , fr} is a Jordan frame inV .With respect to this Jordan frame, by Peirce decomposition theorem

II (or Lemma 20, [9]),
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V(c, 1) = ∑
α

Vij , V

(
c,

1

2

)
= ∑

β

Vij , and V(c, 0) = ∑
γ

Vij , (10)

where

α := {(i, j) : 1� i � j � k} , β := {(i, j) : 1� i � k, k + 1� j � r} ,
and

γ := {(i, j) : k + 1� i � j � r} .

(1) As v ∈ V(c, 1
2
) = ∑

β Vij , we may write v = ∑
β vij , where vij ∈ Vij.

With

x = x1f1 + x2f2 + · · · + xkfk + 0fk+1 + · · · + 0fr ,

we may let xj = 0 for k + 1� j � r. Then from Proposition 4, Px(v) = ∑
β xixjvij = 0. For x and

u in V(c, 1), we have x + u ∈ V(c, 1). Replacing x by x + u in Px(v) = 0, we get Px+u(v) = 0.
Now expanding and simplifying Px+u(v) = 0, we get u ◦ (x ◦ v) + x ◦ (u ◦ v) = (u ◦ x) ◦ v.

(2) We need to show that Pv(x) ◦ c = 0. From (9),

k∑
i=1

〈Pv(fi), c〉 = 〈Pv(c), c〉 = 〈v2 − v2 ◦ c, c〉 = 〈v2, c〉 − 〈v2, c ◦ c〉 = 0,

where we have used the definition of Pv(c) and the facts that 〈v2 ◦ c, c〉 = 〈v2, c ◦ c〉 and c2 =
c. As Pv(K) ⊆ K and 〈Pv(fi), c〉 � 0, the above equality yields 〈Pv(fi), c〉 = 0 for every fi. By

Proposition 5, Pv(fi) ◦ c = 0. Using the linearity of Pv we get Pv(x) ◦ c = 0.
(3) Using thepropertiesofPeirce spaces,wegetu ◦ x, u2 ∈ V(c, 1),w2 ∈ V(c, 0), v ◦ x ∈ V(c, 1

2
),w ◦

x = 0, and w2 ◦ x = 0. Hence, a ◦ x = u ◦ x + v ◦ x, a ◦ (a ◦ x) = u ◦ (u ◦ x) + u ◦ (v ◦ x) +
v ◦ (u ◦ x) + v ◦ (v ◦ x) + w ◦ (v ◦ x), and

a2 ◦ x=(u2 + v2 + w2 + 2u ◦ v + 2v ◦ w) ◦ x

=u2 ◦ x + v2 ◦ x + 2(u ◦ v) ◦ x + 2(v ◦ w) ◦ x.

Now, using Remark 1, we have w ◦ (x ◦ v) = x ◦ (w ◦ v). Hence, a direct computation leads to

Pa(x) = 2a ◦ (a ◦ x) − a2 ◦ x

= Pu(x) + 2[u ◦ (v ◦ x) + v ◦ (u ◦ x) − (u ◦ v) ◦ x] + Pv(x).

Using Item (1), we have

Pa(x) = Pu(x) + 4u ◦ (v ◦ x) + Pv(x).

Now, u and x belong to V(c, 1) (which is an algebra) and hence Pu(x) ∈ V(c, 1). Also, from the

properties of the Peirce eigenspaces, x ◦ v ∈ V
(
c, 1

2

)
and u ◦ (x ◦ v) ∈ V

(
c, 1

2

)
.

(4) As both x andubelong toV(c, 1), andPu mapsV(c, 1) intoV(c, 1),we canworkwithin the algebra

V(c, 1) and prove this statement. Suppose Pu(x) = λx. Then Pλx = PuPxPu (see Corollary II.3.2,

[4]). When x is invertible in V(c, 1) and λ /= 0, Pλx is invertible in V(c, 1) (see Proposition II.3.1

in [4]). It follows that Pu is invertible in V(c, 1). Hence, u is invertible in V(c, 1) (once again, from
Proposition II.3.1 in [4]).

(5) Let x be invertible in V(c, 1) and z ∈ V
(
c, 1

2

)
with x ◦ z = 0. From (8) and (10), we can write

x = x1f1 + x2f2 + · · · + xkfk + 0fk+1 + · · · + 0fr

and z = ∑
β zij with zij ∈ Vij . Letting xj = 0 for k + 1� j � r, from Proposition 4,

0 = x ◦ z = Lx(z) = ∑
β

(xi + xj)

2
zij = ∑

β

xi

2
zij.
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Due to the orthogonality of zijs and xi /= 0 for i = 1, 2, . . . , k, we get zij = 0 and hence z =
0. The second statement in Item (5) follows immediately by two applications of the first

statement. �

Proposition 7. For a ∈ V , suppose Pa(x) = λ x + y with λ /= 0, x, y ∈ K , and 〈x, y〉 = 0. Then y = 0.

Proof. Without loss of generality, let x /= 0.Asλ /= 0andPa(K) ⊆ K ,wehave0�〈Pa(x), x〉 = λ||x||2
and so λ > 0. Now, by Proposition 5, x and y operator commute and hence there exists a Jordan frame

{e1, e2, . . . , er} such that x = λ1e1 + λ2e2 + · · · + λkek and y = μk+1ek+1 + · · · + μrer withλi > 0

for all i = 1, 2, . . . , k and μj � 0 for j = k + 1, . . . , r. We have to show that y = 0. Let c :=e1 + e2 +
· · · + ek . Then x ∈ V(c, 1) and y ∈ V(c, 0). Using Item (3) in Proposition 6, we have

λx + y = Pa(x) = Pu(x) + 4u ◦ (v ◦ x) + Pv(x),

where a = u + v + w with u ∈ V(c, 1), v ∈ V
(
c, 1

2

)
, and w ∈ V(c, 0). By the orthogonality of the

Peirce spaces, we have

Pu(x) = λx, 4u ◦ (v ◦ x) = 0, and Pv(x) = y.

As x is invertible in V(c, 1), from Item (4) in Proposition 6, we have the invertibility of u in V(c, 1).
From Item (5), Proposition 6, we have v = 0. Hence, y = Pv(x) = 0, proving the proposition. �

3. Z-transformations

A square real matrix is said to be a Z-matrix [2] if all its off-diagonal entries are nonpositive. Below,

we consider a generalization of this concept which is nothing but the negative of a cross-positive

transformation introduced in [22].

Definition 8 [10]. Let H be a finite dimensional real Hilbert space and K be a proper cone in H, i.e.,

K ∩ (−K) = {0} and K − K = H, with K∗ denoting the dual. A linear transformation L : H −→ H is

said to have the Z-property with respect to K (or that L is a Z-transformation) if

x ∈ K , y ∈ K∗, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 � 0.

We remark that any symmetric cone (in a Euclidean Jordan algebra) is a proper cone. For any

A ∈ Rn×n, the Lyapunov transformation LA and the Stein transformation SA defined on Sn by (3) are

Z-transformations. So is the transformation L on Sn defined by

L(X):=X − A1XA
T
1 − A2XA

T
2 − · · · − AmXA

T
m,

where Ai ∈ Rn×n (i = 1, 2, . . . ,m). For properties and further examples of Z-transformations, we refer

to [10].

We now prove our first finite cone spectrum result. In what follows, σ(L) denotes the spectrum of

the transformation L; recall that σ(L, K) is the cone spectrum of L with respect to K .

Theorem 9. Let H be a finite dimensional real Hilbert space and K be a proper cone. Suppose that L has

the Z-property with respect to K. Then for any real λ,

L(x) = λx + y

x ∈ K , y ∈ K∗, 〈x, y〉 = 0

}
⇒ y = 0.

Hence, σ(L, K) ⊆ σ(L) and |σ(L, K)| � dim(H) < ∞.

Proof. We observe that S :=L − λI has the Z-property on K . Hence, from L(x) = λx + y, x ∈ K , y ∈
K∗, 〈x, y〉 = 0, we get 〈S(x), S(x)〉 = 〈S(x), y〉 � 0. This gives S(x) = 0, i.e., y = L(x) − λx = 0. The

containment of the cone spectrum in the spectrum and its finiteness are obvious. �
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We now describe the cone spectrum of the Lyapunov transformation La on a Euclidean Jordan

algebra.

Corollary 10. Consider a Euclidean Jordan algebra V with corresponding symmetric cone K and an element

a ∈ V with its spectral decomposition a = a1e1 + a2e2 + · · · + arer . Then

σ(La, K) = {a1, a2, . . . , ar}.
Note: It is well known [20] (and follows from (6)) that

σ(La) ⊆
{
ai + aj

2
: i, j = 1, 2, . . . , r

}

with equality holdingwhenV is simple, that is,whenV is not thedirect sumof twonontrivial Euclidean

Jordan algebras.

Proof. Firstof all, fromLa(ei) = aiei,wesee that {a1, a2, . . . , ar} ⊆ σ(La, K).Nowsupposeλ ∈ σ(La, K).
As La has the Z-property with respect to K , from the above theorem, we get a nonzero x ∈ K such that

La(x) = λx. Let x be given by (5). In view of (6) and the orthogonality of the Peirce spaces, La(x) = λx

leads to aixi = λxi for all i = 1, 2, . . . , r and
ai+aj

2
xij = λxij for all i < j. As 0 /= x ∈ K , there is at

least one index i for which xi /= 0, see Exercise 7(b), Chapter IV, [4]. For such an i, λ = ai. Thus

λ ∈ {a1, a2, . . . , ar}. �

Given an n × n complex matrix A, consider the (Lyapunov) transformation LA on Hn (the algebra of

all n × n complex Hermitian matrices) defined by

LA(X) = 1

2
(AX + XA∗).

The cone spectrum of such a transformation is described below.

Theorem 11. Forann × ncomplexmatrixA, consider LA onHn definedabove.Letσ(A) = {λ1, λ2, . . . , λn}
denote the spectrum of A. Then

σ(LA,Hn+) = {Re(λ1), Re(λ2), . . . , Re(λn)},
where Hn+ denotes the (symmetric) cone of positive semidefinite matrices in Hn.

Proof. Supposewj is an eigenvector corresponding to an eigenvalue λj of A. Then 0 /= W :=wjwj
T �

0 satisfies AW + WA∗ = 2Re(λj)W proving Re(λj) ∈ σ(LA,Hn+). Now suppose that λ ∈ σ(LA,Hn+).
Then there there exist a nonzero X � 0 and Y � 0 in Hn such that LA(X) = λX + Y with 〈X , Y〉 = 0.
As LA has the Z-property on Hn+, from Theorem 9, Y = 0 and so AX + XA∗ = 2λX.Writing X = UDU∗,
where D is a (nonzero) nonnegative diagonal matrix and U is unitary, we get BD + DB∗ = 2λD with

B = U∗AU. Permuting D (if necessary), we may decompose D and B as

D =
[
D1 0

0 0

]
with D1  0, and B =

[
B1 B2
B3 B4

]
.

(If D is invertible, then certain blocks in D and B become vacuous.)

Putting these in BD + DB∗ = 2λD, we get

B1D1 + D1B
∗
1 = 2λD1 and B3D1 = 0.

As D1 is positive definite, B3 = 0. From the block form of B, we see that

B =
[
B1 B2
0 B4

]
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and so

σ(B1) ⊆ σ(B) = σ(A).

Now B1D1 + D1B
∗
1 = 2λD1 implies that(√

D1

)−1
B1

√
D1 + √

D1B
∗
1

(√
D1

)−1 = 2λI1,

where I1 is the identitymatrixwhose size agreeswith that ofD1. Putting C1 :=(
√

D1)
−1B1

√
D1,we see

that C1 + C∗
1 = 2λI and that C1 is normal. Ifμ is an eigenvalue of C1 with a corresponding eigenvector

u, then C1u = μu and (because C1 is normal) C∗
1u = μu. Thus 2λu = (C1 + C∗

1 )u = 2Re(μ)u giv-

ing us λ = Re(μ). Finally, we observe that μ ∈ σ(C1) = σ(
√

D1)
−1B1

√
D1) = σ(B1) ⊆ σ(A). This

completes the proof. �

4. Quadratic representations

Let V be a Euclidean Jordan algebra with the corresponding symmetric cone K . In this section we

describe the cone spectrum of Pa and, in particular, show that it is finite.

Theorem 12. Consider a ∈ V with its spectral decomposition

a = a1e1 + a2e2 + · · · + arer . (11)

Then

{a21, a22, . . . , a2r } ⊆ σ(Pa, K) ⊆ {0, a21, a22, . . . , a2r }.

Proof. From (11), it is easily seen that Pa(ei) = a2i ei for each i. Thus {a21, a22, . . . , a2r } ⊆ σ(Pa, K). Now
suppose that 0 /= λ ∈ σ(Pa, K). Then there exist 0 /= x ∈ K and y ∈ K such that Pa(x) = λ x + y

with 〈x, y〉 = 0. In view of Proposition 7, we have y = 0 and so Pa(x) = λx. Let x be given by (5). Then

from (7), we have

r∑
i=1

a2i xiei +
∑
i<j

aiajxij = λ

⎛
⎝ r∑

i=1

xiei +
∑
i<j

xij

⎞
⎠ .

Now, the orthogonality in Peirce decomposition results in a2i xi = λxi for all i and aiajxij = λxij for all
i < j. As 0 /= x ∈ K , there is at least one index i for which xi /= 0, see Exercise 7(b), Chapter IV, [4].

For such an i, λ = a2i . This proves σ(Pa, K) ⊆ {0, a21, a22, . . . , a2r } and consequently the theorem. �

The following example shows that zero can be a K-eigenvalue of Pa without it being (the square of)

an eigenvalue of a.

Example. Let V = S2 and

A =
[
0 1

1 0

]
.

Then PA(X) = AXA for all X ∈ S2. For the matrix A, the eigenvalues are −1 and 1. However, from[
0 1

1 0

] [
1 0

0 0

] [
0 1

1 0

]
=

[
0 0

0 1

]

we see that zero is in the cone spectrum of PA.

Given an n × n complex matrix A, consider the transformationMA on Hn defined by

MA(X) = AXA∗.
(Note that when A ∈ Hn, this transformation reduces to a quadratic representation on Hn.) The result

below describes the cone spectrum of such a transformation.
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Theorem 13. For an n × n complex matrix A, consider MA defined above. Then

{|λ1|2, |λ2|2, . . . , |λn|2} ⊆ σ(MA,Hn+) ⊆ {0, |λ1|2, |λ2|2, . . . , |λn|2},
where σ(A) = {λ1, λ2, . . . , λn}.
Proof. Let wj be an eigenvector corresponding to the eigenvector λj of A. Then 0 /= W :=wjwj

T is

positive semidefinite andMA(W) = |λj|2W . Hence, we have the first inclusion in the above theorem.

Suppose 0 /= λ ∈ σ(MA,Hn+). We show that λ = |λi|2 for some λi ∈ σ(A) thereby proving the

second inclusion of the theorem. Now there exist Y and a nonzero X inHn+ such thatMA(X) = λX + Y

and 〈X , Y〉 = 0. Since operator commutativity in Hn is the same as matrix commutativity, X and Y

commute. Hence, we can write X = UDU∗ and Y = UEU∗ for some (nonnegative) diagonal matrices

D /= 0 and E, with U being a unitary matrix. Then AXA∗ = λX + Y implies BDB∗ = λD + E, where

B = U∗AU. After a suitable rearrangement, we may write

D =
[
D1 0

0 0

]
, E =

[
0 0

0 E4

]
and B =

[
B1 B2
B3 B4

]
,

where D1 is a diagonal matrix with positive entries and E4 is a diagonal matrix with nonnegative

entries. Then BDB∗ = λD + E yields

B1D1B
∗
1 = λD1, B3D1B

∗
1 = 0, and B3D1B

∗
3 = E4.

We note that D1 is invertible and λ /= 0. Thus B1D1B
∗
1 is invertible and so B1 is invertible. From

B3D1B
∗
1 = 0 we get B3 = 0. Then E4 = B3D1B

∗
3 = 0. From this we get E = 0, and Y = 0. Then,

B =
[
B1 B2
0 B4

]

and so

σ(B1) ⊆ σ(B) = σ(A).

Now the equality B1D1B1
∗ = λD1 leads to

(√
D1

)−1
B1

√
D1

√
D1B1

∗(
√

D1)
−1 = λI1,

where I1 is the identity matrix whose size agrees with that of B1. Putting C1 := 1√
λ
(
√

D1)
−1B1

√
D1,

we see that C1 is a unitary matrix and hence every eigenvalue of C1 has absolute value one. If eiθ is an

eigenvalue of C1, then eiθ = 1√
λ
λj , where λj ∈ σ(

√
D1

−1
B1

√
D1) = σ(B1) ⊆ σ(A). Thus, λ = |λj|2

proving the other inclusion in the stated theorem. �

Remarks. A cone automorphism of Hn is an invertible linear transformation Γ on Hn that satisfies

Γ (Hn+) = Hn+. It is well known (see e.g., [21]) that cone automorphisms of Hn are given by

Γ (X) = AXA∗ (X ∈ Hn)

for some nonsingular matrix A. In view of this, we may say that every cone automorphism of Hn has

finite cone spectrum. A similar result holds for Sn.

5. Conclusions

In this paper, motivated by a problem posed by Seeger and Torki [24] we showed that for

Z-transformations on proper cones and quadratic representations on symmetric cones (in a Euclidean

Jordan algebra), the cone spectrum is finite. A different proof of Theorem 12 based on case-by-case

analysis on simple algebras appears in the technical report [27]. Yet another proof based on inertia

formula appears in [11].
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[14] M. Kučera, A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues,

Czechoslovak Math. J. 32 (1982) 197–207.
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