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ABSTRACT 

Given two random vectors Y(t) and Ytz) the first canonical correlation between them 
is defined as: sup{ Correlation(a?‘Y(‘), p’Yc2)) : a E ‘iR,, #3 E !B,]. However, in many 
practical situations (e.g. educational testing problems, neural networks), some natural 
restrictions on the coefficients cr and /J may arise which should be incorporated in this 
maximization procedure. The maximum correlation subject to such constraints is re- 
ferred to as the restricted canonical correlation. This problem is treated here under the 
nonnegativity restriction on (Y and p. The analysis is extended to more general form of 
inequality constraints, and also when the restrictions are present only on some of the 
coefficients. Restricted versions of some other related measures are also discussed. This 
includes principal component analysis and different modifications of canonical correla- 
tions. Anomalies with higher order correlation are also described. Some properties of 
restricted canonical correlation, including its bounds, are studied. 

1. INTRODUCTION 

The usual concept of correlation originated in the work of Sir Francis Galton 
[5]. It was formulated mathematically by Pearson [8,9]. Since then the concept of 
correlation has been generalized to include part, partial, and bipartial correlations. 
All these correlations are measures of dependence between two random variables. 
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As opposed to these three forms of correlation, multiple correlation measures 
dependence between a random variable, termed the dependent variable, and a 
random vector termed independent variables. This naturally extends to a study of 
dependence between two sets of random variables through canonical correlation 
(CC). Hotelling [6, 71 defined the CC as the maximum correlation between any 
two representative random variables of the two sets, where a representative of a 
set of random variables is simply any linear combination of its members. The idea 
of linear combination originated from the linearity of regression in multivariate 
normal distributions. 

However, in many practical situations, there may be some natural restrictions 
on these linear combinations. In such a case, the traditional CC may overemphasize 
the dependence between the two sets, and it would be more appropriate to consider 
the maximization problem with the representatives restricted accordingly. Such a 

measure of dependence can be termed the restricted canonical correlation (RCC). 
The primary focus of this study is on the algebraic solutions of the RCC. 

In Section 1.1, some of the needs of studying the RCC are discussed briefly. 
Various restrictions are of practical interest, and it seems unlikely that a unifying 
treatment of all such cases is feasible. Some of these different restrictions are 
described in Section 1.2; but explicit solutions have been obtained only for the 
restriction that the contributing coefficients of the original variables in their rep- 
resentative random variables be nonnegative. This is partly because one would 
expect the representative to be a convex linear combination of the original random 
variables, and since correlation is scale-invariant, this requires only nonnegativity 
of the coefficients. More importantly, this is a case where an exact analytic solu- 
tion exists. Also, many other interesting cases may be reduced to this one using 
suitable transformations; this is shown in Section 1.3. In general, this class of 
restrictions is referred to as the inequality type. Finally, the notion of minimum 
RCC is introduced in the Section 1.4. 

The calculation of the RCC is discussed in Section 2.1. In connection with its 
analytic solution, a relation between the RCC and the CCs of different subvectors 
is obtained in Section 2.2. In Section 2.3, several related topics are discussed 
briefly. The first of these is the partially restricted canonical correlation, which 
is the maximum correlation between linear combinations of two sets of random 
variables when only some of the coefficients are restricted while the others are not. 
Next, two approaches to restricted versions of higher order CCs are introduced. 
Canonical correlation analysis (CCA) is not the only area in multivariate analysis 
where these kinds of restrictions may be incorporated. The use of CC is partic- 
ularly attractive because of its broad generality. However, restricted versions of 
some other multivariate methods may also be useful. A brief discussion of re- 
stricted principal component versions of part and bipartial canonical correlations 
are included at the end of this subsection. In Section 3, some properties of RCC are 
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discussed. The last section consists of some general remarks on these problems. 

1.1. Whither RCC? 

If Y(l) and Yc2) are p- and q-variate random vectors, then the first CC between 

them is defined as 
:a; Correlation(cJY(‘), B’Yc2)). 

y(l) 

If y(2) 
[ 1 has covariance matrix C = [ $ :::I, then 

CC = max{cr’C& : cdC~*ct = 1 = B’C&, a E BP, @ E ERq}, 

where BP denotes the p-dimensional Euclidean space and (II = ((ai)) and /? = 
((&)) relate to the respective coefficients or weights of the original variables in their 
representative linear combinations, cr’Y (l) and fi’Yc2). In this section, it will be 
explained why in many practical situations it may be necessary to incorporate some 
restrictions on these coefficients. The problem of restricted canonical correlation 
was encountered first by the present authors [3] in studying simultaneous spike 
trains in neurophysiology. In the following, an attempt will be made to provide 
further motivation of RCC through some scholastic studies. 

Suppose from the scores of several students in different tests and homework 
assignments in two different subjects, one is interested in studying the relationship 
(correlation) of students’ performance in these two subjects. A simple approach 
is to give “reasonable” weights for the different examinations and assignments to 
compute the composite scores in each subject and then compute the correlation 
between the composite scores. In contrast to having such predetermined weights, 
a CC approach would look for those weights which maximize the correlation be- 
tween the composite scores. RCC fits somewhere in the middle. It also maximizes 
the correlation between possible composite scores; but instead of these weights 
being arbitrary as in the CC case, one may force them to be more reflective of 
their individual importance. For example, negative weights may be unrealistic 
and difficult to interpret. So the simple nonnegativity restriction on the weights 
seems rational. Another potential set of restrictions may be to impose an ordering 
of the weights. For instance, if there are three quizzes, a composite homework 
assignment score, two midterms, and a final in a subject, one may wish to impose 
the restriction 

0 5 aQ1 = aQ2 = @Q3 5 ~YH 5 C~‘MT~ = a~~2 5 CXF, (1) 

where aQi, o!H, (YMTj, and (YF represent the weights of the ith quiz, the homework 
assignment, the jth midterm, and the final respectively. Or, if the course has only 
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several tests, each of cumulative nature, then a reasonable restriction will be 

0 5 ctl 5 CQ 5 ‘.. 5 up. 

Both these restrictions can be reduced to the simple nonnegativity type, as shown 

later on. 

1.2. DifSerent Types of Useful Restrictions 

Some of the useful restrictions arising in CCA, as introduced earlier, are : 

(i) oi > 0, pj >_ 0, i = 1, . . . , p, j = 1, . . , q (nonnegativity restriction). 

(ii) 0 ( ck!t 5 . . . 5 up, 0 5 fit 5 f. . 5 /I4 (monotone restriction). 

(iii) 0 5 (2’1 = .. . = ctp, 5 up,+1 = . . . = ap1+p2 5 . . . 5 cxpl+...+Ps_l+l 
. . . = +,+...+pg, 0 I Bl = ... = 841 5 &+1 = ... = &,+q* I .‘. 5 

;I+...+q*-I+l = ... = &+...+q*. (This can be called the monotone layer 
restriction, because coefficients corresponding to variables which are in successive 
layers, are monotone, while layers account for ties.) 

(iv) In some situations, one may have partial restriction in the sense that addi- 
tional restrictions are present only on some of the coefficients. For example, in 
the case of monotone restriction, if the smallest coefficients (al and /?I) are not 
restricted to be nonnegative, this would come in handy after using the transfor- 
mation which is described in the sequel. The term partially restricted canonical 
correlation may be used to denote the maximal correlation between two linear 
combinations of original variables, under a set of restrictions on some of the co- 
efficients while the remaining ones may vary freely. The difference between this 
and the restrictedpartial canonical correlation may be noted here: the latter is the 
usual RCC obtained from the residual covariance matrix of two sets of variables 

after the linear effect of the third set has been removed. The calculation of PRCC 
is discussed also in Section 2. 

(v) Professor Ley of INRA-Laboratoire de Biometrie, France, has encountered 
problems in genetic population dynamics where the first few coefficients in two 
groups should be the same, i.e., 

ar = I% for 1 5 r 5 PO, where po c min(p, q). 

It is conceivable that there can be other types of restrictions. For example: 

(vi) Some coefficients are preassigned and are not flexible, i.e., 

ctr = a,” for 1 5 r _( pl < p, /%=S,” for15riqi <q, 

where @‘s and ,$“s are fixed numbers. 
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(vii) The ratios of the first few coefficients are equal in the two groups, i.e., 

(2’1 : ci2 : . . : am = /31 : 82 : . . . : &), 

where pu -C min(p, 4). A similar type of restriction is 

CXi : /3i = constant for 1irFpn. 

1.3. Restrictions Which Can Be Reduced to Nonnegativity Type 

Restrictions (ii) and (iii), can be reduced to the problem with nonnegativity 
restrictions (NNR) by using a transformation, which is discussed here. 

First consider the monotone restriction (ii). Suppose 

p* = sup{a’C*2/9 : cd&la = 1 = #k&B; 

0 5 011 5 . . . ( cYp, 0 5 p1 5 . . . 5 /!I,). 

Define 
tit =oTt, s”l = Bl, 

072 = a2 -cdl, 62 = 82 - Bl, 

u-p = ap - cYp - , ) B;I =I%? -Bq-1 

or, equivalently, 

ot = 61, Bl = I%, 

cr2=cT2++1, 82 = 82 + Bl , 

up =cfp+..-+cr”1, Bq = /%q +-+j%. 

So (Y = LP& and j3 = Lyg, where L, is a r x r lower triangular matrix with 
(i, j)th entries 1 for i > j. Thus 

where 512 = LbIZt2Lq, et, = LbCttL,, 522 = LbCzzL,. This reduces the 

problem to one with NNR. Note that the (i, j)th element of g:kl is nothing but the 
sum of all elements of Ckl except for those belonging to first i - 1 rows and j - 1 
columns, i.e., 

&kl(k j) = 2 2 okl(m, n), k, 1 = 1,2. 
m=in=j 
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Next consider the monotone layer restriction (iii), which is in fact a more 
general form of (ii). The transformation used in (ii) reduces this problem also to 
the one with nonnegativity restriction. Now one needs to work with the g x h 
covariance matrix 

e=(ij;; ij:;), 

where the (i, j)th element of g:kl is 

( 
i-l j-l 

Mi, j> = kkl l+~PtJ+&t 

t=l t=l ) 

1.4. Minimum Restricted Canonical Correlation 

The traditional CC is always nonnegative. This is because if Correlation 
(cry, j?Z) = p < 0 then Correlation(-czrY, BZ) = -p > 0. However, since 
--a! may not satisfy the restriction in a given problem, this is not true for RCC. In 
fact, in a restricted study, it may be sensible to consider the corresponding min- 
imization problem rather than the maximization one. Consider, for example, a 
quasiintraclass correlation model where the covariance matrices are given by 

Cl2 = PJ, xq, Cl1 = PlJ, x p + (l-P1)&, x22 = P2Jq x q + (1 -P2Y, 9 

where II, denotes the p x p identity matrix and JI, X 4, the p x q matrix consisting 
of all ones. Let ~1, p2 > 0, and p < 0. Then in restricted CCA with (Y, /I 
nonnegative, the minimum RCC and the usual CC are related functionally. 

More generally, such a situation arises if all elements of Et2 are negative. 
However, the theory and calculation for finding the minimum RCC (the solution 
to the minimization problem), as well as its properties (sampling distribution), are 
very similar to those for the maximum RCC. Hence for most part of this work, 
only the maximum RCC will be considered. 

2. EVALUATION OF RCC UNDER NNR, AND RELATED TOPICS 

2.1. Incorporation of the KTL-Point Formula 

In this section, the goal is to discuss the algebraic solution for the RCC when 
the contributing coordinates are restricted to be nonnegative. Note that 

RCC = sup{o’E12/9 : CZ’C,~CZ = 1 = #?&/!I, a! E %;, /? E %;}. (3) 
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wherea!=(at,...,a,,)‘, B=(B1,...,Bs)‘,and~~={x=((Xi>)E~~:xiL 
0 Vi=l,..., t}. Equation (3) can also be written as 

x’c*x 

x’c;px’q2x 
:Xi>O,i=l,..., 1, 

I 

where 

A related problem is 
sup{h(x) : x E gt~}, 

(4) 

0 

x22 I. 
(5) 

where 0’8: = {x E !J$ : xi > 0). This corresponds to the RCC problem with 

strict positivity restriction. 

LEMMA 1. A maximum in the problem (4) always exists. 

Proof Let y” = sup x E %+ h(x). Since h (.) in scale-invariant, one also has 

y” = sup, cU; h(x), where L$ = {X E !JIl 1 0 5 Xi 5 1). SO 3{X,} E Ll;t 

such that h(xn) + y”. Since Ur+ is bounded, there exists a subsequence {n’} 

and x1 E U,+ (since Uj’ is closed ) s.t. x,1 + x1. Hence, by continuity of 

h, h(x’) = lim,! -, o. h(x,f) = lim, + o. h(xn) = y”. W 

LEMMA 2. A maximum in the problem (5) may not exists; but if it does, then 

it is the same as the maximum in (3). 

Proo$ The first part is true because 0%: is a open set. The second conclusion 

follows because 0%: is a dense subset of c”lf and h is continuous. 
W 

LEMMA 3. The RCC or the maximum (supremum) in (3) must satisfy 

c&I - pzllcz + A(P) = 0, 

c21cX - p&/Y + k(q) = 0; (6) 

cfi 2 0, i = l,...,p, fij 20, j = l,...,q; (7) 

4 2 09 i = l,...,n+4; (8) 

AiCZi = 0 = h,+ j@j, i = l,...,p, j= l,...,q; (9) 
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(Y’c1p = 1 = /5’&/3, (10) 

where p = RCC, (k(p))’ = (Al, . . . , A,,), and (h(4))’ = (A,+ 1, . . . , A,) are the 
usual slucklsurplus variables. 

Proo$ To solve (3), the Kuhn-Tucker Lagrangian theory is used. This states 
that the optimal solution of the problem 

Maximizef(x) subjectto gi(x)lbi, i=l,...,m,andxE& 

must satisfy 

Vf(x) - 2 li Vgi (X) = 0, (11) 

gi(x> L bit i = l,...,m, (12) 

hi 2 07 i = 1,. . . ,112, (13) 

&[gi(x)-bi] ~0, i = 1 ,...,m. (14) 

This fits exactly into solving for (3) with 

f(x) = x’x*x, 
n=E =p+q, 

m=l+4, 

gi (X) = X’ ‘3 i = l,...,n, 

&+1(X) = x’qp = -gn+2wt 

gnt3w = X’Q = -_gn+4w* 

bi = 0, i = l,...,n, 

b,,+l = b,,+j = 1 = -b,,+z = -b,t+.+ 

Here, 

Vgi(X)=(?,.;.,9,-1,0 ,..., 0), i=l,..., n; 
C12B 

Vf(x) = c21a! ; 
( > 

i-l 

2z11a 
Vgn+l(x) = 0 

( > 
= --vgn+2w; 

0 
Vg,+3(x) = 2x228 = -Vgn+4W, 

( > 
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so that the optimum solution to (3) must satisfy 

x12/9 + 2(L+2 - h,+ 1)Cllcr + A(P) = 0, (1% 

c2la + 2@,,+4 - &+3)x228 + A”) = 0, (16) 

and the side restrictions (7) through (10). 
Now (9) implies that cz’h(P) = 0 = /l’h(q). U sing this and (lo), one gets from 

premultiplying (15) and (16) by a’ and ,8’ respectively 

2@n+2 - bz+l) = 2&+4 - &+3) = -a’&2/9 = -p, 

where p stands for the RCC. Substituting this in (15) and (16), it follows that the 
optimal solution to (3) has to satisfy (6), with the additional restrictions as given. 

n 

LEMMA 4. If the maximum for (5) exists, then it must satisfy 

( -PC11 Cl2 a! 

)( ) 

= 0. 
x21 -PC12 B 

(17) 

Proo$ Since the maximum in (5) exists, by Lemma 2, it must satisfy (6). 
Further, since in this case ai > 0, Bj > OV i, j, one obtains from (9) that hi = 
OVi = l,..., n, i.e., h(p) = 0 and k(q) = 0. Hence, the maximum RCC (if it 
exists), under the strict positivity restriction on the coefficients, must satisfy 

El28 - P)=llU = 0, 

x21a - PC22B = 0 

or, equivalently, (17). It should be also noted that this is the same equation as in 
the case of the usual CC. n 

Some notation is introduced in the following for convenience. Let p and q be 
fixed integers as previously. 

LetNk={1,2,... , k) for k any positive integer. 

Wk = {a : 0 # a 5 I&, with the elements in a written in natural order}. 

/al = cardinality of a. 

For a p-component vector X, and a E Wp, let aX stand for the [al- component 
vector consisting of those components of X whose indices belong to a. Similarly, 
for p x q matrix S, a E Wp, b E Wq, let a : bs represent the Ial x lb1 submatrix 
of S consisting of those rows whose indices are in a and those columns whose 
indices are in b. So if 

x = (Xl, . . . , X,)‘, S = ((sij>), a = (il,. . , it), 
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andb=(jl,...,jk), 

then 

ax=(x), azbs=[I;;; 1-m ::,:I. 
Throughout this work, these submatrices will be referred to as “proper” subma- 

trices, although this is more restrictive than the traditional use of the terminology. 
Clearly, there are (2P - 1) x (2Q - 1) = PQ such “proper” submatrices of S; 
whereP=2P-landQ=24-1. 

2.2. A Characterization of the RCC 

First note that 

RCC = sup Correlation(cr’Y(‘), B’Yc2)) 
crGs$ 

BE%,+ 

[here sup can be replaced by maxl 

= max sup 
acwP ciE”m+ 

Correlation(cYAY(‘), BbYc2’) (18) 

bcvq ial 
BEDS+ 

lb1 

= max m*ax Correlation(czlkY(‘), $Yc2’). 
acw, aeD~;a, 

bgwq BE@+ 
lb1 

(19) 

Now the supremum in (18) may not be attained for all a and b and hence cannot 
be replaced by a maximum in general. However, when the supremum is not 

attained, then necessarily there exist subvectors 5 G a, 6 g b such that the 
supremum is attained for L and b, and this supremum is the same as that for a 

and b. Thus it is all right to replace the supremum in (18) by the m*ax in (19), 
which stands for the maximum when it exists, while ignoring the subgroup when 
it does not. When the maximum exists, then by Lemma 4 the maximal correlation 
p has to satisfy (17) with the coefficients satisfying (7) and (lo), where Xl 1, C 12, 
and x22 are respectively replaced by a : a Cl 1, a : bx 12, and b : b c22. So for all 
“proper” submatrices of C, one needs to check whether there exist coefficients 
[corresponding to maximal correlation p, obtained from (17)] which satisfy the 
side restrictions (7) and (10). It may be noted here that usually (7) is the more 
difficult condition to satisfy. However, if p is the single root of the equation (17), 
i.e., it is an eigenvalue of multiplicity 1 (which is often the case with the sample 
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covariance matrices), then this is easy to check. By (18), the RCC is the maximal 
such p [which has corresponding coefficients satisfying (7) and (lo)]. 

Since a solution of (17) has to be one (first or higher) of the canonical corre- 
lations, the following lemma evolves from the above discussion. 

LEMMA 5. If the set of squared CCs corresponding to 

is representedby setcc2(C11, X12, X22), then 

RCC2%, x12, x22) E u {setcc2(a 

a&v,, b&v, 

aElI t a : bxl2, b : bx22)). 

Equivalently, the squared RCC between Y(l) andYc2) is equal to one of the squared 
CCs between aY(‘) and bYc2) for some a E wp, b E !Vq. 

The proof follows from the above discussion. It is necessary to consider the 
squares of both RCC and CCs, because from (17), one can only solve for p2, not 
p. This does not cause any concern for CC (since it is always nonnegative); but in 
the case of RCC, one needs to look at the coefficients to decide whether it should 
be the positive or the negative root. It is simple to characterize the situations when 
this added precaution is not necessary. Clearly, it is not needed when RCC is 
nonnegative, or equivalently, when at least one element of C 12 is nonnegative. 

Although Lemma 5 gives a clear guideline for finding coefficients correspond- 
ing to the RCC, the process can be made simpler by judicious successive steps in 
the search procedure. This is especially the case if the conjecture “RCC is thejrst 
CC between some subvectors” holds true (note that by Lemma 5, RCC must be 
one of the CC’s between some subvectors). In such a case, a branch and bound 
principle of the following form should be implemented. The subvectors should be 
chosen in the following order: 

Step I: Y(l) and Yc2). 

Step II: All p - l-dimensional subvectors of Y(l) and Y(‘); and Y(l) and all 
q - l-dimensional subvectors of Y(*). 

Step III: All p - l-dimensional subvectors of Y(l) and all q - l-dimensional 
subvectors of Yc2). 

If at any step the canonical coefficients satisfy the NNR, then that leads to the 
RCC, and the search is stopped. If there are several of these within a step, then 
the one corresponding to the highest correlation gives the answer. 
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2.3. Related Topics 

2.3.1. Partially Restricted Canonical Correlation. At the beginning of this 
section, the calculation of RCC was done all the canonical coefficients are restricted 
to be nonnegative. In this section, attention is devoted to the analysis when only 
some of the coefficients have the NNR. This is useful in the case of some other 
inequality restrictions as well. One example of this would be a problem with 
the restriction czt 5 . . . 5 ap, B1 5 . . 5 &. As opposed to the monotone 
restriction in Section 1, it is not required that B1 > 0 or ~1 >_ 0 here. In this 
case, the following will come in handy because &l and ,!& (of Section 1) will be 
unrestricted in that case. 

After appropriate renumbering, any partially restricted problem (with NNR) 
can be transformed to the situation where the first p1 (2 0) coefficients of the first 
set and first q1 (2 0) coefficients of the second set are restricted to be nonnegative, 
while the remaining coefficients are unrestricted. Let p = p1 +p2 andq = q1 +q2. 
It can be shown, following exactly the same type of calculations as in (6), that the 
optimal PRCC and the coefficients, under the NNR, must satisfy 

J_(Pl) 

zz12p--pclla!+ () =09 ( > 
AhI) 

c21a-pc22p+ () =o. 
( > 

The calculation and argument proceed as in Sections 2.1 and 2.2; but instead of 

taking maximum over all “proper” subsets, now the maximum is over only those 
subsets which contain at least the last p2 indices for the first set and the last q2 
indices of the second set. More formally, 

PRCC = am~1 m$x Correlation(aAY, /$,Z>, 
P 

bcq’ 

(21) 

where %‘k = {a : &\I$ C: a c Nk}, and m*ax denotes the maximum (when it 
exists) over (Y, B satisfying 

(Iii > 0 Vi E a fl N,, and /9j >O Vj~bnN,,. 

From this, PRCC can be calculated using the same formulae as before. 
From (21) it is clear that if pl = 0 = 41, then PRCC reduces to the usual CC; 

while if p1 = p and q1 = q + p2 = 0 = 42, then one gets RCC. Thus, as one 
would expect, PRCC is a more general form of RCC and CC. 
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2.3.2. Higher Order RCC. In the traditional CCA, the higher order CCs 
play a very important role, especially when some of them are not negligible com- 
pared to the first CC. Naturally it is of interest to explore the extent to which the 
first RCC can be supplemented by its higher order analogues. Simple examples 
illustrate that a kth order RCC may not always exist (unlike the corresponding CC) 
even when p A q 2 k, and no general statement can be made about number of 
higher order RCCs. 

Evidently, one may or may not want to enforce the restriction that a canon- 
ical variable of a group of variables be orthogonal to the previous (lower order) 
canonical variables of the other group. It does not matter in the usual canonical 
analysis. However, there is a significant difference between the two approaches 
in the restricted case. The techniques described at the beginning of this section 
can be adopted to implement either approach. Unfortunately, they do not lead 
to explicit solutions under general circumstances in either of the two approaches, 
although simple solutions exist when some special conditions are met. The details 
of these are described in Das [2]. 

2.3.3. Restricted Principal Component. As opposed to canonical correla- 
tion, principal component analysis is an internal analysis. For example, to find the 
first principal component of a q-component random vector X we seek the normal- 
ized linear combination of components of X which has highest variance. That is, 
if C represents the covariance matrix of X, then the problem is to 

maximize /3’C#I subject to c @ = 1. 
j=l 

(22) 

It can be shown that the solution is the largest eigenvalue of C. The higher order 
principal components are defined as those with maximal variance subject to being 
orthogonal to the earlier components. It turns out that these maximal variances 
are also eigenvalues of Z. 

Similarly to the RCC, one can consider the restricted version of the problem 
(22). Next, the solution of the restricted principal component problem is discussed 
when the fij’s are restricted to be nonnegative. The solution is very similar to that 
for the corresponding RCC case. This is probably not very surprising, considering 
the fact that many people view canonical correlation theory as a generalization of 
principal component theory. 

According to the Kuhn-Tucker Lagrangian theory, the solution p to the re- 
stricted problem must satisfy 

A,j Bj = 0, j = l,...,q, 

(23) 

(24) 
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&f?jLl, /Vj >_O, j=l,...,q. (25) 
j=l 

Thus, following the same sequence of arguments as in the RCC, the maximal 
variance of the principal component is the largest eigenvalue of any “proper” 
submatrix of X which has a corresponding eigenvector satisfying (25). 

2.3.4. Restricted and Unrestricted Part, Partial, and Bipartial Canonical 
Correlations. Rao (1969) generalized the concept of the partial correlation co- 
efficient to the partial canonical correlation between two sets of variables Y(l) and 
Yc2) with respect to a third set of variables Y c3). This partial canonical correlation 
is defined as canonical correlation between Y (l) and Yc2), after the effect of Yc3) is 
removed from both of them. Essentially, this amounts to the change that in CCA, 

where 
Cij.3 = Cij - Ci3C3J1C3j. 

Timm and Carlson [ 1 l] extended this to part and bipartial canonical corre- 
lations. Both of these are natural extensions of (univariate) part and bipartial 
correlations and deal with conditional distributions. Unlike partial correlation, 
these are not symmetric measures between the two main variables. In the case 
of partial correlation, the effect of the third variable is removed from one of the 
principal variables, but not from the other. And in the case of bipartial correlation, 
the effect of the third variable is removed from one principal variable, while the 
effect of a fourth is removed from the other variable. 

The extensions to CC versions of these are entirely natural and predictable. In 
the case of partial canonical correlation, there are three groups of random variables, 
Y(l), Yc2), and Yc3), and one is interested in finding the CC between Y(l) and Y(*) 
after the effect of Yc3) is removed from Y (l). In bipartial canonical correlation, 
there is an additional group of variables Y c4), whose effect is removed from Yc2) 
before finding the canonical correlations. A detailed discussion of how to find 
these is given in Timm and Carlson (1976); but it again amounts to replacing C 
appropriately. For partial canonical correlation, the appropriate replacement is 

x11.3 x12.3 

x21.3 x22 ) 
in place of 

and for bipartial canonical correlation it is 

x11.3 52 

221 x22.4 ) 
in place of 

(27) 

(28) 
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where512 = ~t2-C13C331C32-C14~441C42+Ct3C331~34C441~42,whichis 

the covariance matrix between Y (l) -T(l) and Yc2) - ?c2), where P(l) is obtained 
by regressing Y(l) on Yt3), and ?c2) is obtained by regressing Yc2) on Y c4). 

Naturally, one can consider the restricted versions of all these types of CC. This 
means, as before, that there may be some additional restrictions of the canonical 
coefficients of Y(l) and Yc2). Since it has already been noted that the only differ- 
ence (from the usual CC) in the methodology for finding these is in the adjustments 
of the covariance matrix, it is clear that to find the restricted versions (with NNR) 
of partial or bipartial CCs, one only needs to make appropriate adjustments as in 
(26), (27), and (28), and then follow the usual steps as in usual RCC, as described 
in Sections 2.1 and 2.2. 

3. PROPERTIES OF RCC 

When p = q = 1, RCC clearly reduces to the usual product-moment correla- 
tion. It may be noted here that this is not quite the case with traditional CC, since 
if Correlation(X, Y) = p than CC(X, Y) = JpJ. Thus, in a way RCC is a more 
natural generalization of correlation than CC. 

3.1. Upper and Lower Bounds 

Here, for simplicity, C is taken as the correlation matrix. Also, denote the 
largest element of C 12 by ai” j,. 

LEMMA 6. 

oi,jo 5 RCC 5 CC. 

Proo$ The proof is trivial because maximum over a larger set is larger. 
n 

NOTE. Of course, it is clear that the upper bounds is valid for any form 
of restrictions. So also is the lower bound as long as coefficients of the type 

(0 )...) O,l,O ,..., 0) are allowed in the restrictions. 

Next, a brief study is done to explore when the bounds in Lemma 6 are attained. 
As usual, only the case with NNR is considered here. A matrix is called >_ (I) 0 
if all elements of the matrix are nonnegative (nonpositive). 

LEMMA 7. Ifeither 

(4 X12 5 Oar 
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(b) Cl1 2 0, X22 > 0, and oi,j, is the only positive element of X12, then the 
RCC attains the lower bound oi,j”. 

Pro05 

Correlation(a’Y, B’Z) = 
a’&zB 

JWG l~M’~22B) 
= (*> 

and the numerator If= t cy= I cri&cri~. So under (a), 

(*) 5 (E) X (&) X ai,j, (sinceai~~ iai,j,Vi, j) 

5 ai, jo 9 

since C oj 
( > 

and Ui”jo 5 0. TO prove the result under (b), it may be assumed, without loss of 
generality, that oio = 1 = fijo. Then 

(*I 5 
aio jo 

J(~‘&l~W~22B) 
[sinceaiy 5 Ofor (i, j) # (io, jo)] 

I oiojo (sinceoioj, 2 0 and o!Crto 2 c c$ > ai” = 1). 

W 

NOTE. It seems that if one element aio jo of Cl2 is sufficiently larger than 

the others (but C is still nonnegative definite), then RCC = oiojo. 

LEMMA 8. Suppose all interblock correlations are the same, say p (> 0), and 
all intrablock correlations are also the same, i.e., 

x12 = PYpxy, Cl1 =PlJpxp+(l-pl)np, 

x22 = P2Jq xq + (1 - p2)$. 

Then RCC = ppqab = CC, where 

1 1 
a= 

JPlP2 + (1 - PdP 
b= 

JP242 + UP2k. 

ProoJ: Simple calculation shows that the CC is ppqab and the canonical 

coefficients consist of equal weights a from the Yi(‘)‘s and b from the Yy)‘s. The 
rest follows by noting that both a and b are positive. n 
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NOTE 1. In this case min RCC = p. Similar results hold when p < 0. 

NOTE 2. This simple proof illustrates an important (albeit trivial) point re- 
garding finding RCC under any type of restrictions. That is, since the calculation 
of RCC is in general much more difficult than that of CC, it may be sensible to 
calculate the CC, and then check if the contributing coefficients satisfy the relevant 
restrictions. 

NOTE 3. Neither Lemma 7 nor Lemma 8 provides necessary conditions for 

the bounds in Lemma 6 to be attained. 

3.2. Invariance under Nonsingular Transformation 

CC remains unchanged under any nonsingular linear transformation, but RCC 
does not. This can be illustrated by the following example : 

EXAMPLE 1. Let p = 2 = q, and let Y(l) and Yc2) have the following covari- 
ante structure : 

x11 = 
1 0 

[ 1 0 1 
=X22 and X17,= [‘t _z.l] 

It is easy to verify that CC(Y(‘), Yc2)) = 0.4 = RCC(Y(‘), Yc2)). Now consider 

the effect of multiplying Y (l) by P and Yc2) by Q, where 

P = 112 = -Q. 

Since both P and Q are nonsingular, the CC between PYc2) and QYc2) remains 
the same as before. But the covariance matrix between them is --X12, and the 
RCC is only 0.1. 

Next, a closer look is taken at the characteristics of the matrices P and Q 
which keep the RCC invariant in the sense discussed above. Mathematically speak- 
ing, the goal is to find characteristics of P and Q such that RCC(Y(‘), Yc2)) = 
RCC(PY(*), QYc2)). The only obvious way to ensure this is to have a P such 
that 

{o > O} * {P’a 2 O} (29) 

(and a similar Q). Clearly (29) holds if the elements of P and P-’ are all non- 
negative. 

It may be noted that the RCC remains unchanged under multiplication by a 
permutation matrix. This is, of course, obvious even without the observation in the 
previous paragraph. Because the effect of multiplying the random variables by a 
permutation matrix is the same as that of relabeling, it does not change the problem 
or the solution. Also, since an orthonormal matrix P with all nonnegative elements 
(+ P-’ = P’ with all nonnegative elements) has to be a permutation matrix, it 
is the only type of orthonormal matrix which always keeps RCC invariant. 
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4. CONCLUDING REMARKS 

It may be somewhat surprising that the RCC (under nonnegativity restrictions) 
can be obtained from the unrestricted CCs of different subvectors as described 
in Section 2.2. However, it is intuitively clear why the subvectors appear in the 
picture: the only way the maximum in (5) may not be attained is if some of the 
optimal coefficients related to the supremum are zeros. 

It has been noted that a general inequality type restriction can be transformed 
into NNR and hence can be solved as indicated in Section 2. However, there 

remain many other types of restrictions [viz., (v) and (vii) of Section l] where 
it was not possible to find an exact analytic solution. The problem is to tackle 
the extraneous slack/surplus variables (similar to what has been experienced while 
considering higher order RCCs). Thus in many circumstances, it will be necessary 
to settle for approximate solutions. In such a case, numerical analysis and/or a 
neural network approach may be successful. It may be possible to find a unifying 
(over all possible restrictions) treatment for solving the RCC problem in those 
approaches, and further research is needed to achieve this goal. Yanai and Takane 
[ 121 took a different approach to the RCC problem with linear constraints. 

One principal motivation for the general study of the RCC is the interpretability 
of the coefficients. In the usual CCA, often one can end up with very different 
sets of coefficients which give (at least approximately) maximal correlations. This 
is much less likely to happen with the RCC. Also, if it does, it should cause no 
concern to the experimenter because all the candidate coefficients must satisfy the 
“reasonable” constraints that have been built into the problem. 

The sample RCC is obtained when, in the calculation of Section 2.1, X is 
replaced by the sample covariance matrix S,. The statistical properties of this 
sample RCC have been explored in Das and Sen [4]. 

The authors are grateful to the referee for his very careful reading of the 
manuscript and for pointing out the usefulness of a branch and bound algorithm 

infinding optimal coeficients. 
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