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1 Introduction

Sudoku puzzles, and their variants, have become extremely popular in the
last decade, and can now be found daily in most major U.S. newspapers. In
addition to the countless books of Sudoku puzzles, there are many guides to
Sudoku strategy and logic. (Some good references are the books [1, 3], and
the web pages [5, 6]. The reader is also directed to these for explanations
of some of the terms mentioned throughout this discussion.) The purpose of
this paper is to relate a common class of strategies, used to solve the vast ma-
jority of Sudoku puzzles, to the formulation of Sudoku puzzles as assignment
problems and as linear programs. In particular, we give a simple character-
ization of this class, using a well-known graph theorem, and show further
how the ability of this set of strategies to solve a Sudoku puzzle also implies
that the solution can be represented as the unique nonnegative solution to
a system of linear equations. These results provide excellent applications of
principles commonly presented in introductory classes in finite mathematics
and combinatorial optimization, and point as well to some interesting open
research problems in the area.

2 Sudoku Puzzles, Solution Formats, and Lin-

ear Systems

A general Sudoku puzzle is defined by

• a set S of n grid squares,
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• an index set I = {1, . . . ,m},
• a collection B of blocks, each block B ∈ B consisting of a set of exactly

m squares in S, and

• an initial assignment A = {(pi, ki) : i = 1, . . . , r}, with square pi ∈ S
assigned index ki ∈ I, i = 1, . . . , r.

The goal is to assign indices from I to each of the remaining squares of S in
such a way that each block B ∈ B has a complete set I of indices assigned
to it. A requirement for all valid Sudoku puzzles is that there is exactly one
solution that is consistent with the initial assignment.

A standard Sudoku puzzle has grid squares comprising a 9×9 grid, with 27
blocks represented by the nine rows, nine columns, and nine 3×3 subsquares
of that grid. An example, along with its unique solution, is given in Table 1.

4 6 8
7 5 3

9 2

3 5 7
1 2 6 4 9

2 7 6

5 7
6 3 1

4 8 3

5 4 2 7 9 3 1 6 8
7 1 8 6 4 5 3 9 2
6 3 9 8 2 1 5 7 4

3 6 4 5 8 9 2 1 7
8 7 1 2 6 4 9 5 3
2 9 5 1 3 7 8 4 6

1 2 3 4 5 6 7 8 9
9 5 6 3 7 8 4 2 1
4 8 7 9 1 2 6 3 5

Table 1: A standard Sudoku puzzle and its solution.

Other popular Sudoku puzzles such as Jigsaw Sudoku, Sudoku X, Windodoku,
and Asterisk can also be described in the above form.

The solution to a Sudoku puzzle can be represented as the unique 0-1
solution for a specific set of linear equations. In particular, define the mn
variables xpk to have xpk = 1 if the index k is assigned to square p of the grid
and xpk = 0 otherwise. In order to solve a given Sudoku puzzle, the variables
xpk must satisfy the following set of constraints:
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• Every square contains exactly one index:

∑

k∈I

xpk = 1, p ∈ S, (1)

• Every block has exactly one of each index:

∑

p∈B

xpk = 1, B ∈ B, k ∈ I, (2)

• Each initial assignment is honored:

xpiki
= 1, i = 1, . . . , r. (3)

A 0-1 solution to equations (1)–(3) will be a solution to the associated Sudoku
puzzle. It is useful to note here that equations (1) and (2) comprise a set
of assignment constraints, where 1-1 assignments are made in each block.
The fact that assignments are made over multiple overlapping blocks makes
the problem difficult. It is known that solving general-sized Sudoku puzzles
is NP-hard, even for square grids with blocks consisting of the sets of rows
and columns (Latin Squares) [2], or for p2 × p2 grids with blocks consisting
of rows, columns, and the p2 partitioned p × p subsquares [7], Section 3.2.
Finding 0-1 solutions to equations (1)–(3) for the standard 9 × 9 version,
however, is quite easy using any reasonable integer program solver.

Solving Sudoku puzzles by hand is generally done through elimination
strategies that keep track of what indices are available to be placed in each
square of the grid, and updating these by eliminating indices that cannot be
allowed in a square based on some line of reasoning. Specifically, we define
a candidate set associated with each square p, denoted Cp, to be the set of
indices that have not been eliminated from consideration for that square.
Initially, Cpi

= {ki} for assigned squares (pi, ki), and Cp = I for unassigned
squares. In this context equation (3) can be replaced by

xpk = 0, p ∈ S, k /∈ Cp. (3′)

When the candidate set for any square has only one index in it, then that
square can be assigned this index. The Sudoku is solved when only one index
remains in every one of the candidate sets.

Two questions are of interest here.
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• How easy is it to solve Sudoku puzzles, that is, how likely is it that one
can solve a Sudoku puzzle by employing a specified set R of rules for
eliminating elements from candidate sets? A rule set R can become
quite complex, and could include extensive chain reasoning, in order
that it be powerful enough to solve the harder Sudoku puzzles. At
present there is no known set of rules, short of using trial and error,
that is guaranteed to solve all standard 9× 9 Sudoku puzzles.

• How close is the linear system given by (1)–(3) above to solving a
Sudoku puzzle? One popular heuristic for finding 0-1 solutions to a set
of linear equations is to relax the problem to that of finding nonnegative
solutions to these equations. Finding nonnegative solutions to a system
of equations is considerably easier than finding 0-1 solutions, and if the
relaxed solution has all 0-1 values, then it will in fact be a solution
to the Sudoku puzzle. It would be interesting to know under what
circumstances this does occur, since this would make the solution for
larger puzzles much faster.

It turns out that these two questions are related in an interesting way. We
investigate a particular set R of rules, called the one-block strategies, that
are almost universally used among Sudoku enthusiasts. We give a simple
characterization for this set of rules, and show that the success of the one-
block strategies in solving a Sudoku puzzle also means that the relaxation
above is guaranteed to give a solution to the associated Sudoku puzzle.

3 One-Block Strategies and Relaxations

To answer the first question above, we investigate one of the simplest classes
of elimination strategies:

One-block strategy: A strategy that eliminates a particular
assignment based on the constraints (1), (2), and (3′) as they
apply to a single block B ∈ B.

That is, a one-block strategy involves looking at the relationship between
candidate indices in just one block, ignoring how they interact with other
blocks. Note that a one-block strategy is not restricted to be used only on a
particular block, but can be applied successively to different blocks, so long
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as each application considers just one block, along with the current candidate
sets.

A set of one-block elimination strategies that is in virtually every inter-
mediate player’s arsenal can be described fairly succinctly.

Pigeon-hole rule: Let M ⊂ I be a subset of indices, and let
D be a subset of squares, all contained in a single block B,
such that (a) |M | = |D| and (b) Cp ⊆ M for every square
p ∈ D. Then the elements of M can be removed from Cp for
each p ∈ B \D.

In other words, if there is any subset of k squares in a single block whose
candidate sets together contain only k different indices, then these indices
can appear nowhere else in that block. This rule, or tandem uses of it, in-
cludes most of the basic Sudoku strategies such as “squeezing,” “crosshatch-
ing,” “lone-number spotting,” “naked/hidden pairs/triples/quads,” etc., and
is fairly easy to implement. Using this set of rules alone seems to solve about
90% of all Sudoku puzzles, and for our example it reduces the number of
candidate indices considerably, as shown in Table 3. (We leave to the inter-
ested reader the task of applying the appropriate rules to obtain the table
numbers.) Although the pigeon-hole rules were able to determine the solu-
tion numbers for 63 out of the possible 81 squares in this example, the rules
are not quite powerful enough to solve the entire puzzle.

It turns out that the pigeon-hole rules account for all of the one-block
solution strategies.

Theorem 1 Any elimination that can be made using a one-block strategy
can also be inferred using one of the pigeon-hole rules.

Proof: Consider a one-block strategy applied to block B ∈ B at a particular
stage of the solution to the puzzle, with current candidate sets Cp, p ∈ S.
Then the one-block strategy must use only the following subsets of constraints
(1), (2), and (3′) to imply that a particular assignment xp0k0 = 1 cannot hold:

∑

k∈I

xpk = 1, p ∈ B, (4)

∑

p∈B

xpk = 1, k ∈ I, (5)

xp,k = 0, p ∈ B, k /∈ Cp. (6)
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1 5 4 2 3 7 9 1 3 1 2 5 6 8

7 1 2 8 6 4 5 3 1 2 9 2 9

6 1 3 5 9 8 2 1 3 1 5 7 4

3 6 4 5 8 9 1 2 1 2 7

8 7 1 2 6 4 9 5 3

2 9 5 1 3 7 8 4 6

1 9 1 2 3 2 3 4 5 6 7 8 2 9

5 9 2 5 6 3 7 8 4 2 9 1

4 8 7 9 1 2 6 3 5

Table 2: The candidate sets Cp after applying all possible pigeon-hole rules
to the puzzle given in Table 1.

In particular, the assignment (p0, k0) is eliminated if, when we set xp0k0 = 1,
we cannot find a 0-1 solution to equations (4)–(6).

Now equations (4)–(6) can be interpreted as requiring an assignment of
the indices in I to the squares in block B, using only assignments allowed
by the sets Cp, p ∈ B, or equivalently, finding a perfect matching on the
bipartite subgraph G of B × I that contains only the edges (p, k), k ∈ Cp.
Assignment (p0, k0) is eliminated by demonstrating that no perfect matching
exists that contains the edge (p0, k0).

Forcing the edge (p0, k0) into the matching is equivalent to removing the
vertices p0 and k0 from G, along with their adjacent edges. The assignment
(p0, k0) is then eliminated if and only if the resulting graph G′ admits no
perfect matching. By Hall’s Theorem [4], Section 6.3.1, if G′ has no perfect
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matching then there exist subsets X ⊆ I \ {k0} and D ⊆ B \ {p0}, with
|X| < |D|, such that every edge of G′ that is adjacent to a vertex in D is also
adjacent to a vertex in X. But this in turn means that the set M = X∪{k0}
has the property that |M | ≤ |D| and every edge of the original graph G
that is adjacent to a vertex in D is also adjacent to a vertex in M , that is,
Cp ⊆ M for every p ∈ D. Further, since the original graph G does admit a
perfect matching, then |M | = |D|, and it follows that the pigeon-hole rule,
using sets D and M as defined above, eliminates the assignment (p0, k0).

To answer the second question posed in Section 1, we investigate under
what circumstances the relaxation of the linear system defined by (1)–(3)
to nonnegative variables is guaranteed to produce a 0-1 solution, and hence
to solve the Sudoku puzzle. It turns out that the success of the pigeon-hole
rules in solving a Sudoku puzzle is also a guarantee that the relaxation solves
it as well.

Theorem 2 If a Sudoku puzzle can be solved completely using pigeon-hole
rules, then there exists a unique nonnegative solution to equations (1)–(3),
which in turn is a solution to the puzzle itself.

Proof: Let x∗ be the unique 0-1 solution for equations (1)–(3), and suppose
there is a second nonnegative solution x̂ for these equations. Begin solving
the puzzle using pigeon-hole rules until the first point at which an index k0

is eliminated from one of the candidate sets Cp0 for which x̂p0k0 6= 0. This
must always happen, since the pigeon-hole rules eventually eliminate every
candidate pair (p, k) for which x∗pk = 0, and there must be at least one of
these for which x̂pk 6= x∗pk. Now by Theorem 1, this elimination is forced
by the one-block equations (4)–(6), and further, equation (6) does not yet
include the pair (p0, k0). Consider the linear program

max z = xp0k0 : x ≥ 0 and equations (4)–(6) hold. (7)

Then x̂ is feasible for (7), since again by the choice of (p0, k0), the other
assignments for equation (6) are already satisfied by x̂. Further, since the
constraints of (7) are assignment constraints, then (7) will always have a 0-1
solution (see [4], Section 6.3.1). Therefore the optimal objective function
value z∗ for (7) must likewise be 0 or 1. But the fact that x̂p0k0 > 0 implies
that z∗ 6= 0, and the fact that k0 was eliminated from Cp0 at this point using a
one-block strategy implies that z∗ 6= 1. This is a contradiction, and therefore
there cannot be a second nonnegative solution to equations (1)–(3).
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4 Extensions and Further Questions

One further question one might consider is whether Theorem 2 can be ex-
tended to rule sets that are more sophisticated than the one-block strategies.
A logical extension would be to two-block strategies, that is, strategies that
involve simultaneously considering two blocks in order to eliminate a can-
didate. Strategies such as “intersection removal,” “cross-constraints,” and
“pointing pairs” are examples of two-block strategies. It turns out that our
example can be completely solved by a single application of a two-block
strategy (though not of any of the types above), along with the one-block
strategies. Specifically, start with the candidate sets in Table 3 obtained after
applying the one-block strategies, and consider the two intersecting blocks
consisting of the top left 3× 3 square and the second column. We can elim-
inate the index 1 from the square (1,1), since if we assign 1 to this square,
we must assign 2 to square (2,2) and 5 to square (3,2) in order to satisfy
the block constraints for the 3 × 3 square. But then square (8,2) cannot be
assigned either of the indices 2 or 5 without violating the block constraints
for column 2. Eliminating index 1 from square (1,1), and continuing to apply
the pigeon-hole rules, we proceed to obtain the complete solution shown in
Table 1.

One could now ask whether expanding our strategy set by adding the
two-block strategies moves us out of the realm of problems where Theorem 2
continues to hold. The example above shows that this indeed happens. A
nonnegative but fractional solution to equations (1)–(3) is given in Table 3,
where a singleton k in a square p represents the assignment xpk = 1, and a
doubleton k1 and k2 in square p represents the assignment xpk1 = xpk2 = 1/2.
Thus this example cannot be solved uniquely by relaxing equations (1)–(3),
even though it can be solved by using only one- and two-block strategies.

We end the paper by leaving the reader with several interesting open
questions that are suggested by the above results:

1. Is there a good description of all two-block elimination strategies anal-
ogous to the pigeon-hole rules for one-block strategies?

2. What is the minimum number k for which the k-block strategies (elim-
ination strategies that consider k blocks simultaneously) solve all stan-
dard Sudoku puzzles? Obviously 27-block strategies will work, and one
can find examples where 2-block strategies are not strong enough. We
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1 5 4 2 3 7 9 1 3 2 5 6 8

7 1 2 8 6 4 5 3 1 9 2 9

6 3 5 9 8 2 1 3 1 5 7 4

3 6 4 5 8 9 1 2 1 2 7

8 7 1 2 6 4 9 5 3

2 9 5 1 3 7 8 4 6

1 9 1 3 2 3 4 5 6 7 8 2 9

5 9 2 5 6 3 7 8 4 2 9 1

4 8 7 9 1 2 6 3 5

Table 3: A fractional LP solution for the puzzle given in Table 1.

suspect, though, that the number is considerably closer to 2 than to
27.

3. Is there a set of elimination rules whose success in solving a Sudoku
puzzle characterizes all Sudoku instances where equations (1)–(3) admit
a unique nonnegative solution?

4. What is the simplest set of elimination rules that is guaranteed to solve
all standard Sudoku puzzles?
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