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Abstract. We consider a tensor product V (b) = ⊗n
i=1

CN (bi) of the Yangian Y (glN ) eval-
uation vector representations. We consider the action of the commutative Bethe subalgebra
Bq ⊂ Y (glN ) on a glN -weight subspace V (b)λ ⊂ V (b) of weight λ. Here the Bethe algebra
depends on the parameters q = (q1, . . . , qN ). We identify the Bq-module V (b)λ with the
regular representation of the algebra of functions on a fiber of a suitable discrete Wron-
ski map. If q = (1, . . . , 1), we study the action of Bq=1 on a space V (b)singλ of singular

vectors of a certain weight. Again, we identify the Bq=1-module V (b)singλ with the regular
representation of the algebra of functions on a fiber of another suitable discrete Wronski
map.

These results we announced earlier in relation with a description of the quantum equi-
variant cohomology of the cotangent bundle of a partial flag variety and a description of
commutative subalgebras of the group algebra of a symmetric group.

1. Introduction

A Bethe algebra of a quantum integrable model is a commutative algebra of linear op-
erators (Hamiltonians) acting on the vector space of states of the model. An interesting
problem is to describe the Bethe algebra as the algebra of functions on a suitable scheme.
Such a description can be considered as an instance of the geometric Langlands correspon-
dence, see for example [MTV4]. The glN XXX model is an example of a quantum integrable
model. The Bethe algebra Bq of the XXX model is a commutative subalgebra of the Yan-
gian Y (glN). The algebra Bq depends on the parameters q = (q1, . . . , qN) ∈ CN . Having a
Y (glN)-moduleM , one obtains the commutative subalgebra Bq(M) ⊂ End(M) as the image
of Bq. The geometric interpretation of the algebra Bq(M) as the algebra of functions on a
scheme leads to interesting objects, see for example, [GRTV].

In this paper, we consider (among other Yangian modules) a tensor product V (b) =
⊗n

i=1C
N(bi) of the Yangian Y (glN) evaluation vector representations. We consider the action

of the Bethe subalgebra Bq ⊂ Y (glN) on a glN -weight subspace V (b)λ ⊂ V (b) of weight λ.
We identify the Bq-module V (b)λ with the regular representation of the algebra of functions
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on a fiber of a suitable discrete Wronski map. If q = (1, . . . , 1), we study the action of
Bq=1 on a space V (b)singλ of singular vectors of a certain weight. Again, we identify the

Bq=1-module V (b)singλ with the regular representation of the algebra of functions on a fiber
of another suitable discrete Wronski map.

These results are parallel to the analogous results of [MTV3, MTV4], where we study the
corresponding glN [t]-modules instead of the Yangian Y (glN)-modules.

We used the results of this paper earlier in [GRTV, Theorems 6.3-6.5] in relation with
a description of the quantum equivariant cohomology of the cotangent bundle of a partial
flag variety and in [MTV6, Theorem 7.3] in relation with a description of commutative
subalgebras of the group algebra of a symmetric group. More details are given in remarks
after Theorem 5.2 and at the end of Section 6.

In Section 2, we consider the space V = (CN)⊗n ⊗ C[z1, . . . , zn], an action on V of the
symmetric group Sn, the subspace VS ⊂ V of the Sn-invariants, the glN weight subspaces
(VS)λ ⊂ VS and the subspaces (VS)singλ ⊂ (VS)λ of singular vectors.

In Section 3, we introduce an action of the Yangian Y (glN) on VS. In Section 4, we
introduce Bethe subalgebras Bq ⊂ Y (glN). The induced Bq-action on VS preserves the weight
subspaces (VS)λ. If q = (1, . . . , 1), then the Bq=1-action on VS preserves the subspaces
(VS)singλ of singular vectors.

In Section 5, we introduce a discrete Wronski map on collections of quasi-exponentials.
Theorem 5.2 describes the Bq-module (VS)λ for q with distinct coordinates in terms of the
discrete Wronski map. In Section 6 we define a discrete Wronski map on collections of poly-
nomials. Theorem 6.3 describes the Bq=1-module (VS)singλ in terms of the second Wronski
map. Corollaries 5.4 and 6.4 give an application of Theorems 5.2 and 6.3 to a description of
the Bethe algebra action on a tensor product of evaluation vector representations.

Proofs of the theorems are based of the Bethe ansatz. We prove the corresponding Bethe
ansatz statements in Sections 7 and 8, and prove Theorems 5.2 and 6.3 in Section 9.

In Section 10, we consider the Sn-skew-invariant part VA ⊂ V and the space 1
D
VA of Sn-

invariant rational functions. Theorems 10.6 and 10.8 describe the Bq-module ( 1
D
VA)λ for

q with distinct coordinates and the Bq=1-module ( 1
D
VA)singλ in terms of the corresponding

Wronski maps.

2. Space VS

2.1. Lie algebra glN . Let ei,j, i, j = 1, . . . , N , be the standard generators of the Lie algebra
glN satisfying the relations [ei,j , ek,l] = δj,kei,l−δi,lek,j. We denote by h ⊂ glN the subalgebra
generated by ei,i, i = 1, . . . , N . For a Lie algebra g , we denote by U(g) the universal
enveloping algebra of g.

A vector v of a glN -module M has weight λ = (λ1, . . . , λN) ∈ CN if ei,i v = λi v for i = 1,
. . . , N . A vector v is singular if ei,jv = 0 for 1 6 i < j 6 N .

We denote by Mλ the subspace of M of weight λ, by M sing the subspace of M of all
singular vectors and by M sing

λ the subspace of M of all singular vectors of weight λ.

A sequence of integers λ = (λ1, . . . , λN) such that λ1 > λ2 > · · · > λN > 0 is called a

partition with at most N parts. Set |λ| =
∑N

i=1 λi. We say that λ is a partition of |λ|.
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Let CN be the standard vector representation of glN with basis v1, . . . , vN such that ei,jvk =
δj,kvi for all i, j, k. A tensor power V = (CN)⊗n of the vector representation has a basis
given by the vectors vi1⊗ . . .⊗ vin , where ij ∈ {1, . . . , N}. Every such sequence (i1, . . . , in)
defines a decomposition I = (I1, . . . , IN) of {1, . . . , n} into disjoint subsets I1, . . . , IN , where
Ij = {k | ik = j}. We denote the basis vector vi1⊗ . . .⊗ vin by vI .

Let
V =

⊕

λ∈ZN
>0, |λ|=n

Vλ

be the weight decomposition. Denote Iλ the set of all indices I with |Ij| = λj, j = 1, . . .N .
The vectors {vI | I ∈ Iλ} form a basis of Vλ.

2.2. Space VS. Let V be the space of polynomials in z = (z1, . . . , zn) with coefficients in
V = (CN)⊗n:

V = V ⊗C C[z1, . . . , zn] .

We embed the space V into V by sending v ∈ V to v ⊗ 1 ∈ V.
Consider the grading on C[z1, . . . , zn], deg zi = 1 for i = 1, . . . , n. We define the degree

of elements of V by the rule deg(v ⊗ p) = deg p. We consider the increasing filtration
F0V ⊂ F1V ⊂ · · · ⊂ V whose k-th subspace consists of elements of degree 6 k. The filtration
on V induces a natural filtration on End(V).

Let P (i,j) be the permutation of the i-th and j-th factors of V = (CN)⊗n. Let s1, . . . ,
sn−1 ∈ Sn be the elementary transpositions. We define an Sn-action on V -valued functions
of z1, . . . , zn by the formula:

si : f(z1, . . . , zn) 7→
(zi − zi+1)P

(i,i+1) − 1

zi − zi+1

f(z1, . . . , zi+1, zi, . . . , zn) +(2.1)

+
1

zi − zi+1

f(z1, . . . , zi, zi+1, . . . , zn) .

These formulae induce an Sn-action on V. The Sn-action preserves the filtration: for any k
we have Sn × FkV → FkV. We denote by VS the subspace of Sn-invariants in V.

The group Sn acts on the algebra C[z1, . . . , zn] by permuting the variables. Let σi(z),
i = 1, . . . , n, be the s-th elementary symmetric polynomial in z1, . . . , zn. The algebra of
symmetric polynomials C[z1, . . . , zn]

S is a free polynomial algebra with generators σ1(z),
. . . , σn(z).

Lemma 2.1. The space VS is a free C[z1, . . . , zn]
S-module of rank Nn.

Proof. The lemma follows from Lemma 2.10 in [GRTV]. �

The Lie algebra glN naturally acts on V preserving the grading and commuting with
the Sn-action on V. Therefore, VS is a filtered glN -module. We consider the glN -weight
decomposition

VS =
⊕

λ∈ZN
>0

|λ|=n

(VS)λ ,

as well as the subspaces of singular vectors (VS)singλ ⊂ (VS)λ. All of these are filtered free
C[z1, . . . , zn]

S-modules.
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Let M be a Z>0-filtered space with finite-dimensional graded components FkM/Fk−1M .
We call the formal power series in a variable t,

chM(t) =

∞
∑

k=0

(dimFkM/Fk−1M) tk ,

the graded character of M . We set (t)a =
∏a

j=1(1− tj) .

Lemma 2.2. For λ ∈ ZN
>0, |λ| = n, we have

(2.2) ch (VS)λ(t) =

N
∏

i=1

1

(t)λi

.

For a partition λ of n with at most N parts, we have

(2.3) ch (VS)sing
λ

(t) =

∏

16i<j6N (1− tλi−λj+j−i)
∏N

i=1 (t)λi+N−i

t
∑N

i=1 (i−1)λi .

Proof. The Sn-action on the graded components FkVλ/Fk−1Vλ and FkV
sing
λ /Fk−1V

sing
λ co-

incides with the Sn-action considered in [MTV2] and [MTV3]. Formula (2.2) follows from
[MTV3, Lemma 2.12]. Formula (2.3) follows from [MTV2, Formula 5.3] and [MTV2, Lemma
2.2]. �

Given a = (a1, . . . , an) ∈ Cn, denote by Ia ⊂ C[z1, . . . , zn]
S the ideal generated by the

polynomials σi(z)− ai, i = 1, . . . , n. For any a, the quotient VS/IaV
S is a complex vector

space of dimension Nn by Lemma 2.1.

3. Yangian modules

3.1. Yangian Y (glN). The Yangian Y (glN ) is the unital associative algebra with generators

T
{s}
i,j for i, j = 1, . . . , N , s ∈ Z>0, subject to relations

(3.1) (u− v)
[

Ti,j(u) , Tk,l(v)
]

= Tk,j(v)Ti,l(u)− Tk,j(u)Ti,l(v) , i, j, k, l = 1, . . . , N ,

where
Ti,j(u) = δi,j +

∞
∑

s=1

T
{s}
i,j u

−s .

The Yangian Y (glN) is a Hopf algebra with the coproduct ∆ : Y (glN) → Y (glN )⊗ Y (glN)
given by

∆ : Ti,j(u) 7→
N
∑

k=1

Tk,j(u)⊗ Ti,k(u)

for i, j = 1, . . . , N . The Yangian Y (glN) contains U(glN ) as a Hopf subalgebra, the em-

bedding given by ei,j 7→ T
{1}
j,i .

The Yangian Y (glN ) has the degree function such that deg T
{s}
i,j = s− 1 for any i, j = 1,

. . . , N , s = 1, 2, . . .. The Yangian Y (glN) is a filtered algebra with the increasing filtration
F0Y (glN ) ⊂ F1Y (glN) ⊂ · · · ⊂ Y (glN ), where FsY (glN) consists of elements of degree 6 s.
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There is a one-parameter family of automorphisms

ρb : Y (glN ) → Y (glN), Ti,j(u) 7→ Ti,j(u− b) ,

where b ∈ C and (u − b)−1 in the right-hand side has to be expanded as a power series in
u−1.

The evaluation homomorphism ǫ : Y (glN) → U(glN) is defined by the rule: T
{1}
i,j 7→ ej,i

for all i, j, and T
{s}
i,j 7→ 0 for all i, j and all s > 1.

For a glN -module M and b ∈ C, we denote by M(b) the Y (glN )-module induced from M
by the homomorphism ǫ · ρb. We call it the evaluation module with the evaluation point b.

Recall that we consider CN as the glN -module with highest weight (1, 0, . . . , 0). For any
b = (b1, . . . , bn) ∈ Cn, we obtain the Y (glN)-module

V (b) = C
N(b1)⊗ . . .⊗ C

N(bn) .

3.2. Yangian module VS. Consider CN⊗V = CN ⊗ (CN)⊗n, where the factors are labeled
by 0, 1, . . . , n. Set

L(u) = (u− zn + P (0,n)) . . . (u− z1 + P (0,1)) .

This is a polynomial in u, z1, . . . , zn with values in End(CN⊗ V ). We consider L(u) as an
N×N matrix with End(V )⊗ C[u, z1, . . . , zn] -valued entries Li,j(u), i, j = 1, . . . , N .

Lemma 3.1. The assignment

(3.2) φ : Ti,j(u) 7→ Li,j(u)

n
∏

a=1

(u− za)
−1

defines the Y (glN)-module structure on V = (CN)⊗n ⊗ C[z1, . . . , zn]. We consider the right-
hand side of (3.2) as a series in u−1 with coefficients in End(V )⊗ C[z1, . . . , zn] .

Proof. The Yang-Baxter equation

(u− v + hP (1,2))(u+ hP (1,3))(v + hP (2,3)) =(3.3)

= (v + hP (2,3))(u+ hP (1,3))(u− v + hP (1,2)) .

implies that

(u− v + P (1,2))L(1)(u)L(2)(v) = L(2)(v)L(1)(u) (u− v + P (1,2)) ,

which means

(u− v)
[

Li,j(u) , Lk,l(v)
]

= Lk,j(v)Li,l(u)− Lk,j(u)Li,l(v)

for all i, j, k, l = 1, . . . , N . Comparing the last formula with the defining relations (3.1) for
the Yangian Y (glN) completes the proof. �

The subalgebra U(glN ) ⊂ Y (glN) acts on V in the standard way: an element x ∈ glN acts
as x(1) + . . .+ x(n).

Lemma 3.2. The Y (glN)-action on V is filtered: for any k, s, we have FsY (glN)× FkV →
Fs+kV. �
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Lemma 3.3. The Y (glN )-action φ on V commutes with the Sn-action (2.1) and with mul-
tiplication by the elements of C[z1, . . . , zn].

Proof. The first part follows from the Yang-Baxter equation (3.3), and the second part is
clear. �

By Lemma 3.3, the action φ makes the space VS into a filtered Y (glN)-module. For any
a = (a1, . . . , an) ∈ CN , the subspace IaV

S is a Y (glN )-submodule.

Lemma 3.4 ([GRTV, Proposition 4.6]). The Y (glN)-module VS is generated by the vector
v⊗n
1 = v1⊗ . . .⊗ v1. �

For a = (a1, . . . , an) ∈ CN , introduce complex numbers b1, . . . , bn by the relation

(3.4)
n
∏

s=1

(u− bs) = un +
n

∑

j=1

(−1)j aj u
n−j.

The numbers are defined up to a permutation.

Proposition 3.5. Assume that the numbers b1, . . . , bn are ordered such that bi 6= bj + 1 for
i > j. Then the Y (glN)-module VS/IaV

S is isomorphic to V (b) = C
N(b1) ⊗ . . . ⊗ C

N(bn),
the tensor product of evaluation Y (glN)-modules.

Proof. Consider the map ϕ : VS → V (b) that sends every element of VS to its value at
the point z = (b1, . . . , bn) . This map is a homomorphism of Y (glN)-modules and factors
through the canonical projection ϑ : VS → VS/IaV

S. Since ϑ is also a homomorphism of
Y (glN)-modules, this defines a homomorphism of Y (glN)-modules ψ : VS/IaV

S→ V (b).

Under the assumption that bi 6= bj + 1 for i > j , the Y (glN )-module V (b) is generated
by the vector v⊗n

1 , see [NT2, Proposition 3.1]. Therefore, the map ψ is surjective because
ψ(v⊗n

1 ) = v⊗n
1 , and since dim VS/IaV

S = Nn = dim V (b), the map ψ is an isomorphism of
Y (glN)-modules. �

Proposition 3.6. The Y (glN)-module V (b) is irreducible if and only if bi 6= bj + 1 for all
i 6= j.

Proof. The statement follows, for instance, from [NT2, Theorem 3.4]. �

4. Bethe subalgebras

4.1. Bethe subalgebras. For k = 1, . . . , N , i = {1 6 i1 < · · · < ik 6 N}, j = {1 6 j1 <
· · · < jk 6 N}, define

Mi,j(u) =
∑

σ∈Sk

(−1)σ Ti1,jσ(1)
(u) . . . Tik ,jσ(k)

(u− k + 1) .

For i = {1, . . . , N}, the series Mi,i(u) is called the quantum determinant and denoted by
qdet T (u). Its coefficients generate the center of the Yangian Y (glN).
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For q = (q1, . . . , qN) ∈ (C∗)N and k = 1, . . . , N , we define

(4.1) Bq

k (u) =
∑

i={16i1<···<ik6N}

qi1 . . . qikMi,i(u) = σk(q1, . . . , qN) +

∞
∑

s=1

Bq

k,su
−s ,

where σk is the k-th elementary symmetric function and Bq

k,s ∈ Y (glN). In particular,

Bq
N(u) = q1 . . . qNMi,i(u),

where i = {1, . . . , N}. The generating series Bq

k (u), k = 1, . . . , N , are called the transfer-
matrices.

Lemma 4.1. We have Bq

k,s ∈ FsY (glN) for all k, s. �

Let Bq⊂ Y (glN ) be the unital subalgebra generated by the elements Bq

k,s , k = 1, . . . , N ,
s > 0. The subalgebra Bq is called a Bethe subalgebra of Y (glN). The subalgebra Bq does
not change if all q1, . . . , qN are multiplied by the same number. If q = (1, . . . , 1), then the
corresponding Bethe subalgebra will be denoted by Bq=1.

Theorem 4.2 ([KS]). The subalgebra Bq is commutative and commutes with the subalgebra
U(h) ⊂ Y (glN). The subalgebra Bq=1 commutes with the subalgebra U(glN) ⊂ Y (glN). �

As a subalgebra of Y (glN), the Bethe algebra Bq acts on any Y (glN )-moduleM . Since Bq

commutes with U(h), it preserves the weight subspaces Mλ. The subalgebra Bq=1 preserves
the singular weight subspaces M sing

λ .

If L ⊂ M is a Bq-invariant subspace, then the image of Bq in End(L) will be called the
Bethe algebra of L and denoted by Bq(L).

We will study the action of Bq on the weight subspaces (VS)λ and the action of Bq=1 on
the singular weight subspaces (VS)singλ . The image of Bq

k,s in End((VS)λ) will be denoted by

Bq,λ
k,s .

Lemma 4.3. The generating series Bq
N (u) acts on the Y (glN)-module V as multiplication

by the scalar function

(4.2) q1 . . . qN

n
∏

i=1

u− zi + 1

u− zi
.

�

Corollary 4.4. The Bethe algebra Bq(V) contains the algebra of scalar operators of multi-
plication by elements of C[z1, . . . , zn]

S. �

4.2. Universal difference operator. Define the operator τ acting on functions of u as
(τf)(u) = f(u− 1). Following [T], for q = (q1, . . . , qN) ∈ (C×)N we introduce the universal
difference operator Dq(u, τ) by the formula

(4.3) Dq(u, τ) = 1 +
N
∑

k=1

(−1)kBq

k (u) τ
k .

For q = 1, we write

(4.4) Dq=1(u, τ)τ−N =
N
∑

k=0

(−1)k Ck(u) (τ
−1 − 1)N−k, Ck(u) =

∞
∑

s=0

Ck,su
−s,
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where Ck,s ∈ Bq=1. The Bethe algebra Bq=1 preserves (VS)singλ and we may consider the

images Cλ
k,s of the elements Ck,s in Bq=1

(

(VS)singλ

)

.

Theorem 4.5 ([MTV2, Theorem 3.7]). The following statements hold.

(i) C0(u) = 1 .

(ii) Ck,s = 0 for all k = 1, . . . , N and s < k .

(iii) Cλ
1,1, . . . , C

λ
N,N are scalar operators, and for a variable x, we have

N
∑

k=0

(−1)k Cλ
k,k

N−k−1
∏

j=0

(x− j) =

N
∏

s=1

(x− λs −N + s) .
�

Remark. Given an N ×N matrix A with possibly noncommuting entries ai,j , we define its
row determinant to be

rdetA =
∑

σ∈SN

(−1)σ a1,σ(1)a2,σ(2) . . . aN,σ(N) .

The universal difference operator can be presented as a row determinant of a suitable matrix,
see for example [T, MTV1, MTV2].

5. Spaces of quasi-exponentials

5.1. Spaces of quasi-exponentials. Let q = (q1, . . . , qN) ∈ (C×)N be a sequence of dis-

tinct numbers. Let λ ∈ ZN
>0, |λ| = n. Let Ωq

λ be the affine n-dimensional space with

coordinates pi,j, i = 1, . . . , N, j = 1, . . . , λi.
Introduce fi(u) = qui pi(u), i = 1, . . . , N , where

(5.1) pi(u) = uλi + pi,1u
λi−1 + · · ·+ pi,λi

.

We identify points X ∈ Ωq

λ with N -dimensional complex vector spaces generated by quasi-
exponentials

(5.2) fi(u,X) = qui (u
λi + pi,1(X)uλi−1 + · · ·+ pi,λi

(X)) , i = 1, . . . , N.

Denote by Oq

λ the algebra of regular functions on Ωq

λ. It is the polynomial algebra in the
variables pi,j. The algebra Oq

λ has the degree function such that deg pi,j = j for all i, j. We
consider the the increasing filtration F0O

q

λ ⊂ F1O
q

λ ⊂ · · · ⊂ Oq

λ, where FsO
q

λ consists of
elements of degree 6 s. The graded character of Oq

λ is

chOq

λ
(t) =

N
∏

i=1

1

(t)λi

.

5.2. Another realization of Oq

λ. For arbitrary functions g1(u), . . . , gN(u), we introduce
the discrete Wronskian by the formula

Wr(g1(u), . . . , gN(u)) = det









g1(u) g1(u− 1) . . . g1(u−N + 1)
g2(u) g2(u− 1) . . . g2(u−N + 1)
. . . . . . . . . . . .
gN(u) gN(u− 1) . . . gN(u−N + 1)









.



SPACES OF QUASI-EXPONENTIALS AND REPRESENTATIONS OF THE YANGIAN Y (glN ) 9

Let fi(u), i = 1, . . . , N , be the functions given by (5.1). We have

(5.3) Wr(f1(u− 1), . . . , fN(u− 1)) =

N
∏

i=1

qu−1
i

∏

16i<j6N

(q−1
j − q−1

i )
(

un +

n
∑

s=1

(−1)sΣs u
n−s

)

,

where Σ1, . . . , Σn are elements of Oq

λ. Define the difference operator DOq

λ(u, τ) by

(5.4)

DOq

λ(u, τ) =
1

Wr(f1(u− 1), . . . , fN(u− 1))
rdet









f1(u) f1(u− 1) . . . f1(u−N)
f2(u) f2(u− 1) . . . f2(u−N)
. . . . . . . . . . . .
1 τ . . . τN









.

It is a difference operator in the variable u, whose coefficients are formal power series in u−1

with coefficients in Oq

λ,

(5.5) DOq

λ(u, τ) = 1+
N
∑

k=1

(−1)kF q,λ
k (u) τk , F q,λ

k (u) = σk(q1, . . . , qN) +
∞
∑

s=1

F q,λ
k,s u−s ,

and F q,λ
k,s ∈ Oλ , k = 1, . . . , N , s > 0. In particular, we have

(5.6) F q,λ
N (u) = q1 . . . qN

(u+ 1)n +
∑n

s=1 (−1)sΣs (u+ 1)n−s

un +
∑n

s=1 (−1)sΣs un−s
,

cf. (4.2).

Lemma 5.1. The functions F q,λ
k,s ∈ Oq

λ, k = 1, . . . , N , s > 0 , generate the algebra Oq

λ.

Proof. The coefficient of uλi−j−1 of the series qui D
Oq

λfi(u) has the form

−j pi,j

N
∏

k=1
k 6=i

(1− qk/qi) +
N
∑

l=1

j+1
∑

r=0

j−1
∑

s=0

cijlrs F
q,λ
l,r pi,s ,

where cijlrs are some numbers, F q,λ
l,0 = σl(q1, . . . , qN) and pi,0 = 1. Since DOq

λfi(u) = 0, we

can express recursively the elements pi,j via the elements F q,λ
l,r starting with j = 1 and then

increasing the second index j. �

5.3. Discrete Wronski map πq

λ. Consider Cn with coordinates σ1, . . . , σn. Introduce the
discrete Wronski map πq

λ : Ωq

λ → C
n as follows. Let X be a point of Ωq

λ. Define

(5.7) WrX(u) = Wr
(

f1(u− 1, X), . . . , fN(u− 1, X)
)

,

where f1(u,X), . . . , fN(u,X) are given by (5.2). Let

WrX(u) =
N
∏

i=1

qu−1
i

∏

16i<j6N

(q−1
j − q−1

i )
(

un +
n

∑

s=1

(−1)sas u
n−s

)

.

We set πq

λ : X 7→ (a1, . . . , an).
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The discrete Wronski map is a finite algebraic map, see [MTV5, Proposition 3.1]. It defines
an injective algebra homomorphism

(πq

λ)
∗ : C[σ1 . . . , σn] → Oq

λ, σs 7→ Σs ,

which gives a C[σ1 . . . , σn]-module structure on Oq

λ.

For a ∈ Cn, let IOλ ,a be the ideal in Oq

λ generated by the elements Σs − as, s = 1, . . . , n,
where Σ1, . . . , Σn are defined by (5.3). The quotient algebra

(5.8) Oq

λ ,a = Oq

λ

/

IOλ ,a

is the scheme-theoretic fiber of the discrete Wronski map πq

λ.

5.4. First main result. Let A be a commutative algebra. The algebra A considered as
a module over itself is called the regular representation of A .

Theorem 5.2. Assume that q ∈ (C×)N has distinct coordinates. Denote vλ =
∑

I∈Iλ
vI .

Then

(i) The map µq

λ : F
q,λ
k,s 7→ Bq,λ

k,s , k = 1, . . . , N , s > 0, extends uniquely to an isomorphism

µq

λ : O
q

λ → Bq
(

(VS)λ
)

of filtered algebras. The isomorphism µq

λ becomes an isomor-

phism of the C[σ1, . . . , σn]-module Oq

λ and the C[z1, . . . , zn]
S-module Bq

(

(VS)λ
)

if we

identify the algebras C[σ1, . . . , σn] and C[z1, . . . , zn]
S by the map σs 7→ σs(z), s = 1,

. . . , n.

(ii) The map νqλ : Oq

λ → (VS)λ , f 7→ µq

λ(f) vλ , is an isomorphism of filtered vector
spaces identifying the Bq

(

(VS)λ
)

-module (VS)λ and the regular representation of
Oq

λ.

The theorem is proved in Section 9.1.

Remark. Theorem 5.2 was announced in [GRTV, Theorem 6.3]. To indicate the correspon-
dence of notation, we point out that formula (6.1) in [GRTV] is a counterpart of formula
(5.3) in this paper with functions gi(u) in [GRTV] being equal to qih

λifi(−1 + u/h) here.
Also, formulae (6.3), (6.4) in [GRTV] correspond to formulae (5.4), (5.5) in this paper, and
the algebra Hq

λ in [GRTV] is a counterpart of the algebra Oq

λ here.

Assume that the complex numbers b1, . . . , bn are such that bi 6= bj +1 for i > j. Consider
the tensor product V (b) = CN(b1) ⊗ . . . ⊗ CN(bn) of evaluation Y (glN )-modules and its
weight subspace V (b)λ. Introduce the numbers a = (a1, . . . , an) by the formula as = σs(b1,
. . . , bn), cf. (3.4).

Corollary 5.3. Assume that q ∈ (R×)N has distinct coordinates. Let b1, . . . , bn be real and
such that |bi − bj | > 1 for all i 6= j. Then the algebra Bq

(

V (b)λ
)

has simple spectrum.

Proof. Under the assumption made, the algebra Bq
(

V (b)λ
)

has no nilpotent elements, see
[MTV5, Lemma 3.7 and Lemma 3.10]. Hence the algebra Oq

λ,a, and thus the algebra

Bq
(

V (b)λ
)

, is the direct sum of one-dimensional algebras, so the spectrum of Bq
(

V (b)λ
)

is
simple, see Proposition 3.5. �

Other sufficient conditions for simplicity of the spectrum of Bq
(

V (b)λ
)

see in [MTV5,
Theorem 2.1, part (2)] and in [MTV7, Theorem 1.1].
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Corollary 5.4. Assume that q ∈ (C×)N has distinct coordinates. Then the isomorphisms
µq

λ and νqλ induce an isomorphism of the Bq(V (b)λ)-module V (b)λ and the regular repre-
sentation of the algebra Oq

λ,a. �

The corollary implies that Bq
(

V (b)λ
)

⊂ End
(

V (b)λ
)

is a maximal commutative subalge-

bra and Bq
(

V (b)λ
)

is a Frobenius algebra, see for example [MTV4, Lemma 3.9].

6. Spaces of polynomials

6.1. Spaces of polynomials. Let λ ∈ ZN
>0, λ1 > λ2 > · · · > λN > 0, |λ| = n. In other

words, let λ be a partition of n with at most N parts. Introduce the set P = {d1 > d2 >
. . . > dN} , where di = λi+N−i. Let Ωλ be the affine n-dimensional space with coordinates
fi,j, i = 1, . . . , N , j = 1, . . . , di, di − j /∈ P .

Introduce polynomials

(6.1) fi(u) = udi +

di
∑

j=1
di−j /∈P

fi,ju
di−j , i = 1, . . . , N.

We identify points X ∈ Ωλ with N -dimensional complex vector spaces generated by poly-
nomials

(6.2) fi(u,X) = udi +

di
∑

j=1
di−j /∈P

fi,j(X)udi−j , i = 1, . . . , N.

Denote by Oλ the algebra of regular functions on Ωλ. It is the polynomial algebra in
the variables fi,j. The algebra Oλ has the degree function such that deg fi,j = j for all i, j.
We consider the the increasing filtration F0Oλ ⊂ F1Oλ ⊂ · · · ⊂ Oλ, where FsOλ consists of
elements of degree 6 s. The graded character of Oλ is

chOλ
(t) =

∏

16i<j6N (1− tλi−λj+j−i)
∏N

i=1 (t)λi+N−i

.

see [MTV4, Lemma 3.1].

6.2. Another realization of Oλ. Let fi(u), i = 1, . . . , N , be the generating functions
given by (6.1). We have

(6.3) Wr(f1(u− 1), . . . , fN(u− 1)) =
∏

16i<j6N

(λj − λi + i− j)
(

un +

n
∑

s=1

(−1)sΣs u
n−s

)

,

where Σ1, . . . , Σn are elements of Oλ. Define the difference operator DOλ by

(6.4)

DOλ(u, τ) =
1

Wr(f1(u− 1), . . . , fN(u− 1))
rdet









f1(u) f1(u− 1) . . . f1(u−N)
f2(u) f2(u− 1) . . . f2(u−N)
. . . . . . . . . . . .
1 τ . . . τN









.
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(6.5) DOλ(u, τ)τ−N =

N
∑

k=0

(−1)kGk(u) (τ
−1 − 1)N−k, Gk(u) =

∞
∑

s=0

Gk,su
−s,

where Gk,s ∈ Oλ.

Lemma 6.1. The following statements hold.

(i) G0(u) = 1 .

(ii) Gk,s = 0 for all k = 1, . . . , N and s < k .

(iii) G1,1, . . . , GN,N are complex numbers, and for a variable x, we have For all x we have

N
∑

k=0

(−1)kGk,k

N−k−1
∏

j=0

(x− j) =
N
∏

s=1

(x− λs −N + s) .

�

Lemma 6.2. The functions Gk,s ∈ Oλ, k = 1, . . . , N , s = k + 1, k + 2, . . . , generate the
algebra Oλ.

Proof. The coefficient of udi−N−j of the series DOλfi(u) has the form χ(di − j) fi,j + . . . ,

where χ(x) =
∏N

s=1 (x − λs − N + s) and the dots denote the terms which contain the
elements Gk,l and fi,s with s < j only. Since DOλfi(u) = 0 and χ(di − j) 6= 0, we can
express recursively the elements fi,j via the elements Gk,l starting with j = 1 and then
increasing the second index j. �

6.3. Discrete Wronski map πλ. Consider Cn with coordinates σ1, . . . , σn. Introduce the
discrete Wronski map πλ : Ωλ → Cn as follows. Let X be a point of Ωλ. Define

(6.6) WrX(u) = Wr
(

f1(u− 1, X), . . . , fN(u− 1, X)
)

,

where f1(u,X), . . . , fN(u,X) are given by (6.2). Let

WrX(u) =
∏

16i<j6N

(λj − λi + i− j)
(

un +

n
∑

s=1

(−1)sas u
n−s

)

.

We set πλ : X 7→ (a1, . . . , an).

The discrete Wronski map is a finite algebraic map, see [MTV5, Proposition 3.1]. It defines
an injective algebra homomorphism

(πλ)
∗ : C[σ1 . . . , σn] → Oλ, σs 7→ Σs ,

which gives a C[σ1 . . . , σn]-module structure on Oq

λ.

For a ∈ Cn, let IOλ ,a be the ideal in Oλ generated by the elements Σs − as, s = 1, . . . , n,
where Σ1, . . . , Σn are defined by (6.3). The quotient algebra

(6.7) Oλ ,a = Oλ/I
O
λ ,a

is the scheme-theoretic fiber of the discrete Wronski map πλ.
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6.4. Second main result. By formula (2.3), the space Fk(V
S)singλ is one-dimensional if

k =
∑N

i=1 (i− 1)λi. Fix a nonzero element vsingλ ∈ (VS)singλ in that subspace.

Theorem 6.3. Let λ be a partition on n with at most N parts. Then

(i) The map µλ : Gk,s 7→ Cλ
k,s, k = 1, . . . , N , s > 0, extends uniquely to an iso-

morphism µλ : Oλ → Bq=1
(

(VS)singλ

)

of filtered algebras. The isomorphism µλ be-

comes an isomorphism of the C[σ1, . . . , σn]-module Oλ and the C[z1, . . . , zn]
S-module

Bq=1
(

(VS)singλ

)

if we identify the algebras C[σ1, . . . , σn] and C[z1, . . . , zn]
S by the map

σs 7→ σs(z), s = 1, . . . , n.

(ii) The map νλ : Oλ → (VS)singλ , f 7→ µλ(f) v
sing
λ , is an isomorphism of filtered vector

spaces increasing the index of filtration by kmin. The isomorphism νλ identifies the
Bq=1

(

(VS)singλ

)

-module (VS)singλ and the regular representation of the algebra Oλ.

The theorem is proved in Section 9.2.

Assume that the complex numbers b1, . . . , bn are such that bi 6= bj +1 for i > j. Consider
the tensor product V (b) = CN(b1) ⊗ . . . ⊗ CN(bn) of evaluation Y (glN )-modules and its
singular weight subspace V (b)singλ . Introduce the numbers a = (a1, . . . , an) by the formula
as = σs(b1, . . . , bn), cf. (3.4).

Corollary 6.4. The isomorphisms µλ and νλ induce an isomorphism of the Bq=1
(

V (b)singλ

)

-

module V (b)singλ and the regular representation of the algebra Oλ,a. In particular,

Bq=1
(

V (b)singλ

)

⊂ End
(

V (b)singλ

)

is a maximal commutative subalgebra and Bq=1
(

V (b)singλ

)

is a Frobenius algebra, see for example [MTV4, Lemma 3.9]. �

Remark. Corollary 6.4 is used in [MTV6] to prove Theorem 7.3 therein, similarly to the
proof of Theorems 4.1, 4.3 in [MTV6]. The algebra BY

n,N,λ(b1, . . . , bn) in [MTV6] coincides

with the algebra Bq=1
(

V (b)singλ

)

in this paper.

Corollary 6.5. Let b1, . . . , bn be real and such that |bi − bj | > 1 for all i 6= j. Then the

algebra Bq=1
(

V (b)singλ

)

has simple spectrum. �

The proof is similar to that of Corollary 5.3.

Other sufficient conditions for simplicity of the spectrum of Bq=1
(

V (b)singλ

)

see in [MTV5,
Theorem 2.1, part (2)] and in [MTV7, Theorem 1.1].

7. Bethe ansatz for q with distinct coordinates

To prove Theorems 5.2 and 6.3 we need some facts about the Bethe ansatz. We consider
the tensor product of evaluation Y (glN)-modules V (b) = CN(b1) ⊗ . . . ⊗ CN(bn) and the
action of the Bethe algebra Bq on the weight subspace V (b)λ.

7.1. Bethe ansatz equations associated with V (b)λ. Recall λ = (λ1, . . . , λN), |λ| = n.
Introduce l = (l1, . . . , lN−1) with lj = λj+1 + . . . + λN . We have n > l1 > · · · > lN−1 > 0.
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Set l0 = n , lN = 0, and l = l1 + · · ·+ lN−1. We shall consider functions of l variables

t =
(

t
(1)
1 , . . . , t

(1)
l1
, t

(2)
1 , . . . , t

(2)
l2
, . . . , t

(N−1)
1 , . . . , t

(N−1)
lN−1

)

.

The following system of l algebraic equations with respect to l variables t is called the Bethe
ansatz equations associated with V (b)λ and q :

q1

n
∏

s=1

(t
(1)
j − bs + 1)

l1
∏

j′=1
j′ 6=j

(t
(1)
j − t

(1)
j′ − 1)

l2
∏

j′=1

(t
(1)
j − t

(2)
j′ ) =(7.1)

= q2

n
∏

s=1

(t
(1)
j − bs)

l1
∏

j′=1
j′ 6=j

(t
(1)
j − t

(1)
j′ + 1)

l2
∏

j′=1

(t
(1)
j − t

(2)
j′ − 1) ,

qa

la−1
∏

j′=1

(t
(a)
j − t

(a−1)
j′ + 1)

la
∏

j′=1
j′ 6=j

(t
(a)
j − t

(a)
j′ − 1)

la+1
∏

j′=1

(t
(a)
j − t

(a+1)
j′ ) =

= qa+1

la−1
∏

j′=1

(t
(a)
j − t

(a−1)
j′ )

la
∏

j′=1
j′ 6=j

(t
(a)
j − t

(a)
j′ + 1)

la+1
∏

j′=1

(t
(a)
j − t

(a+1)
j′ − 1) .

Here the equations of the first group are labeled by j = 1, . . . , l1, the equations of the second
group are labeled by a = 2, . . . , N − 1, j = 1, . . . , la,

A solution t̃ of system (7.1) is called off-diagonal if t̃
(a)
j 6= t̃

(a)
j′ for any a = 1, . . . , N − 1,

1 6 j 6 j′ 6 la, and t̃
(a)
j 6= t̃

(a+1)
j′ for any a = 1, . . . , N − 2, j = 1, . . . , la, j

′ = 1, . . . , la+1.

Remark. If λ = (n, 0 . . . , 0), then l1 = · · · = lN−1 = 0. In this case, there are no variables
t and it is convenient to think that the Bethe ansatz equations is the equation 1 = 1.

7.2. Weight function and Bethe ansatz theorem. Denote by ωλ(t, b) the universal
weight function associated with the weight subspace V (b)λ. The universal weight function is
defined by formula (6.2) in [MTV1], see explicit formula (7.7) below, cf. [TV1, MTV2, RTV,
TV3]. For the moment, it is enough for us to know that this function is a V (b)λ-valued
polynomial in t, b.

If t̃ is an off-diagonal solution of the Bethe ansatz equations, then the vector ωλ(t̃, b) ∈
V (b)λ is called the Bethe vector associated with t̃.

Theorem 7.1. Let t̃ be an off-diagonal solution of the Bethe ansatz equations (7.1). Assume
that the Bethe vector ωλ(t̃, b) is nonzero. Then the Bethe vector is an eigenvector of all
transfer-matrices Bq

k (u), k = 1, . . . , N . �

The statement follows from Theorem 6.1 in [MTV1]. For k = 1, the result is established
in [KR1].
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The eigenvalues of the Bethe vector are as follows. Set

χ1(u, t, b) = q1

n
∏

s=1

u− bs + 1

u− bs

l1
∏

j=1

u− t
(1)
j − 1

u− t
(1)
j

,

χa(u, t, b) = qa

la−1
∏

j=1

u− t
(a−1)
j + 1

u− t
(a−1)
j

la
∏

j=1

u− t
(a)
j − 1

u− t
(a)
j

,

for a = 2, . . . , N . Define the functions ck(u, t, b) by the formula

(7.2) (1− χ1(u, t, b) τ) · · · (1− χN (u, t, b) τ) =

N
∑

k=0

(−1)k ck(u, t, b) τ
k .

Then

(7.3) Bq

k (u)ωλ(t̃, b) = ck(u, t̃, b)ωλ(t̃, b)

for k = 1, . . . , N , see Theorem 6.1 in [MTV1].

Remark. If λ = (n, 0 . . . , 0), then V (b)λ is the one-dimensional space generated by the
vector v1⊗· · ·⊗ v1. It is convenient to assume that the universal weight function is given by
the formula ω(b) = v1⊗ . . .⊗v1. This vector is an eigenvector of the Bethe algebra Bq. The
eigenvalues of this eigenvector are defined by formula (7.2), in which the difference operator
takes the form

(7.4)

(

1− q1

(

n
∏

s=1

u− bs + 1

u− bs

)

τ

) N
∏

i=2

(1− qi τ) .

7.3. Difference operator associated with an off-diagonal solution. For t̃ ∈ Cl, we
introduce the associated fundamental difference operator

(7.5) Dt̃(u, τ) =
N
∑

k=0

(−1)k ck(u, t̃, b) τ
k ,

see [MTV2]. Here the functions ck(u, t̃, b) are given by (7.2).

Theorem 7.2. Assume that q has distinct coordinates. Let t̃ be an off-diagonal solution
of the Bethe ansatz equations. Then there exist polynomials pk(u) , k = 1, . . . , N , such that
deg pk(u) = λk , Dt̃(u, τ) q

u
k pk(u) = 0 , and

(7.6) Wr(qu−1
1 p1(u− 1), . . . , qu−1

N pN(u− 1)) =

N
∏

i=1

qu−1
i

∏

16i<j6N

(q−1
j − q−1

i )

n
∏

s=1

(u− bi) .

�

This is Proposition 7.6 in [MV3], which is a generalization of Lemma 4.8 in [MV1].

Remark. If λ = (n, 0 . . . , 0) , then V (b)λ is spanned by v1 ⊗ . . .⊗ v1. The corresponding
fundamental difference operator Dt̃(u, τ)(u, τ) is given by (7.4). The polynomials p2(u), . . . ,
pN(u) of Theorem 7.2 are just constants and the polynomial p1(u) is uniquely determined
(up to proportionality) by the condition Dt̃(u, τ)(u, τ) q

u
1 p1(u) = 0.
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7.4. Completeness of the Bethe ansatz.

Theorem 7.3. Assume that q has distinct coordinates. Then for any λ and generic b1,
. . . , bn, there exists a collection of off-diagonal solutions of the Bethe ansatz equations such
that the corresponding Bethe vectors form a basis of V (b)λ.

Theorem 7.3 is proved in Sections 7.6 and 7.7.

7.5. Weight functions WI . For a function f(t1, . . . , tk) of some variables, denote

Symt1,...,tk
f(t1, . . . , tk) =

∑

σ∈Sk

f(tσ1 , . . . , tσk
) .

Recall λ = (λ1, . . . , λN) and I = (I1, . . . , IN). Set
⋃N

c=a+1 Ic = { i
(a)
1 < . . . < i

(a)
la
} .

Introduce t(0) = (t
(0)
1 , . . . , t

(0)
n ) = (b1, . . . , bn) .

For I ∈ Iλ , we define the weight functions WI(t; b) , cf. [TV1, TV3]:

(7.7) WI(t; b) = Sym
t
(1)
1 ,..., t

(1)
l1

. . . Sym
t
(N−1)
1 ,..., t

(N−1)
lN−1

UI(t; b) ,

UI(t; b) =
N−1
∏

a=1

la
∏

j=1

( la−1
∏

j′=1

i
(a−1)

j′
<i

(a)
j

(t
(a)
j − t

(a−1)
j′ + 1)

la−1
∏

j′=1

i
(a−1)

j′
>i

(a)
j

(t
(a)
j − t

(a−1)
j′ )

la
∏

j′=j+1

t
(a)
j − t

(a)
j′ + 1

t
(a)
j − t

(a)
j′

)

.

The universal V (b)λ-valued weight function is the function

(7.8) ωλ(t, b) =
∑

I∈Iλ

WI(t, b) vI ∈ V (b)λ .

7.6. Proof of Theorem 7.3 for n = 1. If n = 1, then λ = (0, . . . , 0, 1k+1, 0, . . . , 0) , where
1 is at the k + 1-st position. If k = 0, Theorem 7.3 holds due to remarks in Sections 7.1
and 7.2.

Assume k > 0. Then t = (t
(1)
1 , t

(2)
1 , . . . , t

(k)
1 ) and ωλ(t, b) = vk+1. The Bethe ansatz

equations are

q1 (t
(1)
1 − b1 + 1)(t

(1)
1 − t

(2)
1 ) = q2(t

(1)
1 − b1)(t

(1)
1 − t

(2)
1 − 1) ,(7.9)

qa (t
(a)
1 − t

(a−1)
1 + 1)(t

(a)
1 − t

(a+1)
1 ) = qa+1 (t

(a)
1 − t

(a−1)
1 )(t

(a)
1 − t

(a+1)
1 − 1) ,

qk (t
(k)
1 − t

(k−1)
1 + 1) = qk+1 (t

(k)
1 − t

(k−1)
1 ) .

Here the equations of the second group are labeled by a = 2, . . . , k − 1. The Bethe ansatz
equations have the unique solution

(7.10) t
(i)
1 = b1 +

i
∑

j=1

qj
qk+1 − qj

, i = 1, . . . , k .

This solutions is off-diagonal. Theorem 7.3 for n = 1 is proved.
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7.7. Proof of Theorem 7.3 for n > 1. Assume that b1, . . . , bn depend on a parameter
y ∈ C, so that bs(y) = sy . The next lemma implies Theorem 7.3.

Lemma 7.4. For I ∈ Iλ , there exists an off-diagonal solution t̃(y) of the Bethe ansatz
equations (7.1) such that the line generated by the Bethe vector ω

(

t̃(y), b(y)
)

tends to the
line generated by the vector vI as y tends to infinity.

Proof. To simplify the notations we consider an example. The general case is similar. Assume

that n = 2 and vI = v3 ⊗ v2. Then t = (t
(1)
1 , t

(1)
2 , t

(2)
1 ). We look for a solution of the Bethe

ansatz equations in the form

(7.11) t
(i)
1 = b1(y) + v

(i)
1 (y) , i = 1, 2 , and t

(1)
2 = b2(y) + v

(1)
2 (y) .

Then the Bethe ansatz equations take the form

v
(1)
2 + 1

v
(1)
2

=
q2
q1

+O(y−1) ,
v
(1)
1 + 1

v
(1)
1

·
v
(1)
1 − v

(2)
1

v
(1)
1 − v

(2)
1 − 1

=
q2
q1

+O(y−1) ,(7.12)

v
(2)
1 − v

(1)
1 + 1

v
(2)
1 − v

(1)
1

=
q3
q2

+O(y−1) .

As y → ∞ , this system of three equations splits into an equation assigned to b1 and a system
of two equations assigned to b2 according to our choice (7.11). Each of the limiting systems
is the system (7.9) of the Bethe ansatz equations for n = 1 considered in Section 7.6. System
(7.9) has a unique solution (7.10). By deforming that solution, we obtain a solution ṽ(y) of
system (7.1) whose limit as y → ∞ equals

( q1
q3 − q1

,
q1

q2 − q1
,

q1
q3 − q1

+
q2

q3 − q2

)

,

see Section 7.6. Clearly, ṽ(y) corresponds to an off-diagonal solution t̃(y) of the Bethe ansatz
equations as y → ∞. It is easy to see that the limit of the line generated by the Bethe vector
ω
(

t̃(y), b(y)
)

as y → ∞ is the line generated by the vector v3 ⊗ v2, see formula (7.7). �

8. Bethe ansatz for q = 1

We consider the action of the Bethe algebra Bq=1 on the subspace V (b)singλ of singular
vectors. We use the notation of Section 7.

For q = 1, the Bethe ansatz equations are given by (7.1) with q1 = . . . = qN = 1. Let
ωλ(t, b) be the universal weight function associated with the weight subspace V (b)λ, see
(7.8).

Theorem 8.1. Let t̃ be an off-diagonal solution of the Bethe ansatz equations for q = 1.
Then ωλ(t̃, b) lies in V (b)singλ . �

The statement is Lemma 5.3 in [TV2] or Proposition 6.2 in [MTV1]. For N = 2, the result
is established in [FT], and for N = 3 in [KR2].

Theorem 8.2 ([MV1, Lemma 4.8]). Let t̃ be an off-diagonal solution of the Bethe ansatz
equations for q = 1. Consider the the associated fundamental difference operator Dt̃(u, τ),
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see (7.5). There exist polynomials fk(u) ∈ C[u] , k = 1, . . . , N , of the form described in
(6.1), such that deg fk(u) = λk +N − k , Dt̃(u, τ)(u, τ)fk(u) = 0 , and

(8.1) Wr
(

f1(u− 1), . . . , fN(u− 1)
)

=
∏

16i<j6N

(λj − λi + i− j)
n
∏

s=1

(u− bi) .
�

Theorem 8.3. For generic b1, . . . , bn there exists a collection of off-diagonal solutions of
the Bethe ansatz equations for q = 1 such that the corresponding Bethe vectors form a basis
of V (b)singλ .

Proof. Assume that b1, . . . , bn depend on a parameter y ∈ C, so that bs = yds for given d1,
. . . , dn, and y tends to infinity. We look for a solution of equations (7.1) for q = 1 in the

form t
(i)
j = y v

(i)
j . Then the equations are

(8.2)

n
∑

s=1

1

v
(1)
j − ds

−

l1
∑

j′=1
j′ 6=j

2

v
(1)
j − v

(1)
j′

+

l2
∑

j′=1

1

v
(1)
j − v

(2)
j′

= 0 +O(y−1) ,

la−1
∑

j′=1

1

v
(a)
j − v

(a−1)
j′

−

la
∑

j′=1
j′ 6=j

2

v
(a)
j − v

(a)
j′

+

la+1
∑

j′=1

1

v
(a)
j − v

(a+1)
j′

= 0 +O(y−1) .

In the limit y → ∞ , equations (8.2) tend to the Bethe ansatz equations of the Gaudin model
associated with V (d)singλ , considered in [MV2]. By [MV2, Theorem 6.1], for generic d = (d1,
. . . , dn) there exists a collection of off-diagonal multiplicity-free solutions ṽ of system (8.2)
at y = ∞ such that the corresponding Bethe vectors ωGaudin

λ (ṽ ,d) of the Gaudin model,

see formula (4) in [MV2], form a basis of V sing
λ . By deforming these solutions, we get a

collection of solutions ṽ(y) of system (8.2), and hence a collection of off-diagonal solutions
t̃(y) = y ṽ(y) of system (7.1) for q = 1. It easily follows from formula (7.7) and formula (4)
in [MV2] that the lines generated by the Bethe vectors ωλ(t̃(y), b(y)) tend respectively to the
lines generated by the Bethe vectors ωGaudin

λ (ṽ ,d). Hence the Bethe vectors ωλ(t̃(y), b(y))

form a basis of V (b)singλ as y → ∞. This proves Theorem 8.3. �

9. Proofs of Theorems 5.2 and 6.3

9.1. Proof of Theorem 5.2. Let a polynomial R(F q,λ
k,s ) in generators F q,λ

k,s equal zero

in Oq

λ. Consider R(Bq,λ
k,s ) as a polynomial in z1, . . . , zn with values in End

(

(V ⊗n)λ
)

. By
Theorems 7.2 and 7.3, this polynomial equals zero for generic values of z1, . . . , zn. Hence,
R(F q,λ

k,s ) equals zero identically and the map µq

λ : Oq

λ → Bq
(

(VS)λ
)

is well-defined.

Let a polynomial R(F q,λ
k,s ) be a nonzero element of Oq

λ. By Theorems 7.2 and 7.3, it means

that R(Bq,λ
k,s ) is nonzero in Bq

(

(VS)λ
)

. This shows that µq

λ is injective. Since the elements

Bq,λ
k,s generate the algebra Bq

(

(VS)λ
)

, the map µq

λ is surjective. By comparing formulae

(4.2) and (5.6), we conclude that µq

λ is a homomorphism of the C[σ1, . . . , σn]-module Oq

λ to

the C[z1, . . . , zn]
S-module Bq

(

(VS)λ
)

. Since deg F q,λ
k,s = deg Bq

k,s , the homomorphism µq

λ

is filtered. These remarks prove part (i) of Theorem 5.2.
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Consider the map νqλ : Oq

λ → (VS)λ, f 7→ µq

λ(f) vλ. The kernel of νqλ is an ideal in
Oq

λ which has zero intersection with C[σ1, . . . , σn] and, therefore, is the zero ideal. Since
chOq

λ
(t) = ch(VS)λ(t), we conclude that νqλ is a linear isomorphism. This gives part (ii) of

Theorem 5.2. �

9.2. Proof of Theorem 6.3. The proof of Theorem 6.3 is similar to the proof of Theorem
5.2.

Namely, let a polynomial R(Gk,s) in generators Gk,s equal zero in Oλ. Consider R(Ck,s)

as a polynomial in z1, . . . , zn with values in End
(

(V ⊗n)singλ

)

. By Theorems 8.2 and 8.3, this
polynomial equals zero for generic values of z1, . . . , zn. Hence, R(Ck,s) equals zero identically

and the map µλ : Oλ → Bq=1
(

(VS)singλ

)

is well-defined.

Let a polynomial R(Gk,s) be a nonzero element of Oλ. By Theorems 8.2 and 8.3, it

means that R(Ck,s) is nonzero in Bq=1
(

(VS)singλ

)

. This shows that µλ is injective. Since the

elements Ck,s generate the algebra Bq=1
(

(VS)singλ

)

, the map µλ is surjective. By comparing
formulae (4.2) and (5.6), we conclude that µλ is a homomorphism of the C[σ1, . . . , σn]-
module Oλ to the C[z1, . . . , zn]

S-module Bq=1
(

(VS)singλ

)

. Since deg Gk,s = deg Ck,s, the
homomorphism µλ is filtered. These remarks prove part (i) of Theorem 6.3.

Consider the map νλ : Oλ → (VS)singλ , f 7→ µλ(f) vλ. The kernel of νλ is an ideal in
Oλ which has zero intersection with C[σ1, . . . , σn] and, therefore, is the zero ideal. Since

t
∑N

i=1(i−1)λi chOλ
(t) = ch(VS)sing

λ
(t), we conclude that νλ is a linear isomorphism. This gives

part (ii) of Theorem 6.3. �

10. Space 1
D
VA

10.1. Definitions. Recall V = V ⊗C[z1, . . . , zn] and the Sn-action on V -valued functions of
z1, . . . , zn defined by formula (2.1). We denote by VA the subspace of the Sn-skew-invariants
in V. The space VA is a filtered space.

Let
D =

∏

16i<j6n

(zj − zi + 1) .

We denote by 1
D
V the space of V -valued functions of z1, . . . , zn of the form 1

D
f , f ∈ V, and

by 1
D
VA the space of V -valued functions of z1, . . . , zn of the form 1

D
f , f ∈ VA.

Lemma 10.1 ([GRTV, Lemma 2.9]). A V -valued function f of z1, . . . , zn is skew-invariant
with respect to the Sn-action if and only if the function 1

D
f is invariant with respect to the

Sn-action. �

By this lemma, we can define the space 1
D
VA as the space of V -valued Sn-invariant func-

tions of z1, . . . , zn of the form 1
D
f , f ∈ V.

Lemma 10.2. The space 1
D
VA is a free C[z1, . . . , zn]

S-module of rank Nn.

Proof. The lemma follows from Lemma 2.10 in [GRTV]. �

We define the degree of elements 1
D
f ∈ 1

D
VA by the formula deg( 1

D
f) = deg(f)−n(n−1)/2.

We consider the increasing filtration · · · ⊂ Fk−1
1
D
VA ⊂ Fk

1
D
VA ⊂ · · · ⊂ 1

D
VA whose k-th

subspace consists of elements of degree 6 k.
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The space 1
D
VA is a filtered glN -module. We consider the glN -weight decomposition

1
D
VA =

⊕

λ∈ZN
>0

|λ|=n

( 1
D
VA)λ ,

as well as the subspaces of singular vectors ( 1
D
VA)singλ ⊂ ( 1

D
VA)λ. All of these are filtered free

C[z1, . . . , zn]
S-modules.

Lemma 10.3. For λ ∈ ZN
>0, |λ| = n, we have

(10.1) ch
(
1
D

VA)λ
(t) = t−

∑
16i<j6N λiλj

N
∏

i=1

1

(t)λi

.

For a partition λ of n with at most N parts, we have

(10.2) ch
(
1
D

VA)sing
λ

(t) = t−
∑

16i<j6N λiλj

∏

16i<j6N (1− tλi−λj+j−i)
∏N

i=1 (t)λi+N−i

.

Proof. The graded components Fk(
1
D
VA)λ/Fk−1(

1
D
VA)λ and Fk(

1
D
VA)singλ /Fk−1(

1
D
VA)singλ are

respectively naturally isomorphic to the graded components considered in [RSTV] and de-
noted there by (( 1

D
V−)λ)k and (( 1

D
V−)singλ )k. Now formula (10.1) follows from Theorem

[RSTV, Theorem 3.4] and [MTV3, Lemma 2.12]. Formula (10.2) follows from [RSTV, For-
mula 3.4]. �

10.2. Space 1
D
VA as a Yangian module. By Lemmas 3.2 and 3.3, 1

D
VA is a filtered

Y (glN)-module.
For b = (b1, . . . , bn) ∈ Cn, we define a = (a1, . . . , an) by the formula as = σs(b1, . . . , bn),

cf. (3.4).

Proposition 10.4. Assume that the numbers b1, . . . , bn are such that bi 6= bj + 1 for all
i 6= j. Then the Y (glN)-module 1

D
VA/Ia

1
D
VA is isomorphic to V (b) = CN(b1)⊗ . . .⊗CN (bn),

the tensor product of evaluation Y (glN)-modules.

Proof. Consider the map ϕA : 1
D
VA → V (b) that sends every element of 1

D
VA to its value

at the point z = b . This map is a homomorphism of Y (glN)-modules and factors through
the canonical projection ϑA : 1

D
VA → 1

D
VA/Ia

1
D
VA. Since ϑA is also a homomorphism of

Y (glN)-modules, this defines a homomorphism of Y (glN )-modules ψA : 1
D
VA/Ia

1
D
VA→ V (b).

Under the assumption that bi 6= bj + 1 for i 6= j , the Y (glN )-module V (b) is irreducible,

see Proposition 3.6. Since ψ(v⊗n
1 ) = v⊗n

1 and dim 1
D
VA/Ia

1
D
VA = Nn = dim V (b), the map

ψ is an isomorphism of Y (glN )-modules. �

The Bethe algebra Bq preserves the subspaces ( 1
D
VA)λ ⊂ 1

D
VA. The image of an element

Bq

k,s ∈ Bq in End(( 1
D
VA)λ) will be denoted by B̃q,λ

k,s .

The Bethe algebra Bq=1 preserves the subspaces ( 1
D
VA)singλ ⊂ 1

D
VA. Recall the ele-

ments Ck,s ∈ Bq=1 introduced by formula (4.4). The image of an element Ck,s ∈ Bq in

End(( 1
D
VA)singλ ) will be denoted by C̃λ

k,s.
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Theorem 10.5 ([MTV2, Theorem 3.7]). The elements C̃λ
1,1, . . . , C̃

λ
N,N are scalar operators,

and for a variable x, we have

N
∑

k=0

(−1)k C̃λ
k,k

N−k−1
∏

j=0

(x− j) =
N
∏

s=1

(x− λs −N + s) .
�

10.3. Third main result. By formula (10.1), the space Fk(
1
D
VA)λ is one-dimensional if

k = −
∑

16i<j6N λiλj . We fix a nonzero element vAλ of that space. If λ is such that λ1 >

· · · > λN , then the element vAλ lies in the one-dimensional space Fk(
1
D
VA)singλ , see (10.2).

The properties of the element vAλ were discussed in [RTVZ]. In particular, see there a
geometric description of vAλ in terms of orbital varieties. The element vAλ was denoted in
[GRTV] by v=λ , see [GRTV, Formula 2.27].

Theorem 10.6. Assume that q ∈ (C×)N has distinct coordinates. Then

(i) The map µ̃q

λ : F
q,λ
k,s 7→ B̃q,λ

k,s , k = 1, . . . , N , s > 0, extends uniquely to an isomorphism

µ̃q

λ : O
q

λ → Bq
(

( 1
D
VA)λ

)

of filtered algebras. The isomorphism µ̃q

λ becomes an isomor-

phism of the C[σ1, . . . , σn]-module Oq

λ and the C[z1, . . . , zn]
S-module Bq

(

( 1
D
VA)λ

)

if we identify the algebras C[σ1, . . . , σn] and C[z1, . . . , zn]
S by the map σs 7→ σs(z),

s = 1, . . . , n.

(ii) The map ν̃qλ : Oq

λ → ( 1
D
VA)λ , f 7→ µ̃q

λ(f) v
A
λ , is an isomorphism of filtered vector

spaces identifying the Bq
(

( 1
D
VA)λ

)

-module ( 1
D
VA)λ and the regular representation

of Oq

λ.

Proof. The proof of Theorem 10.6 word by word coincides with that of Theorem 5.2. �

Remark. Theorem 10.6 was announced in [GRTV, Theorem 6.4], cf. the remark after The-
orem 5.2. As explained in [GRTV], Theorem 6.4 in [GRTV] implies Theorem 6.5 in [GRTV].

Corollary 10.7. The Bq-modules (VS)λ and ( 1
D
VA)λ are isomorphic.

Proof. The corollary follows from Theorems 5.2 and 10.6. �

10.4. Fourth main result.

Theorem 10.8. Let λ be a partition on n with at most N parts. Then

(i) The map µ̃λ : Gk,s 7→ C̃λ
k,s, k = 1, . . . , N , s > 0, extends uniquely to an iso-

morphism µ̃λ : Oλ → Bq=1
(

( 1
D
VA)singλ

)

of filtered algebras. The isomorphism µ̃λ be-

comes an isomorphism of the C[σ1, . . . , σn]-module Oλ and the C[z1, . . . , zn]
S-module

Bq=1
(

( 1
D
VA)singλ

)

if we identify the algebras C[σ1, . . . , σn] and C[z1, . . . , zn]
S by the

map σs 7→ σs(z), s = 1, . . . , n.

(ii) The map ν̃λ : Oλ → ( 1
D
VA)singλ , f 7→ µ̃λ(f) v

A
λ , is an isomorphism of filtered vector

spaces decreasing the index of filtration by
∑

16i<j6N λiλj. The isomorphism ν̃λ

identifies the Bq=1
(

( 1
D
VA)singλ

)

-module ( 1
D
VA)singλ and the regular representation of

the algebra Oλ.

Proof. The proof of Theorem 10.8 word by word coincides with that of Theorem 6.3. �

Corollary 10.9. The Bq=1-modules (VS)singλ and ( 1
D
VA)singλ are isomorphic.
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Proof. The corollary follows from Theorems 6.3 and 10.8. �
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[RSV] R.Rimányi, V. Schechtman, A.Varchenko, Conformal blocks and equivariant coho-
mology , Preprint (2010), 1–23, arXiv:1007.3155
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