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Abstract 

The utility of individual based models (IBMs) is that properties of ecological systems 

can be derived by considering the properties of individuals constituting them. Individual 

differences may be physiological, behavioral or may arise from interactions among 

individuals. The differences result in unique life histories, which when considered as a 

whole give rise to growth and size distributions that provide a measure of the state of the 

population.  Early IBMs generally did not consider the effect of a spatially variable 

physical environment.  Recent advances in ocean circulation models that include realistic 

temporal and spatial variation of currents, turbulence, light, prey, etc., have enabled 

IBMs to be embedded in model flow fields and for unique, sometimes behaviorally 

modified, Lagrangian trajectories to be computed. The explicit consideration of realistic 

spatial heterogeneity provides an additional factor that contributes to the differentiation 

among individuals, to variances in population structure, and ultimately to our 

understanding of the recruitment process. This is particularly important in marine 

environments where fronts, boundary layers, pycnoclines, gyres and other smaller spatial 

features have been hypothesized to play a significant role in determining vital rates and 

population structure.  In this paper we will review the status of research on spatially-

explicit IBMs, their successes, limitations and future developments. Examples will be 

drawn from approaches used in the past decade in GLOBEC, FOCI, SABRE and other 

programs.  
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Introduction 

The utility of individual based models (IBMs) is that properties of ecological systems 

can be derived by considering the properties of individuals constituting them. One of the 

advantages of IBMs is the ability to account for rare individuals, or rare circumstances 

effecting a few individuals, which contribute strongly to determining population strength, 

or variance (e.g., of growth rates) within populations.  A review of the state of IBMs 

during the early 1990's can be found in DeAngelis and Gross (1992). There, it was 

suggested that "IBMs will be generally more useful for sedentary organisms rather than 

free ranging ones, due to how the plasticity of form is often coupled to local interactions 

and environmental conditions in the sedentary situation" (Gross et al. 1992).   

In oceanic environments, where most marine organisms undergo planktonic life 

stages, i.e., non-sedentary stages where the organism has little ability to swim against the 

current and is largely at the mercy of circulation (Werner et al. 1997), IBMs have, by 

necessity, focused on explicitly coupling the biological and ecological formulations to 

hydrodynamic models of varying degrees of three-dimensional and temporal complexity.  

It is the recent advent of quite sophisticated and realistic circulation models (e.g., 

Blumberg and Mellor, 1987; Backhaus, 1989; Haidvogel et al. 1991; Lynch et al. 1996) 

that have enabled spatially explicit IBMs to become a de facto tool in large-scale efforts 

studying the interactions of marine organisms with their environment. The effects of 

variability in the physical environment (flow, temperature, salinity, turbulence, light, etc.) 

is explicitly considered in the study of dispersal, growth and mortality of the target 
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marine populations. 

In a recent review of individual based models in ecology, Grimm (1999) proposes that 

studies using IBMs do so mainly for two reasons: a) for pragmatic reasons, i.e., "to study 

problems that cannot be addressed with state variables", or b) for paradigmatic reasons 

when the study is "driven by the suspicion that much of what we have learned from state 

variable models about theoretical issues... e.g., regulation, etc., would have to be revised 

if the discreteness, uniqueness, life cycles and variability of the individuals were to be 

taken into account".  Most of the studies we review in this paper fall into Grimm's 

pragmatic category, for the simple reason that marine organisms experience unique 

trajectories during both their planktonic "drift" stages and after they have developed full 

swimming capabilities.  Studying the end result of these unique trajectories cannot be as 

easily achieved using a state-variable approach.  This does not mean that the use of 

spatially explicit IBMs is limited only to serving as a convenient tool. IBMs have 

contributed to revisiting fundamental theories on the structure of marine populations such 

as the migration triangle (Harden-Jones, 1968), match-mismatch (Cushing, 1974), and 

member-vagrant (Sinclair, 1988) and have provided information for fisheries 

management (e.g, see Heath and Gallego, 1997).  Similarly, it should not be forgotten 

that IBMs are in fact ecological tools. As such they are often often used, and may be the 

only logical tool to use, for understanding complex interactions, synthesizing large data 

sets and/or stating hypotheses (Rice and Cochoran, 1984; Crowder et al. 1992). 

 

Classification of spatially explicit IBMs 

Perhaps due to the pragmatic nature of most IBMs, as well a kind of  communication gap 
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between scientists working in fresh and marine systems, IBMs have not evolved in a 

smooth manner. Models of striking different complexity appear simultaneously in the 

literature.  For convenience, we will use the following classification scheme in this paper. 

1. Implicit-space: Some of the first IBMs modeled "space" by calculating a volume 

searched by a particular larval fish. Hence, the spatial component is more of a 

device used to model feeding processes.  Most contemporary IBMs still rely on this 

approach at some level, however, physical factors (turbulence, light) have all been 

used as modifiers in determining the volumne searched. 

2.  Static -space: These models are spatially explicit, but generally lack a 

consideration of physical processes such as velocity or turbulence fields. Space is 

modeled as a series of regions or compartments, sometimes with region-specific 

prey or predator fields. Individual organisms are permitted to move about within or 

between the various compartments and hence may experience variable 

predator/prey abundances. Some of these models incorporate prey-dynamics 

devices, such as logistic equations with removal due to predation.  

3. Growth potential: These models use fixed, non-mobile IBMs and a gridded spatial 

domain to develop maps of habitat quality, in a currency of growth rate potential, 

from measured attributes (prey abundance, temperature, etc.) of the system. 

Individuals are not permitted to move outside a homogenous volume of water (a 

grid cell), but conditions within the grid cell can be temporally dependent. 

4. Hydrodynamics and simple behaviors: Space is modeled explicitly, and complex, 

realistic hydrodynamic models are used to compute particle trajectories and to 

provide a Lagrangian description of the flow.  Particles may be passive in the 
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simplest approaches or behaviors may be prescribed (e.g., as a function of particle 

"age" or "size"). 

5. Hydrodynamics and static prey: Lagrangian particles are given  biological traits 

and the ability to sense their surrounding as the are advected by the flow.  Particles 

“grow” depending on the unique feeding environments through which they are 

advected.  Modifications to feeding by abiotic factors such as light and turbulence 

are explicitly included.  However, prey fields are static.  

6. Full life cycle, multigeneration, multispecies models: Several recent efforts have 

moved toward modeling the life cycles of suites of co-occurring species over many 

generations. These models generally do not incorporate hydrodynamic attributes of 

the system, but often have such features spatially and/or temporally dependent prey 

fields.  The long time span of the simulation allows novel investigations of 

processes such as the evolutionary stability of particular behavioral strategies. 

 

Clearly, the boundaries between these categories were chosen more to illustrate the 

development of the field than to provide a heiracrchy for model classification. The 

boundaries are therefore somewhat arbitrary and any particular model may fit in more 

than one group. Furthermore, our focus is mainly on larval fish, though we do bring in 

examples of copepods, scallops and larger fish – all of which are tractable with this 

approach. Finally, our review is intended to provide a brief look at the development of 

the field over the past ten years and a snapshot of where it is now. We therefore 

provide more of an overview rather than a detailed analysis of each example 

presented.  
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Review of Existing Approaches  

In this section, and based on the classification suggested above, we will discuss selected 

case-studies of spatially explicit IBMs in marine environments.  We begin by considering 

the simplest approximation to spatial dependence and consider progressively more 

complex and realistic representations. 

Implicit-space. Individual-based models, even models that are not spatially-explicit, 

generally require a consideration of space. In some of the first IBMs (Kitchell et al. 1977, 

Rice et al. 1983, Beyer and Laurence 1981; Laurence 1985) this was achieved by 

calculating a search volume for each larvae based on swim speed and reactive distance. 

This volume is multiplied by prey density and translated into an estimate of prey 

encountered per unit time.  In some of models, larval position in the water column might 

be changed in some cartesian coordinate system. However, modeling space did not have 

the same priority as bioenergetic components and the key concern was to understand how 

the animal grew.  

Introduced at this stage were models of foraging dynamics to investigate prey choice 

(Werner and Hall 1974; Pyke 1984; Crowder 1985) . These efforts eventually shed light 

on the ecological consequences of size-dependent predation under conditions of variable 

growth rate (Rice et al. 1993). As small scale physics associated with feeding became 

better understood fairly advanced treatments of feeding, enhanced by turbulent mixing, 

were developed (MacKenzie et al. 1994; Dower et al. 1997, Megrey and Hinckley 2001) 

and have become a mainstay in larval trophodynamic modeling (see Fig. 1). 
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Static-space. A logical advance was the development of models which explicitly 

defined space, usually in terms of spatial, but not temporal, variation in prey abundance. 

In these models, larval fish moved through regions, or patches (Letcher et al. 1996), with 

fixed levels of prey. Most of these models did not include physical factors such as 

turbulence.  Instead, the focus was on how time should be allocated within patches, how 

predation factors into cohort survival, or how movement decision rules effected the 

outcome of the experiment (Tyler and Rose 1997).      

Growth potential. These studies are a first step to introducing realistic representations 

of the spatial distribution of key variables such as temperature, oxygen, light levels, prey 

availability, etc.  In Brandt et al. (1992) a bioenergetic IBM was embedded in a spatially 

heterogeneous representation of its physical (estuarine) habitat (as determined by field 

measurements) to obtain the spatial distribution of growth rates of the target fish (see Fig. 

2).  In brief the water column was divided into a number of discrete cells. Biotic and 

abiotic variables in each cell were specified from field observations and input into fish 

foraging and growth models.  From the spatial distribution of fish growth potential, 

Brandt et al. (1992) were able to define the portion of the habitat volume that will 

support various levels of fish growth. Understanding the details of the distribution may 

be as important as knowing the mean conditions. Furthermore the resultant "growth 

volumes" can provide a mechanism for assessing the suitability of a particular habitat to 

support a species introduction and can aid in the definition and monitoring of ecosystem 

"health".  

Similar approaches, based on model-derived spatial structure of prey and habitat 

(circulation, turbulence and temperature) are discussed in Fiksen et al. (1998) and Lynch 
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et al. (2001) who produced Eulerian maps of potential larval fish growth rates.  Fiksen et 

al. (1998) examined the interactions between vertical profiles of wind-induced turbulence 

and light to define regions in the water column where highest ingestion rates can occur 

for certain fish larvae.  Lynch et al. (2001) found that, during early spring on Georges 

Bank, the distribution of certain prey (Calanus finmarchicus) is better matched spatially 

with the spawning location and subsequent drift of cod and haddock larvae than other 

potential prey (Pseudocalanus spp.).  Additionally, it was found that spawning in regions 

of high turbulence is detrimental to young larvae, suggesting that for survival of the 

earliest larval life stages spawning should occur away from these regions. 

Hydrodynamics and simple behavior.  Taking advantage of the advent of  

sophisticated and robust circulation models which capture realism on relevant spatial and 

temporal scales (see review by Haidvogel and Beckmann, 1998), perhaps the best 

established use of spatially explicit IBMs focuses on determining trajectories, or 

Lagrangian pathways, of planktonic stages of marine organisms in realistic flow fields.  

The main difference (and step-up) from the above "growth potential" category is that the 

flow field actively transports the modelled organisms through a spatially heterogeneous 

field (see Fig. 3).  The simplest of these studies ignore biotic factors such as feeding and 

predation; but include imposed swimming behaviors, spawning locations, etc.  Among 

the topics successfully investigated by these studies are the space-time pathways of larval 

fish from spawning grounds to nursery areas (Bartsch et al. 1989, Ådlansvik and Sundby 

1994), retention on submarine banks (Foreman et al. 1992; Helbig et al. 1992; Werner et 

al. 1993; Page et al. 1999), effects of interannual variability of physical forcing on 

dispersal of larval fish populations (Lough et al. 1994; Hermann et al. 1996; Rice et al. 
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1999) and migration of adult fish populations (Thomson et al. 1994; Rand et al. 1997; 

Walter et al. 1997), identification of  spawning locations (Quinlan 1999; Hare et al. 

1999; Stegmann et al. 1999) and the implied long-term dispersal by tidal currents (Hill 

1994).   A similar approach, focusing on the seeding of scallop beds on Georges Bank is 

discussed in Tremblay et al. (1994).  The exchange of copepods between deep ocean 

basins and shelf regions is described by Slagstad and Tande (1996), Hannah et al. (1998), 

Miller et al. (1998), Bryant et al. (1998), Gallego et al. (1999), Heath et al. (1999) and 

Heath (1999). 

Although lacking in key biological variables, the use of spatially explicit IBMs in this 

simplified form has been clearly established as a necessary first step in describing the 

environment sensed by marine organisms.  Approaches that considered feeding 

environment implicitly through its relation to temperature are those of Hinckley et al. 

(1996) and Heath and Gallego (1998).  Hinckley et al. (1996) showed the sensitivity of 

the population's size distribution as a function of trajectories through variable 

temperature fields (where growth was based on a Q10 relationship), as well as the 

differences that arise in horizontal dispersal due to differences in rates of growth and 

vertical behavior.  In Heath and Gallego (1998), temperature (resulting from a circulation 

model) was used as a proxy for feeding environment: prescription of the 3-D temperature 

field was used to determine individual growth rates of larval haddock.  It was found that 

the model-derived spawning locations resulting in the highest larval growth rates (as the 

larvae are advected in the model domain) coincided with the observed preferred 

spawning locations.  

Hydrodynamics and static prey. After the determination of Lagrangian pathways, the 
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next level of complexity commonly introduced into spatially explicit IBMs is an imposed 

spatially-dependent (but temporally fixed) prey field based on field observations.  Using 

these approaches, Lagrangian trajectories that are considered favorable for retention or 

appropriate for transport into nursery areas are more narrowly defined to include only 

those trajectories where the individuals encounter favorable feeding environments.  

Studies of this type include Werner et al. (1996) and  Hermann et al. (2001).  Figures (4 

and 5) show particle trajectories through spatially variable prey fields and the resulting 

distribution of larval sizes. 

These studies have also been used to explore other spatially-dependent interactions 

between predators and their prey.  For example, the perceived prey field by fish larvae 

can be effectively increased or reduced as a consequence of local variation in turbulence 

levels which alter volume searched (MacKenzie et al. 1994; Dower et al. 1997; Werner 

et al. 2001). This requires models to capture not just the spatial distribution of biotic 

components, but also their modulation by certain abiotic environmental factors.  An 

example of the  intersection of large and small scale physics affecting recruitment is 

given in  Werner et al. (1996) in which the effect of the feeding environment, modified  

by turbulence at the smallest scales, on larval growth and survival was examined.  They 

found that regions of larval survival (with growth rates comparable to field values) 

coincided with the hydrodynamically retentive subsurface regions of Georges Bank.  

However, these retentive regions were a subset of those defined by Werner et al. (1993) 

and  Lough et al. (1994).  The increase in larval survival in these smaller areas was due to 

an enhancement of contact rates and effective prey concentrations by turbulence within 

the tidal bottom boundary layer.  
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Full life cycle, multigeneration, multispecies models: Rose et al. (1996) simulated a 

population over a time span of 200 years using a combined individual-based, Leslie 

matrix model approach in a spatially explicit context.  The individual-based model was 

used to describe the first year of life, thereby providing year class information to the 

Leslie matrix, which then projected the population through time (one year) and generated 

abundance information for the next generation. The model was spatially explicit in that 

the IBMs were placed in a 150 x 150 x 1.5m compartment which had time variable 

physical conditions (temperature, light, turbidity) and time varying prey populations 

(both benthic and pelagic prey were used, dynamics modeled using a modified logistic 

curve). Density-dependence was investigated toggling the effect of predation on 

zooplankton population dynamics.  

The individual based section of this technique was extended to simulate a community 

of fish in Lake Mendota by McDermont et al. (2000) for a time span of 100 years. In this 

work, individuals representing a set of six species were tracked in three spatial boxes 

representing littoral, epilimnic and hypolimnic zones. Shifts between the three differing 

habitats were ontogenetically based. This model was used to investigate various scenarios 

such as stocking a particular predatory species or examining the effects of a die off.  

Complex phenomena associated with predation and competition, such as  density-

dependent growth, compensatory and depensatory mortality and food-web responses, 

were captured in this simulation and point to the importance of developing advanced 

multispecies simulations. 

 

Discussion and Future Directions 
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During the past decade, the use of spatially-explicit IBMs in the study of marine 

systems has proven quite useful on a number of fronts.  Coupled with spatially and 

temporally realistic descriptions of the physical environment, IBMs provide a tool to 

explore factors contributing to the individuals' unique time-histories and thus provide the 

ability to extract information about the population based on the variance among the 

individuals.   

Returning to Grimm's (1999) discussion on pragmatic versus paradigmatic reasons for 

using IBMs, we find most applications in marine systems fall into the pragmatic 

category.  Namely, IBMs have been largely used because they are the best (or most 

logical) tool to use to study these systems.  However, the study of Page et al. (1999) is a 

good example of the use of an IBM approach to address a fundamental population level 

question.  They compare empirical (field) observations on season and location of cod and 

haddock spawning with (IBM-derived) seasonal and geographic patterns of residence 

times  and find that fish populations may select areas and times of the year for spawning 

that enhance the probability of retention on Georges Bank, thus finding support for the 

member-vagrant hypothesis (Sinclair, 1988) of the regulation of geographic pattern in 

populations for marine species.  While this particular example was simplified by not 

including aspects of the organisms' feeding environment and growth characteristics, it is 

clear that we are on the verge of using IBMs to answer biologically complicated 

population dynamics questions.   

Linking spatially-explicit IBMs where full hydrodynamics and full (non-static) 

population dynamics co-occur will likely be attempted in the next two to five years (see 

Ault et al. 1999 for an example of such a linkage using McKendrick-von Forester 
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equations and a 2D hydrodynamic model).  This will allow further exploration of ideas 

such as Cushing's match-mismatch hypothesis where spawning strategies are related to 

timing of food availability and consequently the observed variability of certain marine 

populations.  One reason that these studies have not yet taken place is that to date the 

population dynamics of prey (e.g., copepods) have been studied separately from those of 

the predators (e.g., fish larvae).  These are now at a point where we are beginning to see 

the first attempts at integrating of these approaches (e.g., Ault et al. 1999, Hermann et al. 

2001, Hinckley et al. 2001).    

The added complexity of more realistic prey distribution will invite advances in 

approaches to determine behavior.  Externally imposed (and/or passive) behaviors may 

not make sense in view of the added detail of the feeding environment and will be likely 

replaced by model-derived behaviors that include components maximizing some 

biological characteristic, such as reproductive value (Giske et al. 1994; Fiksen and Giske, 

1995; and Fiksen et al. 1995).  Dynamic programming methods allow organisms to 

"find" optimal habitats by balancing risks of predation, growth and advective loss.  

In parallel to the application of IBMs to specific (or site-specific) systems, theoretical 

studies are also underway addressing the issue of how to translate, or scale, the system 

from IBMs into models for aggregated quantities such as densities.  Pascual and Levin 

(1999) address questions of when variability at the individual level is essential to the 

dynamics of aggregations and at which spatial scales should densities be defined?  In 

their study they identify spatial scales where certain predator-prey systems and other 

oscillatory ecological systems may display a dynamic regime at an intermediate scale of 

aggregation, one in which local interactions are still important.  As advances in spatially-
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explicit IBMs continue, integration of such theoretical developments into modeling of 

specific (or pragmatic) studies will need to be considered.   

 

Potential Links to Management Questions  

IBMs have been used to address management concerns in several different areas. For 

instance, IBMs were used to investigate the optimal stocking time and size for fingerling 

walleye (Stizostedion vitreum vitreum) (Madenjian et al. 1991) and the accumulation of 

polychlorinated biphenyls in lake trout (Salvelinus namaycush) (Madenjian et al. 1993). 

However, one of the most compelling roles for spatially-explicit IBMs is in the arena of 

fisheries management. IBM studies are currently generating testable hypotheses relevant 

to fisheries recruitment and should have an impact on how populations are managed. 

IBMs offer a platform to study recruitment problems at the appropriate scales (see for 

example SABRE, GLOBEC, FOCI) and can also help us unravel the complex foodweb 

interactions (McDermot et al. 2000). This suggests an increasing role for spatially 

explicit IBMs not only in research, but perhaps also in practical management 

applications. 

A case in point is the development of workable management plans for species such as 

scallops with benthic adult and pelagic larval stages. Spatially explicit IBMs are 

particularly valuable in these circumstances because they can more closely model the 

actual process of recruitment. In these kinds of applications, realistic descriptions of 

habitat, hydrodynamics, larval transport pathways and adult growth and survival can 

provide a mechanistic understanding of how recruitment variability arises from various 

modeled forces and how local populations may be interconnected. 
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Spatially explicit IBMs may also be useful in designing and assessing marine 

protected areas (MPAs). These models capture important aspects of population dynamics 

as well as drift and transport processes. This allows one to quantify the degree of 

connectance and exchange between adjacent and distant areas (either protected or not) in 

a realistic and meaningful way.  This can provide a method of configuring MPAs to 

address a great many different objectives (biomass protection, generation of fishable 

biomass, maintenance of source/sink populations in a network of MPAs). This is 

extremely relevant information for managers. 

Because spatially explicit IBMs can offer mechanistic suggestions as to how and why 

populations exist in certain systems (Huse and Giske 1998, Quinlan et al. 1999), we have 

an inroad into understanding variability in marine population as well as a testbed for 

developing field testable hypotheses and refining ecological theory. 
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Figure 1.  Schematic of encounter between a fish larva and its prey.  The larval reactive 
distance is R (from Dower et al. 1997). 
 
Figure 2. Cross sectional map of Lake Ontario transect showing (A) measured water 
temperature, (B) measured prey fish biomass density and (D) modeled growth potential 
(from Mason and Brandt 1996) 
 
Figure 3. Trajectories of particles from release location on the North Sea continental shelf 
(from Heath and Gallego, 1997). 
 
Figure 4. Particle locations advected passively on Georges Bank.  Spawning location and 
positions 20, 40 and 60 days post-spawn (from Werner et al. 1996). 
 
Figure 5. Size distribution of modeled individual cod larvae during 40 days post-hatch 
(from Werner et al. 1996). 
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Figure 1.  Schematic of encounter between a fish larva and its prey.  The larval reactive 
distance is R (from Dower et al. 1997). 
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Figure 2. Cross sectional map of Lake Ontario transect showing (A) measured water 
temperature, (B) measured prey fish biomass density and (D) modeled growth potential 
(from Mason and Brandt 1996) 
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Figure 3. Trajectories of particles from release location on the North Sea continental shelf 
(from Heath and Gallego, 1997). 
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Figure 4. Particle locations advected passively on Georges Bank.  Spawning location and 
positions 20, 40 and 60 days post-spawn (from Werner et al. 1996). 
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Figure 5. Size distribution of modeled individual cod larvae during 40 days post-hatch 
(from Werner et al. 1996). 
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