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Abstract

Discovering the organizational principles of genetic expression has recently become an
arena of substantial investigative effort and modeling challenges. Laboratory findings of ge-
neticists can be couched in terms of classes of stoichiometric networks that through stability
analysis lead to classes of matrix patterns. In particular, targets, blocks, and decoys are variables
in genetic systems with relationships that can be described by bipartite and tripartite graphs.
Related dynamical systems will exhibit stability if a mixture of qualitative and quantitative
criteria is applied. Analyses of the models suggest limits of total induction rates of blocks and
decoys relative to other rates.
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1. Introduction

In recent years and especially in recent months, some basic notions of the sci-
ence of genetics have been modified by discoveries regarding the regulation of gene
expression. One discovery [2] is that “a few molecules” of small, double-stranded
RNA molecules induced synthetically into a cell (in a worm) can escape notice of
the immune system, replicate, and then alter gene expression to cause macroscopic
changes. Another is the seemingly essential role of noncoding RNA transcripts in
control of genetic expression, specifically acting as decoys relative to agents that block
translation of similar mRNAs [3]. These and related discoveries about RNA molecules
that control genetic expression but are not used directly as protein templates (as
messenger RNA (mRNA)) have caused some geneticists to consider supplementing
the “central dogma” (that all biologically important information in chromosomes is
used as protein templates).

Conventional transcriptional control includes feedback mechanisms from cellular
metabolite levels that regulate in several known ways the primary rate of transcrip-
tion of a gene. However, some large genes take many minutes or even hours to be
transcribed into RNA. Their production might be “pipelined” with several transcripts
in various stages of completion at any time. In order to respond quickly (say, in sec-
onds) to changing protein demands, cellular machinery might more quickly produce
small blocking RNA molecules that at various times prevent some or many large
transcripts from proceeding to translation to protein. This hybrid system might be
more responsive than conventional regulation. At any rate, many geneticists now feel
that paradigms for conventional regulation should be supplemented to some degree
with regulation by noncoding RNA.

As shown below, stoichiometric models of genetic control systems lead to inter-
esting bipartite and tripartite matrix patterns as linear approximation matrices. It is
known that some mRNA molecules (called targets) can be precluded from translation
by binding with small subsequences with one type of several types of small, blocking
molecules (called herein blocks). Some blocks such as so-called microRNAs can
prevent translation of more than one target and some targets might be blocked by
more than one microRNA [8]. According to a bioinformatics survey [9], the ∼220
known human microRNAs might have 13,000 target sequences in 5300 genes.

The human genome also transcribes pseudogenes (RNA molecules much like
mRNA but lacking essential components to be translated into protein). Some pseudo-
genes act as decoys for blocking actions. Thus, there are three types of components
(at least) in genetic control systems: targets, blocks, and decoys. As vertices in a
graph, targets are joined by edges to blocks and blocks are joined to decoys; no other
types of edges are allowed herein. The graph of actual targets, blocks, and decoys
for the human genome must be quite large. Likely, it has some type of hierarchical
organization, the focus presently of much research (e.g., [6]).

The virtues of sign-stable or qualitatively stable systems as candidates for high-
level paradigms in ecology and perhaps other disciplines have often been stated [7].
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However, qualitative stability of linear systems is a restrictive condition; it would
chafe modelers of complex phenomena such as genetic control systems. More appeal-
ing might be nonlinear models that have a few, simple quantitative conditions that
neatly imply stability; otherwise the nonlinear “near-qualitative” models are still sta-
ble (many or most model coefficients can be of arbitrary magnitude without affecting
the qualitative existence of a stable constant trajectory). The further elucidation of
such systems would seem to be a major challenge to applied mathematics. This paper
is about a class of such nonlinear models that arise in genetic control. Modeling the
above and other putative components of the control system for gene expression is
a goal that has the attention of many researchers. The research is motivated by the
apparent potential for new understanding and perhaps new treatments of complex
diseases [10].

2. Genetic control model

The model considered herein includes a number x > 0 of targets T1, T2, . . . , Tx , a
number m > 0 of blocks B1, B2, . . . , Bm, and a number n µ 0 of decoys D1, D2, . . . ,

Dn. These substances (or their precursors) are all created by transcription in the
nucleus of a cell. After some processing, they are exported into the cytosol to interact
as in a chemical reaction network. The proteins expressed by the system are functions
of target levels (reacting with ribosomes), but protein levels are not directly used in
the present analysis. Thus, a model with targets, blocks, and decoys might be written
as follows:

dTa

dt
= τa − σaTa − Ta

[∑
i

ρaiBi

]
, a = 1, 2, . . . , x, (1)

dBi

dt
= βi − Bi

[∑
a

ρaiTa

]
− Bi


∑

j

µijDj


 , i = 1, 2, . . . , m,

dDj

dt
= δj − Dj

[∑
i

µijBi

]
, j = 1, 2, . . . , n.

Nine types of positive rate coefficients are: τa , the creation of target Ta ; σa , the
removal of Ta in self-regulation mechanisms; ρai , the blocking reaction of Ta and
Bi , βi , the creation of block Bi ; and δj , the creation of decoy Dj . Thus the rate of
reaction of Ta and Bi (zero or positive) is ρai , a nonnegative matrix with at least one
positive entry in every row and at least one positive entry in every column. Thus we
assume that every target reacts with at least one block and every block reacts with at
least one target. The rate of reaction of Bi and Dj (also nonnegative) is µij . We also
assume that any decoy must affect at least one block, so every column of the n-by-m
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nonnegative matrix µij has at least one positive entry. However, some block might
react with no decoys, so an all-zero row in µij is possible.

To organize the relationships and, as shown below, to express stability conditions,
a combinatorial description of relationships among targets, blocks, and decoys is
needed; the format we use is a tripartite graph called herein a TBD graph. In a TBD
graph, targets appear as vertices of a first type, blocks as vertices of a second type,
and decoys as vertices of a third type; edges denote processes. For example, suppose
targets [T1, T2, T3] are blocked by [B1, B2, B3], [B2, B4], and [B4], respectively.
Suppose blocks [B1, B2, B3, B4] react with decoy sets [empty], [D1, D2, D3], [D3],
and [D4], respectively. The associated tripartite graph is shown in Fig. 1.

Fig. 1 depicts a small example of a connected (always assumed) TBD graph (every
vertex can be reached by every other vertex by following a path of edges).

We will also need to consider the bipartite graph called herein a BD graph obtained
by deleting all the T vertices and their edges from the TBD graph from (1). The BD
graph generally is not connected. In Fig. 1, B1 is not connected to any D vertex and
so is a trivial maximal connected subgraph of the BD graph; likewise [B4, D4] are in
a maximal connected subgraph of the BD graph.

To exhibit a stable equilibrium, the high-dimensional model turns out to have
algebraic requirements on the sums of certain induction rates associated with the
entire TBD graph and the maximal connected components of the BD graph. The speed
at which the system approaches stable equilibrium depends generally on all model
coefficients, but the existence of stable equilibrium depends only on such sums of
induction rates. This qualitative stability seems to be a distinguishing property among
high-dimensional nonlinear models [4].

T3

T2

T1

B3

B2

B1

B4 D4

D3

D2

D1

Fig. 1. A tripartite graph showing three types of vertices: three mRNA targets, four small-molecule RNA
blocks, and four RNA decoys that have subsequences that are similar to those of targets. Edges denote
processes. In general, there can be any positive number of T or B vertices; if D vertices occur, they can be
of any number. For the existence of a constant state with all variables positive (feasible), it turns out that the
total input rates of B type must exceed that for D type in a certain subgraph. Also, the difference of total
B induction and total D induction must be less than the induction sum for the T types. Any such feasible
constant state is automatically at least locally stable. The process rates between variables are otherwise of
arbitrary magnitude, so this model exhibits a kind of qualitative stability.
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Theorem 1 (Existence of constant feasible state). A necessary condition for the exis-
tence of a feasible (all components positive) constant trajectory for (1) is

∑
a τa >∑

i βi −∑
j δj where the sums are taken over the indices of vertices in the TBD

graph. Another necessary condition is that sums taken over the B and D subsets in
each maximal connected subgraph of the BD graph fulfill

∑
i βi >

∑
j δj .

Proof. Suppose a feasible constant trajectory exists; let us denote it as (T1, . . . , Tx,

B1, . . . , Bm, D1, . . . , Dn). The left side of each equation in (1) is zero, so the sum of
all the right sides of (1) must also be zero. It follows that

∑
a τa −∑

i βi +∑
j δj =∑

a σaTa and consequently
∑

a τa −∑
i βi +∑

j δj must be positive.
Furthermore, for the B and D vertices in a maximal connected subgraph of the BD

graph, let us denote the associated submatrix with i, j entry by µijBiDj . The ith row
sum must be βi −∑

a ρaiTaBi < βi and the j th column sum must be δj . Summing
all entries is independent of order of summation, hence

∑
i βi >

∑
j δj . �

In the special case that only one target T1 is present and no decoys are in the
system, the unique constant state can be readily calculated: T1 = (τ1 −∑

i βi)/σ1 and
Bi = βi/(ρ1iT1). In this case, a necessary and sufficient condition for the existence
of a constant state with all components positive applies just to the induction rates of
target and blocks, namely, τ1 >

∑
i βi .

Regarding stability, the negative of the linear approximation matrix −L of (1) at
a feasible constant state is

−L =




σ1 +∑
i ρ1iBi · · · 0 T1ρ11 · · · T1ρ1m 0 · · · 0

0 · · · σx +∑
i ρxiBi Txρx1 · · · Txρxm 0 · · · 0

ρ11B1 · · · ρx1B1
∑

a ρa1Ta +∑
j µ1j Dj · · · 0 B1µ11 · · · B1µ1n

ρ1mBm · · · ρxmBm 0 · · · ∑
a ρamTa +∑

j µmj Dj Bmµm1 · · · Bmµmn

0 · · · 0 µ11D1 · · · µm1D1
∑

i µi1Bi · · · 0
0 · · · 0 µ1nDn · · · µmnDn 0 · · · ∑

i µinBi


 .

(2)

Note that in −L (considered as nine subblocks) subblocks 13 and 31 are all 0; sub-
blocks 11, 22, 33 are in diagonal form; the other subblocks in general are full, rectan-
gular matrices. In (2), it is assumed that each σa > 0; for each j there is an i such that
µij > 0; for each i there is an a such that ρai > 0; and for each a there is an i such
that ρai > 0. Also, (1) and the assumptions τa, βi, δj > 0 imply Ta, Bi, Dj > 0.

Theorem 2 (Stability of a constant feasible state). The system (1) is stable at any
feasible constant trajectory.

Proof. It will suffice to show the real part of every eigenvalue of −L in (2) is
positive. In the matrix −L all entries are nonnegative. For each column, we can
compare the sum of off-diagonal entries with the diagonal. The diagonal entry is
greater for the columns intersecting subblock 11 and equal for the rest. According
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to the column version of Gershgorin’s theorem [5] all the eigenvalues of −L are in
certain Gershgorin disks in the complex plane. The centers of the Gershgorin disks
are on the real axis and have as centers the diagonal entries of −L. The radii of
the discs for −L are the off-diagonal column sums. It follows that all the points in the
union of all the disks lie in the positive half-plane with one possible exception: the
origin. The origin amounts to the possibility of 0 as an eigenvalue for −L. Therefore
the linear approximation matrix L would be stable, implying local stability of the
feasible state, provided 0 were provably not an eigenvalue of −L.

Let A be the diagonal matrix with diagonal entries (T1, . . . , Tx, B1, . . . , Bm,

D1, . . . , Dn). Define a symmetric matrix M = −LA; clearly 0 is an eigenvalue of
−L if and only if zero is an eigenvalue for M .

In hope of deriving a contradiction, suppose 0 is an eigenvalue of −L and so let z

be a nonzero (x + m + n)-vector that solves Mz = 0. Denote the first x components
of z by u = u1, . . . , ux , the next m components by v = v1, . . . , vm, and the last n

components by w = w1, . . . , wn.
Let us partition the relationships of u, v, w as follows. Case 1: One of the u

components of z is at least a large in magnitude as any other component of z. Case 2:
Failing the previous case, some component of v is greater in magnitude than any u

component and at least as large as the magnitude of any w component. Case 3: Failing
the previous cases, it must be that some component of w is greater in magnitude than
any component of u or v.

Case 1. Some component of u, namely, without loss of generality z1 = u1 > 0, is
at least as great in magnitude as any other entry in z. The number 1 row equation
of Mz = 0 yields T1

(
σ1 +∑

i ρ1iBi

)
u1 +∑

i T1ρ1iBivi = 0. Therefore, T1
(
σ1 +∑

i ρ1iBi

)
u1 = ∣∣∑

i T1ρ1iBivi

∣∣ where | · | denotes absolute value. Thus(
σ1 +

∑
i

ρ1iBi

)
u1 �

∑
i

ρ1iBi |vi |. (3)

Since every |vi | � u1 and since σ1 is positive, (3) is impossible to solve.

Case 2. Some component of v, namely, v1 > 0, is larger than the magnitude of any
component of u and at least as large as any component of w. The number x + 1 row
equation of Mz = 0 yields

∑
a ρa1TaB1ua +∑

a ρa1TaB1v1 +∑
j µ1jDjB1v1 +∑

j µ1jB1Djwj = 0. Therefore,
(∑

a ρa1TaB1 +∑
j µ1jDjB1

)
v1 = ∣∣∑

a ρa1Ta

B1ua +∑
j µ1jB1Djwj

∣∣. Thus


∑

a

ρa1Ta +
∑
j

µ1jDj


 v1 �

∑
a

ρa1Ta|ua| +
∑
j

µ1jDj |wj |. (4)

Since every |ua| < v1, at least one of {ρa1} is positive, and every |wj | � v1, it follows
that (4) is impossible to solve.
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Case 3. Some component of w, namely, w1 > 0, is larger than the magnitude
of any component of v. The number x + m + 1 row equation of Mz = 0 yields∑

i µi1D1Bivi +∑i µi1D1Biw1 = 0. Therefore
∑

i µi1D1Biw1 = ∣∣∑
i µi1D1Bivi

∣∣
and so∑

i

µi1Biw1 �
∑

i

µi1Bi |vi |. (5)

Since every |vi | < w1 and since at least one of {µi1} is positive, (5) is impossible to
solve. �

(A referee for this paper has kindly shown me that Theorem 2 could be proven in
an alternative manner using theorems pertaining to M-matrices and Z-matrices from
a classic of linear algebra [1]. In particular, if R is defined to be formed from the
identity matrix of the size of −L except having the subblock 22 containing only −1
on its diagonal, then it can be shown that R(−LT)R−1 is a Z-matrix. From further
results in the cited text, especially page 136, condition (L33), it can be shown that this
matrix is a nonsingular M-matrix, from which the conclusion of Theorem 2 follows.
I am indebted to the referee for an exceedingly careful review of the manuscript and
also for demonstrating the power of advanced theorems in the cited text.)

I conjecture that the inequalities in Theorem 1 are actually necessary and sufficient
for (1) to have a constant, unique, feasible, global attactor trajectory. Needed is some
kind of global Lyapunov-like analysis, but that does not seem to be available from
routine thinking, at least by me. The description of additional nonlinear systems with
global, near-qualitative stability would seem to be a worthy mathematical goal.

The biological relevance of Theorems 1 and 2 is the following. First, it is important
to realize that (1) in conformance with the above inequalities does not include protein
dynamics or feedback; rather, such a model (1) is a stable component of a complete
system. Each target mRNA Ta is spontaneously removed from the cell by some auto-
degradation mechanism at a rate proportional to Ta itself. Still, none of the m blocks
or n decoys has self-regulation. Self-regulation of B or D terms could be added if
biologically justified, but the system is already inherently and qualitatively stable. A
model using the above could be stable in reaction to perturbations such as when the
rate of export from a cell of a protein rapidly increases due to demand for it from
the rest of the organism. In summary, the natural stability of (1) in conformance with
the conditions would act to maintain target levels by automatic changes in block and
decoy levels. Since the numbers (m and n) of the blocks and decoys in the above
analysis are arbitrary, one gene with one mRNAs may actually be controlled by any
number of blocks; furthermore, that control might be tuned by any number of decoys.

The key point is that the block transcription rate depends upon the current target
mRNA level, not any past level of the protein product P . (In fact, using blocks with
transcript rates determined by sufficiently old P values could destabilize the model.)
This is much in contrast with conventional regulation of target transcription rates
by pathways involving cellular metabolites, pathways that might be slow, complex,
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and, due to time delays, inconsistent with stability in some cases. This might explain
why nature might use fast transcription of short blocking molecules to control steady,
pipelined, and seemingly rather wasteful production of long mRNAs.

The emphasis here has been on stability of feasible states, but in nature, the actual
emphasis might actually be on adjusting the sums of block or decoy production rates to
violate the conditions of Theorem 1 and thereby drive protein production to extremes
(full rate or nearly nothing). The interesting point is that the induction sums matter,
not necessarily the induction rate of any one block or decoy.

3. Implications for genetic control

The model above indicates that in certain stoichiometric networks targets, blocks,
and decoys can exhibit a kind of qualitative stability, at least in local linear approxima-
tions. In addition, analysis of the model type suggests properties of total induction rates
of blocks and decoys, as well as strategies for avoiding instability due to transcription
or translation time delays. Certain induction rates will drive protein production to a
stable, positive value; others will cause mRNA levels to drop, eventually eliminating
protein production as well; still others would drive blocks to low levels, maximizing
protein production.

Nature created the gene regulation system over billions of years with random
mutation and selection. It might be impossible to discern the existence or importance
of every significant control component because the system is embedded in a huge,
highly redundant network with apparently many obsolete, nonfunctional parts. But
through qualitative analysis inspired by the pioneering work of Professor van den
Driessche, scientists might someday be led to understand and treat the crucial control
components that are responsible for disease conditions. Her accomplishments and
insights in qualitative analysis of many biological systems and many other arenas
amount to a wonderful gift to humankind.
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