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Abstract

There has been much recent interest in the use of the earliest-deadline-first (EDF) algorithm for scheduling

soft real-time sporadic task systems on identical multiprocessors. In hard real-time systems, a significant dis-

parity exists between EDF-based schemes and Pfair scheduling: on M processors, the worst-case schedulable

utilization for all known EDF variants is approximately M/2, whereas it is M for optimal Pfair algorithms. This

is unfortunate because EDF-based algorithms entail lower scheduling and task-migration overheads. However,

such a disparity in schedulability can be alleviated by easing the requirement that all deadlines be met, which

may be sufficient for soft real-time systems. In particular, in recent work, we have shown that if task migrations

are not restricted, then EDF (i.e., global EDF) can ensure bounded tardiness for a sporadic task system with

no restrictions on total utilization. Unrestricted task migrations in global EDF may be unappealing for some

systems, but if migrations are forbidden entirely, then bounded tardiness cannot be guaranteed. In this paper,

we address the issue of striking a balance between task migrations and system utilization by proposing an algo-

rithm called EDF-fm, which is based upon EDF and treads a middle path, by restricting, but not eliminating,

task migrations. Specifically, under EDF-fm, the ability to migrate is required for at most M − 1 tasks, and

it is sufficient that every such task migrate between two processors and at job boundaries only. EDF-fm, like

global EDF, can ensure bounded tardiness to a sporadic task system as long as the available processing capacity

is not exceeded, but, unlike global EDF, may require that per-task utilizations be capped. The required cap is

quite liberal, hence, EDF-fm should enable a wide range of soft real-time applications to be scheduled with no

constraints on total utilization.
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1-0425. The third author was also supported by an IBM Ph.D. fellowship. A preliminary version of this paper was published in the
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1 Introduction

Multiprocessor-based real-time systems are now commonplace. Designs range from single-chip architectures, with a

modest number of processors, to large-scale signal-processing systems, such as synthetic-aperture radar systems. In

recent years, scheduling techniques for such systems have received considerable attention. In an effort to catalogue

these various techniques, Carpenter et al. [13] suggested the categorization shown in Table 1, which pertains to

scheduling algorithms for periodic or sporadic task systems. In such systems, each task is invoked repeatedly, and

each such invocation is called a job. The table classifies scheduling algorithms along two dimensions:

1. Complexity of the priority mechanism. Along this dimension, scheduling algorithms are categorized

according to whether task priorities are (i) static, (ii) dynamic but fixed within a job, or (iii) fully-dynamic.

Common examples of each type include (i) rate-monotonic (RM) [28], (ii) earliest-deadline-first (EDF) [28],

and (iii) least-laxity-first (LLF) [32] scheduling.

2. Degree of migration allowed. Along this dimension, algorithms are classified as follows: (i) no migration

(i.e., task partitioning), (ii) migration allowed, but only at job boundaries (i.e., dynamic partitioning at the

job level), and (iii) unrestricted migration (i.e., jobs are also allowed to migrate).

The entries in Table 1 give known upper and lower bounds on schedulable utilization for each category, assuming

that jobs can be preempted and resumed later. If U(M) is a schedulable utilization for an M -processor scheduling

algorithm A, then A can correctly schedule any set of periodic (or sporadic) tasks with total utilization not

exceeding U(M) on M processors. The top left entry in the table means that there exists some algorithm in the

unrestricted-migration/static-priority class that can correctly schedule every task set with total utilization at most

M2

3M−2 , and that there exists some task set with total utilization slightly higher than M+1
2 that cannot be correctly

scheduled by any algorithm in the same class. The other entries in the table have a similar interpretation.

According to Table 1, scheduling algorithms from only one category can be optimal , i.e., can schedule tasks

correctly with no utilization loss, namely, algorithms that allow full migration and use fully-dynamic priorities (the

top right entry). The known optimal algorithms in this category use the proportionate fair or Pfair approach [11] for

scheduling. Pfair algorithms break tasks into smaller uniform pieces called “subtasks,” which are then scheduled.

The subtasks of a task may execute on any processor, i.e., tasks may migrate within jobs. Hence, Pfair scheduling

algorithms may suffer from higher scheduling and migration overheads than other schemes. Thus, the other

categories in Table 1 are still of interest.

In five of the other categories, the term α represents a cap on individual task utilizations. If such a cap is not

exploited, then as shown in [13], on M ≥ 2 processors, no algorithm in these categories can successfully schedule

all task systems with total utilization exceeding (M + 1)/2. Given the scheduling and migration overheads of Pfair
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Table 1: (Table from [13]. Some entries have been updated to reflect later advances.) Known lower and upper
bounds on the worst-case schedulable utilization on M processors, U(M) (denoted U in the table), for the differ-
ent classes of scheduling algorithms. α = umax, the maximum utilization of any task in the task system under
consideration. Citations next to the entries indicate the source of each bound.

algorithms, the disparity in schedulability between Pfair algorithms and those in other categories is somewhat

disappointing.

Fortunately, as the table suggests, if individual task utilizations can be capped, then it is sometimes possible to

significantly relax restrictions on total utilization. For example, in the entries in the middle column, as α approaches

0, U(M) approaches M . This follows from work on EDF scheduling on multiprocessors [8, 10, 31], which shows

that an interesting “middle ground” exists between the worst-case schedulable utilizations of EDF-based algorithms

(which is M/2 approximately) and Pfair algorithms (which is M). In essence, establishing this middle ground

involved addressing the following question: if per-task utilizations are restricted, and if no deadlines can be missed,

then what is the largest overall utilization that can be allowed? This middle ground can be approached in a different

way by addressing an alternative question: if per-task utilizations are restricted, but overall utilization is not, then

by how much can deadlines be missed? Our interest in this question stems from the increasing prevalence of

applications such as networking, multimedia, and immersive graphics systems (to name a few) that have only soft

real-time requirements.

In related work (which followed the publication of the results herein in preliminary form [3]), we have shown

that if tasks are not pinned to processors and may migrate freely, then both preemptive and non-preemptive global

EDF can guarantee bounded tardiness while requiring no restrictions on either per-task utilizations or the total

system utilization [16]. Tardiness bounds have been derived under preemptive EDF by Valente and Lipari also [39].

However, unrestricted migration may be undesirable in some systems, such as those that have large working sets,

and hence, high migration costs. On the other hand, a no-migration algorithm has no scope of improving system

utilization even if bounded tardiness is tolerable. This is because, if a task system cannot be partitioned among the

available processors without overutilizing some processor, then deadline misses and tardiness for the tasks assigned
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to that processor will increase with time. In this paper, we address the issue of finding an acceptable middle ground.

Contributions of this paper. Our first contribution is the design of an algorithm called EDF-fm, which treads

a middle path between full-migration and no-migration algorithms by restricting the number of tasks that need to

migrate, and the derivation of a tardiness bound that can be guaranteed under it. The tardiness bound derived can

be computed in O(N) time, where N is the number of tasks. Though our basic scheme adheres to the conditions

of the middle entry of Table 1 (restricted migration, job-level dynamic priorities), the degree of migration that is

needed is in fact lower than that suggested by that entry: under EDF-fm, only up to M − 1 tasks, where M is the

number of processors, ever migrate, and those that do, do so only between jobs and only between two processors.

As noted in [13], migrations between jobs should not be much of a concern for tasks for which little state is carried

over from one job to the next.

The maximum tardiness that any task may experience under EDF-fm is dependent on the per-task utilization

cap assumed—the lower the cap, the lower the tardiness threshold. Even with a cap as high as 0.5 (half of the

capacity of one processor), reasonable tardiness bounds can be guaranteed for a significant percentage of task

systems. (In contrast, if α = 0.5 in the middle entry of Table 1, then approximately 50% of the system’s overall

capacity may be lost.) Hence, our scheme should enable a wide range of soft real-time applications to be scheduled

in practice with no constraints on total utilization. In addition, when a job misses its deadline, we do not require

a commensurate delay in the release of the next job of the same task. As a result, each task’s required processor

share is maintained in the long term.

As a second contribution, we propose several heuristics for assigning to processors those tasks that do not

migrate under EDF-fm, and, through extensive simulations, evaluate the efficacy of these heuristics in lowering

the tardiness bound that can be guaranteed. We also present a simulation-based evaluation of the accuracy of

the tardiness bound under the heuristic identified to be the best. Finally, we provide a set of iterative formulas,

which may potentially require exponential time, for computing a tardiness bound that is less pessimistic than the

O(N)-time bound referred to earlier, and evaluate its accuracy through simulations.

Organization. The rest of this paper is organized as follows. Section 2 describes the system model used in this

paper. This is followed in Section 3 by a very brief overview of Pfair scheduling that reviews concepts used in

the design of EDF-fm. (This section may be skipped during an initial reading and referred to when needed in

Section 4.2.2.) In Section 4, Algorithm EDF-fm is described and Section 5 derives a tardiness bound under it.

Techniques and heuristics that can be used to reduce tardiness observed in practice, and exponential-time iterative

formulas for computing more accurate tardiness bounds, as described above, are presented in Section 6. Then,

in Section 7, a simulation-based evaluation of our basic algorithm and proposed heuristics is presented, and the
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accuracy of the tardiness bound derived is assessed. Finally, after related work is reviewed in Section 8, Section 9

concludes.

2 System Model

A sporadic task system [32] τ consisting of N > M independent, sporadic tasks is to be scheduled upon a multi-

processor platform with M ≥ 2 identical processors. The kth processor is denoted Pk, where 1 ≤ k ≤ M . Each

task τi(ei, pi), where 1 ≤ i ≤ N , is characterized by a minimum inter-arrival time, also referred to as its period ,

pi > 0, a worst-case execution cost ei ≤ pi, and a relative deadline Di. In this paper we assume that Di = pi holds

for all i. Every task τi may be invoked zero or more times with two consecutive invocations separated by at least

pi time units. Each invocation of τi is referred to as a job of τi and the kth job of τi, where k ≥ 1, is denoted

τi,k. The first job may be invoked or released at any time at or after time zero. The release time of job τi,k is

denoted ri,k. A periodic task system, in which every two consecutive jobs of every task τi are separated by exactly

pi time units, is a special case of a sporadic task system. Every job of τi executes for at most ei time units. The

absolute deadline (or simply, deadline) of τi,k, denoted di,k and given by ri,k + Di, is the time at or before which

τi,k should complete execution. Each task is sequential, and at any time may execute on at most one processor.

The utilization of τi is given by ui = ei/pi. τi is said to be a light task if 0 < ui ≤ 1/2 holds. The total utilization

of τ is defined as Usum(τ) =
∑n

i=1 ui. The maximum utilization and the maximum and minimum execution cost of

any task are denoted umax(τ), emax(τ), and emin(τ), respectively. The task system τ is omitted from this notation

when unambiguous.

Soft real-time model. In soft real-time systems, tasks may miss their deadlines. This paper is concerned with

the derivation of a lateness or tardiness [33] bound for a soft, sporadic real-time task system scheduled under

EDF-fm (described in Section 4). Formally, the tardiness of a job τi,j in schedule S is defined as tardiness(τi,j ,S) =

max(0, t− di,j), where t is the time at which τi,j completes executing in S. The tardiness of a task system τ under

scheduling algorithm A is defined as the maximum tardiness of any job of any task in τ in any schedule for τ under

A. If κ(M) is the maximum tardiness of any task system with Usum ≤ M under A on M processors, then A is said

to ensure a tardiness bound of κ(M) on M processors. Because each task is sequential and jobs have an implicit

precedence relationship, a later job cannot commence execution until all prior jobs of the same task have completed

execution. Thus, a missed deadline effectively reduces the interval over which the next job should be scheduled in

order to meet its deadline.

Though tasks in a soft real-time system are allowed to have nonzero tardiness, we assume that missed deadlines

do not delay future job releases. Hence, guaranteeing a reasonable bound on tardiness that is independent of time
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is sufficient to ensure that in the long run each task is allocated a processor share that is in accordance with

its utilization. Thus, this model should be useful in settings where maintaining correct share allocations is more

important than meeting every deadline. In addition, schemes that ensure bounded tardiness are useful in systems

in which a utility function is defined for each task [21]. Such a function specifies the “value” or usefulness of the

current job as a function of time; beyond a job’s deadline, its usefulness typically decays from a positive value to

0 or below. The amount of time after its deadline beyond which the completion of a job has no value implicitly

specifies a tardiness threshold for the corresponding task.

Discussion. Systems that track people and machines, virtual-reality systems, multimedia systems, systems that

host web-sites, and some signal-processing systems are some example applications for which the soft real-time

model described above may be applicable. For instance, consider a video-decoding task in a multimedia system

that is decoding a video stream at the rate of 30 frames per second. While it is desirable that the task decode

every frame within 33.3 ms, a tardiness of a few milliseconds will not compromise the quality of the output if the

rate of decoding is still 30 frames per second over reasonably long intervals of time. Tardiness may add to jitter in

job completion times, but it is unlikely that a jitter of the order of a few tens of milliseconds will be perceptible

to the human eye. Similarly, tardiness will add to the buffering needs of a task, but should be reasonable, if the

maximum tardiness is reasonably bounded and a system designer is able to choose a tardiness value that balances

the processing and memory needs of the system. A similar reasoning can be applied to see that the other example

soft real-time applications mentioned above can also tolerate a small, constant tardiness that is independent of

elapsed time.

3 Pfair Scheduling Basics

In this section, we describe some basic concepts of Pfair scheduling that are used in the design of EDF-fm.

Currently, Pfair scheduling [11] is the only known way of optimally scheduling recurrent (i.e., periodic, sporadic,

and rate-based) real-time task systems on multiprocessors. In Pfair scheduling terminology, each task T has an

integer execution cost T.e and an integer period T.p ≥ T.e. The utilization of T , T.e/T.p, is also referred to as the

weight of T and is denoted wt(T ). (Note that in the context of Pfair scheduling, tasks are denoted using upper-case

letters without subscripts.)

Pfair algorithms allocate processor time in discrete quanta that are uniform in size. Assuming that a quantum

is one time unit in duration, the interval [t, t + 1), where t is a non-negative integer, is referred to as slot t. At

most one task may execute on each processor in each slot, and each task may execute on at most one processor in

every slot. The sequence of allocation decisions over time slots defines a schedule S. Formally, S : τ × N 7→ {0, 1}.
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Figure 1: (a) Windows of the first job of a periodic task T with weight 3/7. This job consists of subtasks T1, T2,
and T3, each of which must be scheduled within its window. (This pattern repeats for every job.) (b) A partial
complementary Pfair schedule for a pair of complementary tasks, T and U , on one processor. The slot in which a
subtask is scheduled is indicated by an “X.” In this schedule, every subtask of U is scheduled in the first slot of its
window, while every subtask of T is scheduled in the last slot.

S(T, t) = 1 iff T is scheduled in slot t.

The notion of a Pfair schedule for a periodic1 task T is defined by comparing such a schedule to an ideal fluid

schedule, which allocates wt(T ) processor time to T in each slot. Deviation from the allocation in a fluid schedule

is captured by the concept of lag. Formally, the lag of task T at time t in schedule S is the difference between the

total allocations to T in a fluid schedule and S in the interval [0, t), i.e.,

lag(T, t,S) = wt(T ) · t −

t−1
∑

u=0

S(T, u). (1)

A schedule S is said to be Pfair iff

(∀T, t :: −1 < lag(T, t,S) < 1) (2)

holds. Informally, the allocation error associated with each task must always be less than one quantum. If relative

deadlines are equal to periods, then the above constraints on lag are sufficient to ensure that all job deadlines of a

periodic task system are met.

The lag constraints above also have the effect of breaking each task T into a potentially infinite sequence of

subtasks , each with an execution requirement of one quantum. The ith subtask of T is denoted Ti, where i ≥ 1.

Each subtask Ti is associated with a pseudo-release r(Ti) and a pseudo-deadline d(Ti) defined as follows.

r(Ti) =

⌊

i − 1

wt(T )

⌋

(3)

d(Ti) =

⌈

i

wt(T )

⌉

(4)

1Unless otherwise specified, by periodic, we mean synchronous, periodic.
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To satisfy (2), Ti must be scheduled in the interval w(Ti) = [r(Ti), d(Ti)), termed its window . Figure 1(a) shows the

windows of the first job of a periodic task with weight 3/7. In this example, r(T1) = 0, d(T1) = 3, and w(T1) = [0, 3)

hold.

As mentioned in Section 1, under EDF-fm, each migrating task executes on two processors. To guide us in the

assignment of the jobs of a migrating task to its processors (refer Section 4), we define the notion of a complementary

task .

Definition 1: Task T is said to be complementary to U iff wt(U) = 1 − wt(T ).

Tasks T and U shown in Figure 1(b) are complementary to one another. A partial Pfair schedule for these two

tasks on one processor, in which the subtasks of T are always scheduled in the last slots of their windows and

those of U in the first slots, is also shown. We call such a schedule a complementary schedule. By Lemma 1 below

(proved in an appendix), such a schedule is always possible for two complementary periodic tasks.

Lemma 1 For any two synchronous, periodic tasks T and U that are complementary, a schedule in which every

subtask of T is scheduled in the first slot of its window and every subtask of U in its last slot, or vice versa, is

feasible on one processor.

4 Algorithm EDF-fm

In this section, we present Algorithm EDF-fm (fm denotes that each task is either fixed or migrating), an EDF-based

multiprocessor scheduling algorithm for soft, sporadic real-time task systems. EDF-fm requires no restrictions on

total system utilization and can guarantee bounded tardiness for task systems in which each task is light. Because

a light task can consume up to half the capacity of a single processor, we do not expect this limitation to be too

restrictive in practice. Further, at most M − 1 tasks need to be able to migrate, and each such task migrates

between two processors and at job boundaries only. This has the benefit of lowering the number of tasks whose

states need to be stored on any given processor and the number of processors on which each task’s state needs to

be stored. Also, the run-time context of a job, which can be expected to be larger than that of a task, need not be

transferred between processors.

EDF-fm consists of two phases: an assignment phase and an execution phase. The assignment phase executes

offline and consists of sequentially assigning each task to one or two processors. In the execution phase, jobs are

scheduled for execution at run-time such that over reasonable intervals (as explained later), each task executes

at a rate that is commensurate with its utilization. The two phases are explained in detail below. The following
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notation shall be used.

si,j
def
= Percentage of Pj ’s processing capacity (expressed as a fraction) allocated to τi, 1 ≤

i ≤ N, 1 ≤ j ≤ M . (τi is said to have a share of si,j on Pj .)
(5)

fi,j
def
=

si,j

ui

, the fraction of τi’s total workload that Pj can handle, 1 ≤ i ≤ N, 1 ≤ j ≤ M. (6)

ρi
def
=

Maximum percentage of Pi’s processing capacity (expressed as a fraction) that can
be allocated to tasks in τ , 1 ≤ i ≤ M . (In other words, the sum of all shares assigned
to tasks on Pi may not exceed ρi.)

4.1 Assignment Phase

The assignment phase allocates or assigns tasks to processors, with each task assigned to either one or two processors.

Tasks assigned to two processors are called migrating tasks, while those assigned to only one processor are called

fixed or non-migrating tasks. A fixed task τi is assigned a share, si,j , equal to its utilization ui on the only processor

Pj to which it is assigned. A migrating task has shares on both processors to which it is assigned. The sum of its

shares equals its utilization. The assignment phase of EDF-fm also ensures that at most two migrating tasks are

assigned to each processor, and that on each Pi, the sum of allocations to all tasks does not exceed a fraction ρi ≤ 1

of Pi’s processing capacity. (Since tardiness can be lowered by lowering ρi, a value less than one may sometimes

be desirable.)

In Figure 2, pseudo-code is given for a a task-assignment algorithm, denoted Assign-Tasks, that satisfies the

following properties for every task system τ with umax(τ) ≤ min1≤i≤M ρi and Usum(τ) ≤
∑M

i=1 ρi.

(P1) Each task is assigned shares on at most two processors. A task’s total share equals its utilization.

(P2) Each processor is assigned at most two migrating tasks and may be assigned any number of fixed tasks.

(P3) The sum of the shares allocated to all tasks on Processor Pi is at most ρi.

In this pseudo-code, the ith element u[i] of the global array u represents the utilization ui of task τi, s[i][j] denotes

si,j (as defined in (5)), the ith element of array p, which is array p[i], contains the processor(s) to which task i is

assigned; arrays m[i] and f [i] denote the migrating tasks and fixed tasks assigned to Processor i, respectively. Note

that p[i] and m[i] are each vectors of size two.

Assign-Tasks allocates tasks in sequence to processors, starting from the first processor. Tasks and processors

are both considered sequentially. Local variables proc and task denote the current processor and task, respectively.

Tasks are assigned to proc as long as the upper limit, ρproc, on the processing capacity of proc is not exhausted. If

the current task task cannot receive its full share of utask from proc, then part of the processing capacity that it

requires is allocated on the next processor, proc + 1, such that the sum of the shares allocated to task on the two

processors equals utask. Note that if umax ≤ ρi, for all i, such an assignment is possible for any task. It is easy to

8



global var

u : array [1..N ] of rational assigned task utilizations;
ρ: array [1..M ] of rational assigned processor capacities;
s : array [1..N ] of array [1..M ] of rational initially 0.0;
p : array [1..N ] of array [1..2] of 0..M initially 0;
m: array [1..M ] of array [1..2] of 0..N initially 0;
f : array [1..M ] of array [1..N ] of 0..N initially 0

Algorithm Assign-Tasks()

local var

� identifier for current processor
proc : 1..M initially 1;

� identifier for current task
task : 1..N ;

� unassigned utilization on current processor
AvailUtil : rational;

� index of the migrating and fixed tasks on current processor
� mt and ft are used to index into m[proc] and f [proc]

mt , ft : integer initially 0

1 AvailUtil := ρ[1];
2 for task := 1 to N do

3 if AvailUtil ≥ u[task ] then

4 s[task ][proc] := u[task ];
5 AvailUtil := AvailUtil − u[task ];
6 ft := ft + 1;
7 p[task ][1] := proc;
8 f [proc][ft ] := task

else

9 if AvailUtil > 0 then

10 s[task ][proc] := AvailUtil ;
11 mt := mt + 1;
12 m[proc][mt ] := task ;
13 p[task ][1], p[task ][2] := proc, proc + 1;
14 mt , ft := 1, 0;
15 m[proc + 1][mt ] := task

else

16 mt , ft := 0, 1;
17 p[task ][1] := proc + 1;
18 f [proc + 1][ft ] := task

fi

19 proc := proc + 1;
20 s[task ][proc] := u[task ] − s[task ][proc − 1];
21 AvailUtil := ρ[proc] − s[task ][proc]

fi

od

Figure 2: Algorithm Assign-Tasks.

see that if Usum ≤
∑M

i=1 ρi also holds, then assigning tasks to processors following this simple approach satisfies

(P1)–(P3).
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Figure 3: Task assignment on three processors for the task
set in Example 1 using Algorithm Assign-Tasks.

Example 1. Consider a task set τ composed of nine

tasks: τ1(5, 20), τ2(3, 10), τ3(1, 2), τ4(2, 5), τ5(2, 5),

τ6(1, 10), τ7(2, 5), τ8(7, 20), and τ9(3, 10). The total

utilization of this task set is three. A share assignment

produced by Assign-Tasks when ρ1 = ρ2 = ρ3 = 1.0

is shown in Figure 3. In this assignment, τ3 and τ7

are migrating tasks; the remaining tasks are fixed. τ3

has a share of 9
20 on processor P1 and a share of 1

20

on processor P2, while τ7 has shares of 1
20 and 7

20 on

processors P2 and P3, respectively.

4.2 Execution Phase

Having devised a way of assigning tasks to processors, the next step is to design an online scheduling algorithm

that is fairly simple, easy to analyze, and can ensure bounded tardiness. For a fixed task, we merely need to decide
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when to schedule each of its jobs on its (only) assigned processor. For a migrating task, we must decide both when

and where its jobs should execute. Before describing our scheduling algorithm, we discuss some considerations that

led to its design.

Design complications. In order to analyze a scheduling algorithm and for the algorithm to guarantee bounded

tardiness, it should be possible to bound the total demand for execution time by all tasks on each processor over

well-defined time intervals. We first argue that bounding total demand may not be possible if the jobs of migrating

tasks are allowed to miss their deadlines.

Recall that a deadline miss of a job does not lead to a postponement of the release times of subsequent jobs

of the same task. Furthermore, no two jobs of a task may execute in parallel. Hence, the tardiness of a job of a

migrating task executing on one processor can postpone the execution of its successor job, which may otherwise

execute in a timely manner on a second processor. In the worst case, the second processor may be forced to idle.

The tardiness of the second job may also impact the timeliness of fixed tasks and other migrating tasks assigned to

the same processor, which in turn may lead to deadline misses of both fixed and migrating tasks on other processors

or unnecessary idling on other processors.

As a result, a set of dependencies is created among the jobs of migrating tasks, resulting in an intricate linkage

among processors that complicates scheduling analysis. It is unclear how per-processor demand can be precisely

bounded when activities on different processors become interlinked.

Let us look at a concrete example that reveals this linkage among processors. Consider the task set τ , introduced

earlier, with task assignments and processor shares shown in Figure 3. For simplicity, assume that the execution

of the jobs of a migrating task alternate between the two processors to which the task is assigned. τ3 releases its

first job on P1, while τ7 releases its first job on P3. (We are assuming such a näıve assignment pattern to illustrate

the processor linkage using a short segment of a real schedule. Such a linkage occurs even with an intelligent

job-assignment pattern if migrating tasks miss their deadlines.) A complete schedule up to time 27, with the jobs

assigned to each processor scheduled using EDF, is shown in Figure 4.

In Figure 4, the sixth job of the migrating task τ3 misses its deadline (at time 12) on P2 and completes executing

at time 14. This prevents the next job of τ3 released on P1 from being scheduled until time 14 and it misses its

deadline. Because job releases are not postponed due to deadline misses, the seventh job of τ3 is released at time

12 and has a deadline at time 14.

The missed deadline of the migrating task τ3 impacts the execution of the fixed tasks also on P2. (It may

seem that τ3’s misses can be avoided by determining processor assignments for its jobs dynamically. However, a

reasonable strategy that is not convoluted does not appear to be possible.) The deadline misses of the fixed tasks

τ4, τ5, and τ6 cause the migrating task τ7 to miss a deadline on P2. In particular, the fourth job of τ7 misses its
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Figure 4: Illustration of processor linkage.

deadline, which in turn reduces the interval over which the fifth job of the same task can execute on P3. Note that

on P3, during [25,27), the fifth job of τ7 is waiting (while the second job of τ8 with a later deadline is scheduled)

due to its dependence on its prior job, which is still pending on P2. Thus, a nontrivial linkage is established among

the processors that impacts system tardiness.

In order to eliminate the processor linkage described above that complicates analysis, choosing to ensure that

migrating tasks never miss their deadlines was unavoidable in the design of EDF-fm. Consequently, the scheduling

algorithm deployed on each processor and the guidelines used in distributing jobs of migrating tasks are as described

in the following subsections.
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wx
wy wz w{

ne_l\XX_e |

}~j }~� }~��~j �~�

�~a
}~a

Figure 5: Schematic representation of EDF-fm in the execution phase.

4.2.1 Per-Processor Scheduling Rules

In this subsection, we describe how each processor schedules its jobs.

As shall be seen in the next subsection, jobs of migrating tasks are assigned to processors using static rules

that are independent of run-time dynamics. The jobs assigned to a processor are scheduled independently of other

processors, and on each processor, migrating tasks are statically prioritized over fixed tasks. Jobs within each

task class (i.e., fixed and migrating) are scheduled using EDF, which is optimal on uniprocessors. A schematic

representation of EDF-fm in the execution phase is shown in Figure 5. (Practical considerations in implementing

EDF-fm in a real system are discussed at the end of this section after the algorithm has been described in its

entirety.) The per-processor priority scheme described above, together with the restriction that migrating tasks

have utilizations at most 1/2, and the task assignment property (from (P2)) that there are at most two migrating

tasks per processor, ensures that migrating tasks never miss their deadlines. To see this, first observe that the

execution of jobs of migrating tasks cannot be impacted by fixed tasks (because migrating tasks are accorded

higher priority than fixed tasks). Next, the sum of the utilizations of the up to two migrating tasks assigned

to any processor is at most one. Hence, since EDF is the second level scheduler, regardless of how a migrating

task’s jobs are distributed between its processors, all deadlines of migrating tasks will be met. Therefore, the

jobs of migrating tasks executing on different processors do not impact one another, and each processor can be

analyzed independently. Thus, the multiprocessor scheduling analysis problem at hand is transformed into a simpler
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Figure 6: Assignment of periodically released jobs of migrating task τ7 to processors P2 and P3.

uniprocessor one.

4.2.2 Distribution of Jobs of Migrating Tasks

In the description of EDF-fm, we are left with defining static rules that map the jobs of migrating tasks to processors.

Since a migrating task will never miss deadlines under the scheduling algorithm described in Section 4.2.1 above,

regardless of how its jobs are distributed, our main goal in the design of the distribution algorithm is to minimize

tardiness for fixed tasks.

Considerations in the distribution of migrating jobs. A näıve assignment of the jobs of a migrating task to

its processors can cause an over-utilization on one of its assigned processors and adversely impact fixed tasks. To

lower tardiness for fixed tasks, our goal is to determine a job distribution pattern that can prevent over-utilization

in the long run by ensuring that over well-defined time intervals (explained later), on each processor, the execution

of a migrating task is roughly uniform and the demand the task places is in accordance with its allocated share on

that processor.

For example, consider the migrating task τ7(2, 5) in Example 1. τ7 has a share of s7,2 = 1
20 on P2 and s7,3 = 7

20

on P3. Also, f7,2 =
s7,2

u7
= 1

8 and f7,3 =
s7,3

u7
= 7

8 , which imply that P2 and P3 should be capable of executing 1
8 and

7
8 of the workload of τ7, respectively. Our goal is to devise a job assignment pattern that would ensure that, in the

long run, the fraction of a migrating task τi’s workload executed on Pj is close to fi,j , and at any time deviation

from this ideal is minimized. One such job assignment pattern for τ7 over interval [0, 80) is shown in Figure 6.

Assuming that τ7 is a synchronous, periodic task,2 the pattern in [0, 40) would repeat every 40 time units.

In the job assignment of Figure 6, exactly one job out of every eight consecutive jobs of τ7 released in the interval

[5k, 5(k +8)), where k ≥ 0, is assigned to P2. Because e7 = 2, τ7 places a demand for two units of time, i.e., 1/20th

of P2, in [5k, 5(k + 8)). Because τ7 is allocated a share of s7,2 = 1/20 on P2, this job assignment pattern ensures

that in the long run τ7 does not overload P2. However, the demand due to τ7 on P2 over short intervals may exceed

or fall below the share allocated to it. For instance, with this assignment, τ7 requires two units of time, i.e., 2/5 of

2The first job of a synchronous, periodic task is released at time 0.
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P2 in the interval [40k + 35, 40(k + 1)), and zero time units in the interval [40k, 40k + 35). Similarly, exactly seven

out of every eight consecutive jobs of τ7 are assigned to P3. Thus, τ7 requires 14 units of time, or 7/20 of the time,

in [5k, 5(k + 8)), and the share allocated to it matches this need. However, as with P2, the demand due to τ7 on

P3 over shorter intervals may deviate from its long-term share.

A job assignment pattern like the one described above can ensure that, over the long term, the demand of each

migrating task on each processor is in accordance with the share allocated to it. However, as explained above, such

an assignment pattern can result in a migrating task overloading a processor over short time intervals, leading to

deadline misses for fixed tasks. Nevertheless, because a deadline miss of a job does not delay the next job release

of the same task, this scheme also ensures, over the long term, that each fixed task executes at its prescribed rate

(given by its utilization). Later in this section, we show that the amount by which fixed tasks can miss their

deadlines due to the transient overload of migrating tasks is bounded.

A job assignment pattern similar to the one in Figure 6 can be defined for any migrating task. We draw upon

some concepts of Pfair scheduling to derive formulas that can be used to determine such a pattern at run-time. As

mentioned in Section 3, currently, Pfair scheduling [11] is the only known way of optimally scheduling recurrent

real-time task systems on multiprocessors. Pfair algorithms achieve optimality by requiring each task to execute

at a more uniform rate, given by its utilization, than mandated by the periodic or the sporadic task models. In

fact, the allocation error at any time for optimal Pfair algorithms, in comparison to ideal fluid algorithms that can

execute each task at its precise rate, is less than one time unit. It is also known that, in general, an allocation error

lower than that guaranteed by Pfair, is not possible in practice [11]. Hence, we consider Pfair scheduling rules to

be appropriate for distributing the jobs of migrating tasks. A review of the needed Pfair scheduling concepts is

provided in Section 3. (We stress that we are not using Pfair algorithms in our scheduling approach. We merely

wish to borrow some relevant formulas from the Pfair scheduling literature.)

Distribution rules. Let τi be any migrating periodic task (we later relax the assumption that τi is periodic)

that is assigned shares si,j and si,j+1 on processors Pj and Pj+1, respectively. (Recall that every migrating task is

assigned shares on two consecutive processors by Assign-Tasks.) As explained earlier, fi,j and fi,j+1 (given by

(6)) denote the fraction of the workload (i.e., the total execution requirement) of T that should be executed on Pj

and Pj+1, respectively, in the long run. By (P1), the total share allocated to τi on Pj and Pj+1 is ui. Hence, by

(6), it follows that

fi,j + fi,j+1 = 1. (7)

Assuming that the execution cost and period of every task are rational numbers (which can be expressed as a ratio

of two integers), ui, si,j , and hence, fi,j and fi,j+1 are also rational numbers. Let fi,j =
xi,j

yi
, where xi,j and yi
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are positive integers that are relatively prime. Then, by (7), it follows that fi,j+1 =
yi−xi,j

yi
. Therefore, one way

of distributing the workload of τi between Pj and Pj+1 that is commensurate with the shares of τi on the two

processors would be to assign xi,j out of every yi jobs to Pj and the remaining jobs to Pj+1.

Rather than arbitrarily choosing the xi,j jobs to assign to Pj , we borrow from the aforementioned concepts of

Pfair scheduling to guide in the distribution of jobs. For illustration, consider a migrating task τi with utilization

3
8 that is assigned shares si,j = 1

5 and si,j+1 = 7
40 on Pj and Pj+1, respectively. Hence, fi,j = 8

15 and fi,j+1 = 7
15

hold. Therefore, one way of distributing τi’s jobs would be to assign the first eight of jobs 15k + 1, · · · , (15k + 15),

for all k ≥ 0, to Pj , and the remaining jobs to Pj+1. Though such a strategy is reasonable (and perhaps among

the best) for the example in Figure 6, the distribution may be significantly uneven over short durations for some

task systems, such as the present example, and the transient overload that ensues may be quite excessive. As we

shall see, a more even distribution of jobs can be obtained by applying Pfair rules.

If we let two fictitious periodic Pfair tasks V and W correspond to processors Pj and Pj+1, respectively, let fi,j

and fi,j+1 denote their weights, and let a quantum span pi time units, then the following analogy can be made

between the jobs of the migrating task τi and the subtasks of the fictitious tasks V and W . First, slot s can be

associated with job s + 1 in that slot s represents the interval in which the (s + 1)st job of τi, which is released

at the beginning of that slot, needs to be scheduled. (Recall that slots are numbered starting from 0.) This is

illustrated in Figure 7(a), which depicts the layouts of subtasks in the first period of V and W for the example

mentioned above, and a complementary schedule for those subtasks on a fictitious processor. Refer to “slots” and

“jobs” marked beneath the time line. Next, subtask Vg represents the gth job assigned to Pj (of the jobs of τi);

that is, exactly one of the jobs that correspond to slots r(Vg), · · · , d(Vg)− 1 should be assigned as the gth job of Pj .

Similarly, subtask Wh represents the hth job assigned to Pj+1. Finally, if subtask Vg (resp., Wh) is scheduled in

slot s (on a fictitious processor), then the (s + 1)st job of τi should be assigned to Pj (resp., Pj+1). In other words,

job s + 1 is assigned to the processor that corresponds to the Pfair task that is scheduled in slot s. Referring to

Figure 7(a), since subtask V1 is scheduled in slot 0, the first job of τi is assigned to Pj . Similarly, since subtasks of

V are scheduled in slots 1, 3, 5, 7, 9, 11, and 13, jobs 2, 4, 6, 8, 10, 12, and 14 of τi are assigned to Pj , and since

subtasks of W are scheduled in slots 2, 4, 6, 8, 10, 12, and 14, jobs 3, 5, 7, 9, 11, 13, and 15 of τi are assigned to

Pj+1.

By Definition 1 and (7), Pfair tasks V and W are complementary. Therefore, by Lemma 1, a complementary

schedule for V and W in which the subtasks of V are scheduled in the first slot of their windows and those of W in

the last slot of their windows is feasible. Further, because wt(V ) + wt(W ) = 1, some subtask is scheduled in each

slot. Hence, the following holds.

(A1) Exactly one of the subtasks of V and W is scheduled in each slot.
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Figure 7: Complementary Pfair schedule for tasks V and W with weights fi,j = 8/15 and fi,j+1 = 7/15,
respectively, that guides the assignment of jobs of task τi(3, 8) to processors Pi and Pj+1. Subtasks in the first
period, [0, 15), of V and W are shown. The pattern repeats for every period. Slot k corresponds to job k + 1 of τi.
The slot in which a subtask is scheduled is indicated by an “X.” (a) The jobs of τi are released periodically. (b)
The seventh job of τi is delayed by 28 time units.

Accordingly, we consider a job assignment policy in which the job of τi corresponding to the first slot in the window

of subtask Vg is assigned as the gth job of τi to Pj and the job of τi corresponding to the last slot in the window

of subtask Wh is assigned as the hth job of τi to Pj+1, for all g and h. By (A1), this policy satisfies the following

property.

(A2) Each job of τi is assigned to exactly one of Pj and Pj+1.

More generally, we can use the formula for the release time of a subtask given by (3) for job assignments. Let

jobi denote the total number of jobs released by task τi and that have been assigned, and let jobi,j denote the

total number of these jobs that have been assigned to Pj . Let pi,` denote the processor to which job ` of task τi is
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assigned. Then, the processor to which job jobi + 1 is assigned is determined as follows.

pi,jobi+1 =











j, if jobi =

⌊

jobi,j

fi,j

⌋

j + 1, otherwise

(8)

As before, let fi,j and fi,j+1 be the weights of two fictitious Pfair tasks V and W , respectively. Then, by (3),

tr =

⌊

jobi,j

fi,j

⌋

denotes the release time of subtask Vjobi,j+1 of task V . Thus, (8) assigns to Pj the job that

corresponds to the first slot in the window of subtask Vg as the gth job of τi on Pj , for all g. (Recall that the index

of the job of the migrating periodic task τi that is released in slot tr is given by tr + 1.) Because the sum of the

weights of the two tasks is one, Lemma 1 implies that if tr is not the release time of any subtask of V , then tr +1 is

the deadline of some subtask of W . Thus, (8) ensures that the job that corresponds to the last slot in the window

of subtask Wh is assigned as the hth job of τi on Pj+1, for all h.

Thus far in our discussion, to simplify the presentation, we have assumed that the job releases of task τi are

periodic. However, note that the job assignment given by (8) is independent of “real” time and is based on job

numbers only. Hence, assigning jobs using (8) should be sufficient to ensure (A2) even when τi is sporadic. This

is illustrated in Figure 7(b). Here, we assume that τi is a sporadic task, whose seventh job release is delayed, by

28 time units, to time 76 from time 48. As far as τi is concerned, the interval [48, 76) is “frozen” and the job

assignment resumes at time 76. As indicated in the figure, in any such interval in which activity is suspended for a

migrating task τi, no jobs of τi are released. Furthermore, the deadlines of all jobs of τi released before the frozen

interval fall at or before the beginning of the interval.

We next prove a property that bounds from above the number of jobs of a migrating task assigned to each of

its processors by the job assignment rule given by (8).

Lemma 2 Let τi be a migrating task that is assigned to processors Pj and Pj+1. The number of jobs out of any

consecutive ` ≥ 0 jobs of τi that are assigned to Pj and Pj+1 is at most d` · fi,je and d` · fi,j+1e, respectively.

Proof: We first prove the lemma for the number of jobs assigned to Pj . We begin by claiming the following.

(J) Exactly d`0 · fi,je of the first `0 jobs of τi are assigned to Pj .

(J) holds trivially when `0 = 0. Therefore, assume `0 ≥ 1. Let q denote the total number of jobs of the first `0 jobs

of τi that are assigned to Pj . (By (8), the first job of τi is assigned to Pj , hence, q ≥ 1 holds.) Then, there exists

an `′ ≤ `0 such that job `′ of τi is the qth job of τi assigned to Pj . Therefore, by (8),

`′ − 1 =

⌊

q − 1
fi,j

⌋

(9)

holds. (Note that jobi of (8) denotes the number of jobs of τi that have already been distributed, and hence, is
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equal to `′ − 1 here. Similarly, jobi,j denotes the number of jobs already assigned to Pj , and so is equal to q − 1.)

`, `′, and q denote job numbers or counts, and hence are all non-negative integers. By (9), we have

q − 1

fi,j

≥ `′ − 1 ⇒ q − 1 ≥ (`′ − 1) · fi,j ⇒ q > `′ · fi,j (because fi,j < 1), (10)

and

q − 1

fi,j

< `′ ⇒ q − 1 < `′ · fi,j ⇒ q < `′ · fi,j + 1. (11)

Because q is an integer, by (10) and (11), we have

q = d`′ · fi,je. (12)

If `′ = `0 holds, then (J) follows from (12) and our definition of q. On the other hand, to show that (J) holds when

`′ < `0, we must show that q = dˆ̀· fi,je holds for all ˆ̀, where `′ < ˆ̀ ≤ `0. (Note that ˆ̀ is an integer.) By the

definitions of q, `′, and `0, q of the first `′ jobs of τi are assigned to Pj , and none of the jobs `′ + 1 through `0 is

assigned to Pj . Therefore, by (8), it follows that ˆ̀− 1 <

⌊

q
fi,j

⌋

holds for all ˆ̀, where `′ < ˆ̀ ≤ `0. (As before,

because ˆ̀ is the index of the next job of τi to be distributed, jobi of (8) equals ˆ̀− 1. However, since the number

of jobs already assigned to Pj is q, jobi,j = q.) Thus, we have the following, for all ˆ̀, where `′ < ˆ̀ ≤ `0.

⌊

q
fi,j

⌋

> ˆ̀− 1 ⇒

⌊

q
fi,j

⌋

≥ ˆ̀ ⇒
q

fi,j

≥ ˆ̀ ⇒ q ≥ ˆ̀· fi,j ⇒ q ≥ dˆ̀· fi,je (because q is an integer) (13)

By (12) and because ˆ̀> `′ holds, (13) implies that dˆ̀· fi,je = d`′ · fi,je = q.

To complete the proof for Pj , we show that at most d` · fi,je of any consecutive ` jobs of τi are assigned to

Pj . Let J represent jobs `0 + 1 to `0 + ` of τi, where `0 ≥ 0. By (J), exactly d`0 · fi,je of the first `0 jobs and

d(`0 + `) · fi,je of the first `0 + ` jobs of τi are assigned to Pj . Therefore, the number of jobs belonging to J that

are assigned to Pj , denoted Jobs(J , j), is given by

Jobs(J , j) = d(`0 + `) · fi,je − d`0 · fi,je ≤ d`0 · fi,je + d` · fi,je − d`0 · fi,je = d` · fi,je,

which proves the lemma for the number of jobs assigned to Pi. (The second step in the above derivation follows

from dx + ye ≤ dxe + dye.)

Finally, we are left with proving the lemma for Pj+1. By the job assignment rule in (8), every job of τi is

assigned to exactly one of Pj and Pj+1. Therefore (J) implies that exactly `0 − d`0 · fi,je of the first `0 jobs of τi
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are assigned to Pj+1. Hence, the number of jobs belonging to J that are assigned to Pj+1 is given by

Jobs(J , j + 1) = (`0 + `) − d(`0 + `) · fi,je − `0 + d`0 · fi,je

= ` − d(`0 + `) · fi,je + d`0 · fi,je

≤ ` − d`0 · fi,je − b` · fi,jc + d`0 · fi,je (because dx + ye ≥ dxe + byc)

= ` − b` · fi,jc

< ` − ` · fi,j + 1

= ` · fi,j+1 + 1 (by (7)).

Because Jobs(J , j + 1) is an integer, the above implies that Jobs(J , j + 1) ≤ d` · fi,j+1e, completing the proof. �

4.3 Illustration of Distribution and Scheduling

In this subsection, we illustrate the distribution and scheduling algorithms described in Sections 4.2.2 and 4.2.1,

respectively, by applying them to the following task set.
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Figure 8: Assignment of tasks in Example 2 to three processors.

Example 2. Let τ be a task

set with the following eight tasks:

τ1(9, 20), τ2–τ7(3, 8), and τ8(3, 10).

The total utilization of this task set

is 3.0 and an assignment of these

tasks to three processors by Algo-

rithm Assign-Tasks is shown in Fig-

ure 8. In this assignment, tasks τ3

and τ6 are migrating, and the shaded

blocks denote the shares assigned to

these tasks.

Based on the shares allotted to the

migrating tasks τ3 and τ6 on their respective processors, (8) can be used to determine how their jobs are distributed.

For example, let us consider τ3. As in Section 4.2.2, let jobi denote the total number of jobs of τi that have been

released and already assigned to some processor, and let jobi,j denote the number of these jobs assigned to processor

Pj . Letting P1 (resp., P2) denote processor Pj (resp., Pj+1), to begin with, we have job3 = job3,1 = job3,2 = 0.

Hence, by (8), since

⌊

job3,1

f3,1

⌋

=

⌊

0
7/15

⌋

= 0 = job3, the job numbered jobi +1 = 0+1 = 1 is assigned to P1. After
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Task τ3 Task τ6

Job No. Assigned To Job No. Assigned To

1 P1 1 P2

2 P2 2 P3

3 P1 3 P3

4 P2 4 P3

5 P1 5 P3

6 P2 6 P3

7 P1 7 P3

8 P2 8 P2

9 P1 9 P3

10 P2 10 P3

11 P1 11 P3

12 P2 12 P3

13 P1 13 P3

14 P2 14 P3

15 P2 15 P3

Table 2: Distribution of jobs of migrating tasks in Example 2.

this assignment, we have job3,1 = job3 = 1, and hence,

⌊

job3,1

f3,1

⌋

=

⌊

1
7/15

⌋

= 2 6= job3. Consequently, by (8), the

second job is assigned to P2. The assignment of jobs to processors obtained by following this algorithm for the first

15 jobs of the two migrating tasks is provided in Table 2.

Each processor schedules the jobs of its fixed tasks and those of migrating tasks that are assigned to it inde-

pendently, as described in Section 4.2.1. A segment of such a schedule for the task set in this example (assuming

periodic job releases) is provided in Figure 9. In this figure, the dashed lines demarcate the jobs assigned to different

processors, and the jobs immediately adjacent to each line on either side belong to a single migrating task. Observe

that migrating tasks are accorded higher priority than fixed tasks.

Comparison to other similar approaches. The striping of task utilizations to processors used in our task

assignment algorithm bears similarities to how task executions are striped within a “time block” in Algorithms

SA1 and SA2 proposed in [22] for scheduling hard real-time tasks. In these algorithms, processor time is considered

in chunks of quanta referred to as “blocks.” All the blocks are equally sized, with the common size given by the

greatest common divisor (GCD) of the periods of all the tasks. The number of quanta to be allocated to each task

in each block is computed based on task utilizations and a schedule for the various tasks that is common across

blocks is laid out offline. The block schedule is constructed by simply striping task executions sequentially across

processors, just as processor shares are allocated to tasks in Assign-Tasks. As in Assign-Tasks, at most M − 1

tasks migrate between two processors, but within each block. Since the size of a block is at most the minimum

task period, each job of such a task migrates at least once. Furthermore, each fixed task is preempted once in each
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Figure 9: An initial segment of a schedule under EDF-fm for the task set in Example 2.

block. (In contrast, under EDF-fm, no migrating job migrates, and the total number of job preemptions is at most

the total number of jobs.) It is worth noting that this approach attempts to discretize and improve the practicality

of processor sharing schedules [14], in which each task is allocated its share within each quantum, which can be

infinitesimal. The approach nevertheless suffers from some associated drawbacks, such as higher preemption and

migration overheads, and is quite brittle and can support only periodic tasks (since block layouts and schedules

will not be valid if jobs are delayed). Moreover, since practical considerations require that the number of quanta

allocated to each task in a block be integral, block schedules are not feasible for all task systems, but only to

those whose task parameters satisfy certain constraints. As can be seen, one predominant difference between our

approach and that in the SA algorithms is that in the latter, all the tasks, and in particular migrating tasks, are

allocated processor time more uniformly, which improves schedulability for certain task sets, albeit at the expense

of decreased flexibility and increased overheads.

4.4 Practical Implementation

In this subsection, we briefly discuss how EDF-fm can be implemented in a real system, and argue that it incurs

very little additional overhead than partitioning. This is mainly because the processor to which a migrating task’s
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job is assigned can be determined solely based on the job index and migrating tasks do not miss deadlines. Hence,

if a migrating task is periodic, each of its processor schedulers can easily determine the release time of the next job

to be assigned to it, and can enqueue that job in the release queue associated with its release time.3 (From the

description in Section 4.2.2, it follows that if k jobs of a migrating task τi have already been assigned to processor

Pj , then the release time of the (k + 1)st job to be assigned to it is given by either
⌊

k
fi,j

⌋

· pi or (
⌈

k+1
1−fi,j

⌉

− 1) · pi.)

On the other hand, if a migrating task is sporadic, then each of its job arrivals can be programmed to trigger

interrupts on both of its processors. Here again, since the processor on which the job executes depends on the job

index, one of the processors can simply ignore arrival interrupts that are not meant for it. Further, the two logical

ready queues4 (one each for the ready jobs of fixed and migrating tasks) associated with each processor (depicted

in Figure 5), can be implemented using a single physical ready queue with a bit to denote whether a job belongs to

a fixed task. Thus, implementing EDF-fm incurs very little overhead, if any, in comparison to partitioned-EDF.

We are now ready to derive a tardiness bound for EDF-fm.

5 Tardiness Bound for EDF-fm

As discussed earlier, jobs of migrating tasks do not miss their deadlines under EDF-fm. Also, if no migrating task

is assigned to processor Pk, then the fixed tasks on Pk do not miss their deadlines. Hence, our analysis is reduced

to determining the maximum amount by which a job of a fixed task may miss its deadline on each processor Pk

in the presence of migrating jobs. We assume that two migrating tasks, denoted τi and τj , are assigned to Pk. (A

tardiness bound with only one migrating task can be deduced from that obtained with two migrating tasks.) We

prove the following.

(L) The tardiness of a fixed task τq assigned to Pk is at most ∆ =
ei(fi,k+1)+ej(fj,k+1)−pq(1−ρk)

1−si,k−sj,k
.

The proof is by contradiction. Contrary to (L), assume that job τq,` of a fixed task τq assigned to Pk has a

tardiness exceeding ∆. We use the following notation to assist with our analysis. System start time is taken to be

zero and the processor is assumed to be idle before time zero.

td
def
= absolute deadline of job τq,` (14)

tc
def
= td + ∆ (15)

t0
def
=

latest instant before tc such that no migrating job released before
t0 and assigned to Pk or a fixed job released before t0 with deadline
at most td is pending at t0

(16)

3A time tick’s release queue is a priority queue of all the jobs that are to be released at that time. A release queue is merged with
the ready queue at the queue’s release time.

4A ready queue is a priority queue of ready jobs.
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Note that by the definition of t0, Pk either is idle or executes a job of a fixed task with deadline later than td at

t0 − ε. By our assumption that job τq,` with absolute deadline at td has a tardiness exceeding ∆, it follows that

τq,` does not complete execution at or before tc = td + ∆.

Let τf
k and τm

k denote the sets of all fixed and migrating tasks, respectively, that are assigned to Pk. (Note that

τm
k = {τi, τj}.) Let demand(τ, t0, tc) denote the maximum time that jobs of tasks in τ could execute in the interval

[t0, tc) on Processor Pk (under the assumption that τq,` does not complete executing at tc). We first determine

demand(τm
k , t0, tc) and demand(τf

k , t0, tc).

By (16) and because migrating tasks have a higher priority than fixed tasks under EDF-fm, jobs of τi and τj that

are released before t0 and are assigned to Pk complete executing at or before t0. Thus, every job of τi or τj that

executes in [t0, tc) on Pk is released in [t0, tc). Also, every job released in [t0, tc) and assigned to Pk places a demand

for execution in [t0, tc). The number of jobs of τi that are released in [t0, tc) is at most
⌈

tc − t0
pi

⌉

. By Lemma 2,

at most
⌈

fi,k

⌈

tc − t0
pi

⌉⌉

< fi,k

(

tc−t0
pi

+ 1
)

+ 1 of all the jobs of τi released in [t0, tc) are assigned to Pk. Similarly,

the number of jobs of τj that are assigned to Pk of all jobs of τi released in [t0, tc) is less than fj,k

(

tc−t0
pj

+ 1
)

+ 1.

Each job of τi executes for at most ei time units and that of τj for ej time units. Therefore,

demand(τm
k , t0, tc) <

(

fi,k

(

tc − t0
pi

+ 1

)

+ 1

)

· ei +

(

fj,k

(

tc − t0
pj

+ 1

)

+ 1

)

· ej

= si,k(tc − t0) + ei(fi,k + 1) + sj,k(tc − t0) + ej(fj,k + 1) (17)

(by (6) and simplification).

By (14)–(16), and our assumption that the tardiness of τq,` exceeds ∆, any job of a fixed task that executes on

Pk in [t0, tc) is released at or after t0 and has a deadline at or before td. The number of such jobs of a fixed task

τf is at most
⌊

td − t0
pf

⌋

. Therefore,

demand(τf
k , t0, tc) <

∑

τf∈τ
f

k

⌊

td − t0
pf

⌋

· ef

≤ (td − t0)
∑

τf∈τ
f

k

ef

pf

≤ (td − t0)(ρk − si,k − sj,k) (by (P3)). (18)

By (17) and (18), we have the following.

demand(τf
k ∪ τm

k , t0, tc) ≤ si,k(tc − t0) + ei(fi,k + 1) + sj,k(tc − t0) + ej(fj,k + 1) + (td − t0)(ρk − si,k − sj,k)

= (si,k + sj,k)(tc − t0) + (si,k + sj,k)(t0 − td) + ei(fi,k + 1) + ej(fj,k + 1) + (td − t0)(ρk)

= (si,k + sj,k)(tc − td) + ei(fi,k + 1) + ej(fj,k + 1) + ρk(td − t0)
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Because τq,` does not complete executing by time tc, it follows that the total processor time available in the interval

[t0, tc) = tc − t0 < demand(τf
k ∪ τm

k , t0, tc), i.e.,

tc − t0 < (si,k + sj,k)(tc − td) + ei(fi,k + 1) + ej(fj,k + 1) + ρk(td − t0)

= (si,k + sj,k)(tc − td) + ei(fi,k + 1) + ej(fj,k + 1) + (td − t0) − (1 − ρk)(td − t0)

⇒ tc − td < (si,k + sj,k)(tc − td) + ei(fi,k + 1) + ej(fj,k + 1) − (1 − ρk)(td − t0)

≤ (si,k + sj,k)(tc − td) + ei(fi,k + 1) + ej(fj,k + 1) − pq(1 − ρk)

(τq,` is released at or after t0 and has a
deadline at td, hence td − t0 ≥ pq)

⇒ tc − td <
ei(fi,k + 1) + ej(fj,k + 1) − pq(1 − ρk)

1 − si,k − sj,k

= ∆. (19)

The above contradicts (15), and hence our assumption that the tardiness of τq,` exceeds ∆ is incorrect. Therefore,

(L) follows.

If only one migrating task τi is assigned to Pk, then ej and sj,k are zero. Hence, a tardiness bound for any fixed

task on Pk is given by

ei(fi,k + 1) − pq(1 − ρk)

1 − si,k

. (20)

If we let mk,`, where 1 ≤ ` ≤ 2 denote the indices of the migrating tasks assigned to Pk, then by (L), a tardiness

bound for EDF-fm is given by the following theorem. (If one or no migrating task is assigned to Pk, then mk,2 and

mk,1 are to be taken to be zero, as are e0, f0,k, and s0,k.)

Theorem 1 On M processors, Algorithm EDF-fm ensures a tardiness of at most

emk,1
(fmk,1,k + 1) + emk,2

(fmk,2,k + 1) − pq(1 − ρk)

1 − smk,1,k − smk,2,k

(21)

for every task τq in τ where Usum(τ) ≤
∑M

i=1 ρi and umax(τ) ≤ min(1/2, min1≤i≤M ρi), and τq is assigned to Pk.

Because (21) can be computed in constant time, the overall time complexity of computing a tardiness bound for τ

is O(N). (21) increases as the execution costs and shares of the migrating tasks assigned to Pk increase, and could

be high if the share of each migrating task is close to 1/2. However, because all tasks are light, in practice the

sum of the shares of the migrating tasks assigned to a processor can be expected to be less than 1/2. Theorem 1

also suggests that the tardiness that results in practice could be reduced by choosing the set of migrating tasks

carefully. Tardiness can also be reduced by distributing smaller pieces of work of migrating tasks than entire jobs.

Some such techniques and heuristics are discussed in the next section.
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6 Tardiness Reduction Techniques for EDF-fm

The problem of assigning tasks to processors such that the tardiness bound given by (21) is minimized is a combi-

natorial optimization problem with exponential time complexity. Hence, in this section, we propose methods and

heuristics that can lower tardiness. We consider the technique of period transformation [34] as a way of distributing

the execution of jobs of migrating tasks more evenly over their periods in order to reduce their adverse impact

on fixed tasks. We also propose task assignment heuristics that can reduce the fraction of a processor’s capacity

consumed by migrating tasks. Finally, we show how to compute more accurate bounds than that given by (21) at

the expense of more complex computations.

6.1 Job Slicing

The tardiness bound of EDF-fm given by Theorem 1 is in multiples of the execution costs of migrating tasks. This

is a direct consequence of statically prioritizing migrating tasks over fixed tasks and the overload (in terms of the

number of jobs) that a migrating task may place on a processor over short intervals. The deleterious effect of this

approach on jobs of fixed tasks can be mitigated by “slicing” each job of a migrating task into sub-jobs that have

lower execution costs, assigning appropriate deadlines to the sub-jobs, and distributing and scheduling sub-jobs

in the place of whole jobs. For example, every job of a task with an execution cost of 4 time units and relative

deadline of 10 time units can be sliced into two sub-jobs with execution cost and relative deadline of 2 and 5,

respectively, per sub-job, or four sub-jobs with an execution cost of 1 and relative deadline of 2.5, per sub-job.

Such a job-slicing approach, termed period transformation, was proposed by Sha and Goodman [34] in the context

of RM scheduling on uniprocessors. Their purpose was to boost the priority of tasks that have larger periods, but

are more important than some other tasks with shorter periods, and thus ensure that the more important tasks do

not miss deadlines under overloads. However, with the job-slicing approach under EDF-fm, it may be necessary to

migrate a job between its processors, and EDF-fm loses the property that a task that migrates does so only across

job boundaries. Thus, this approach presents a trade-off between tardiness and migration overhead.

6.2 Task-Assignment Heuristics

Another way of lowering the actual tardiness observed in practice would be to lower the total share smk,1,k +smk,2,k

assigned to the migrating tasks on any processor Pk. In the task assignment algorithm Assign-Tasks of Figure 2,

if a low-utilization task is ordered between two high-utilization tasks, then it is possible that smk,1,k + smk,2,k

is arbitrarily close to one. For example, consider tasks τi−1, τi, and τi+1 with utilizations 1−ε
2 , 2ε, and 1−ε

2 ,

respectively, and a task assignment wherein τi−1 and τi+1 are the migrating tasks of Pk with shares of 1−2ε
2 each,

and τi is the only fixed task on Pk. Such an assignment, which can delay τi excessively if the periods of τi−1 and τi+1

are large, can be easily avoided by ordering tasks by (monotonically) decreasing utilization prior to the assignment
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phase. Note that with tasks ordered by decreasing utilization, of all the tasks not yet assigned to processors, the

one with the highest utilization is always chosen as the next migrating task. Hence, we call this assignment scheme

highest utilization first , or HUF. An alternative lowest utilization first , or LUF, scheme can be defined that assigns

fixed tasks in the order of (monotonically) decreasing utilization, but chooses the task with the lowest utilization of

all the unassigned tasks as the next migrating task. Such an assignment can be accomplished using the following

procedure when a migrating task needs to be chosen: traverse the unassigned task array in reverse order starting

from the task with the lowest utilization and choose the first task whose utilization is at least the capacity available

in the current processor. In general, this scheme can be expected to lower the shares of migrating tasks. However,

because the unassigned tasks have to be scanned each time a migrating task is chosen, the time complexity of this

scheme increases to O(NM) (from O(N)). This complexity can be reduced to O(N + M log N) by adopting a

binary-search strategy.

A third task-assignment heuristic, called lowest execution-cost first , or LEF, which is similar to LUF, can be

defined by ordering tasks by execution costs, as opposed to utilizations. Fixed tasks are chosen in non-increasing

order of execution costs; the unassigned task with the lowest execution cost, whose utilization is at least that of

the available capacity in the current processor, is chosen as the next migrating task. The experiments reported in

the next section show that LEF actually performs the best of these three task-assignment heuristics and that when

combined with the job-slicing approach, can reduce tardiness dramatically in practice.

6.3 Including Non-Light Tasks

The primary reason for restricting all tasks to be light is to prevent the total utilization ui + uj of the two

migrating tasks τi and τj assigned to a processor from exceeding one. (As already noted, ensuring that migrating

tasks do not miss their deadlines may not be possible otherwise.) However, if the number of non-light tasks is

small in comparison to the number of light tasks, then it may be possible to avoid an undesirable assignment

as described. In the simulation experiments discussed in Section 7, with no restrictions on per-task utilizations,

the LUF approach could successfully assign approximately 78% of one million randomly-generated task sets on 4

processors. The success ratio dropped to approximately one-half when the number of processors increased to 16.

6.4 Processors with One Migrating Task

If the number of migrating tasks assigned to a processor Pk is one, then the commencement of the execution of a job

τi,j of the only migrating task τi of Pk can be postponed to time d(τi,j)− ei, where d(τi,j) is the absolute deadline

of job τi,j (instead of beginning its execution immediately upon its arrival). This would reduce the maximum

tardiness of the fixed tasks on Pk to (ei − pq(1− ρk))/(1− si,k) (from the value given by (20)). The reasoning is as

follows. From the analysis in Section 5, tardiness of fixed tasks is bounded when the migrating task is not deferred,

and hence, by the same analysis, is guaranteed to be bounded with deferred execution. This in turn implies that an
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arbitrary job of any fixed task completes execution. Taking tc as the completion time of job τq,` when all the jobs

execute for their worst-case execution times, where τq,` is as defined in Section 5, no job of τi with deadline later

than tc executes before tc. (This is because, under deferred execution, each job of τi completes executing at its

deadline. Hence, if τq,` completes execution at tc, then neither is tc the deadline of any job of τi nor does the first

job with deadline after tc commence execution by tc.) Therefore, the number of jobs of τi released in the interval

[t0, tc) that can impact τq,` is at most
⌊

tc−t0
pi

⌋

≤ tc−t0
pi

. This is one fewer job than that possible in the absence

of deferred execution, which helps lower the tardiness bound derived by
ei·fi,k

1−si,k
. (Because tasks are independent

and are preemptable, tardiness is guaranteed to not increase when one or more jobs execute for less than their

worst-case execution times.) This technique is likely to be particularly effective on two-processor systems, where

each processor would be assigned at most one migrating task only under EDF-fm, and on three-processor systems,

where at most one processor would be assigned two migrating tasks.

6.5 Computing Less-Pessimistic Tardiness Bounds

Thus far in this section, we have discussed some techniques that can be used to lower the tardiness observed in

practice and the bound computed using (21). We now describe how a more accurate tardiness bound can be

computed for a given task assignment.

One major source of pessimism in the bound is the approximation of ceiling and floor operations during the

analysis. This could be eliminated at the expense of more complex computations, wherein a bound is computed by

iteratively computing a worst-case response time5 for each task. The approach is similar to the time-demand [27]

and the generalized time-demand analyses [25] used in conjunction with static-priority algorithms, and the response-

time analysis developed for systems scheduled under EDF on uniprocessors [35].

Before continuing further, some definitions are in order. An interval [t1, t2) is said to be busy for Processor Pk

if the following hold. (In the description of a busy interval that follows, by Pk’s tasks, we refer to both its fixed

and migrating tasks, and by jobs of Pk’s migrating tasks, we refer to jobs that are assigned to Pk.) (i) No job of

any of Pk’s tasks that is released before t1 is pending at t1; (ii) one or more jobs of Pk’s tasks are released at t1;

and (iii) t2 is the earliest time after t1 such that no job released before t2 is pending. Note that (i)–(iii) imply

that Pk is continuously busy in [t1, t2). A busy interval [t1, t2) is said to be in-phase for a fixed task τi if a job of

τi is released at t1 and in-phase for a migrating task τi if a job of τi that begins a worst-case assignment sequence

for Pk is released at t. By Lemma 2, at most d` · fi,ke of any ` consecutive jobs of a migrating task τi are assigned

to Pk. Therefore, [t1, t2) is in-phase for τi if some job of τi is released at t1, and if d`t · fi,ke of the jobs of τi are

assigned to Pk in the interval [t1, t) for all t1 ≤ t < t2, where `t denotes the number of jobs of τi released in that

interval. A busy interval is said to be tight if all tasks release jobs as early as permissible after the release of their

first jobs in the interval.

5The response time of a job is the difference between the time it completes execution and the time it is released.
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In [35], the following has been shown for a task system scheduled under EDF on a uniprocessor: The largest

response time of any job of a task τi (all tasks are fixed on a uniprocessor) released in a tight, busy interval that

is in-phase for every task except perhaps τi is not lower than that of any job of τi released in any busy interval.

Under EDF-fm, the same can be shown to hold for every fixed task. The reasoning is transformation-based and is

as follows: By definition, no job is pending at the beginning of a busy interval; hence, transforming a busy interval

that is not in-phase for a task τj (which is either fixed or migrating), by shifting left its jobs released in the interval,

such that τj is in-phase, cannot decrease the demand due to τj in the busy interval that can compete with τi’s

jobs. In other words, since the interval is busy, the total competing work for τi’s jobs cannot decrease. Similarly,

the demand due to τj cannot decrease if its job releases are made tight, i.e., if τj ’s jobs are released as early as

permissible.

From generalized time-demand analysis for static-priority systems, we know that the worst-case response time

for any job of τi occurs in a busy interval that is tight and is in-phase for τi and every higher-priority task. However,

as implied by the discussion in the previous paragraph, under both EDF and EDF-fm, the worst case for τi need

not be in a busy interval that is in-phase for τi. So, to compute a worst-case response time, and hence, a tardiness

bound, for τi, all possible phasings of τi need to be considered. (Formally, τi is said to have a phase φi with respect

to a busy interval [t1, t2), where 0 ≤ φi < t2 − t1, if the first job of τi in the interval is released at time t1 + φi.)

Furthermore, for each phasing, the worst-case response times of all jobs of τi released in the busy interval when the

jobs are released in a tight sequence need to be computed. The release time of every job of τi released in a tight,

busy interval with phase φi = φ + k · pi for τi, where k ≥ 1 and 0 ≤ φ < pi, is the same as that of some job of τi

released in an interval with phase φ. Hence, the worst-case response time of any job released in the second interval

is at least that of some job released in the first interval, and it suffices to consider φi in the range [0, pi) only.

Based on the above discussion, we now give formulas for iteratively computing the tardiness bounds of fixed

tasks. We first show how to determine the length of a longest possible busy interval.

Computing the longest busy interval length. A tight, busy interval that is in-phase for every task, including

τi, is at least as long as any busy interval that is not in-phase for τi. Therefore, we will upper bound the lengths

of busy intervals we are interested in by that of one that is tight and in-phase for all tasks. For brevity, we will

refer to such an interval as simply a busy interval. Without loss of generality, we assume that the longest busy

interval that we are considering starts at time zero. Letting Bk denote the length of a longest busy interval of Pk,

Bk can be computed iteratively as follows. As in Section 5, τm
k and τf

k refer to the sets of fixed and migrating

tasks, respectively, assigned to Pk. B0
k denotes the initial value of Bk and is given by the following (since each task

has a job released at the start of the interval that needs to complete execution).

B0
k =

∑

τh∈τm
k

eh +
∑

τh∈τ
f

k

eh (22)
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If Bi
k, where i ≥ 0, denotes the value of Bk in the ith iteration, then Pk is continuously busy at least until Bi

k.

The length of the busy interval could be longer if not all jobs that can potentially be released before Bi
k complete

executing by Bi
k. Therefore, Bi+1

k , the value of Bk in the (i + 1)st iteration, is given by the execution costs of all

the jobs that can be released in an interval of length Bi
k, and hence, is

Bi+1
k =

∑

τh∈τm
k

⌈⌈

Bi
k

ph

⌉

· fh,k

⌉

· eh +
∑

τh∈τ
f

k

⌈

Bi
k

ph

⌉

· eh. (23)

The iterations terminate when Bi
k = Bi+1

k for some i ≥ 0, i.e., Bk is given by the following.

Bk = min
i≥0

{Bi
k | Bi

k = Bi+1
k }

We next show that termination is guaranteed. For simplicity, we assume that the execution costs and periods

of all tasks are integers. Let sh,k =
xh,k

yh,k
, where xh,k and yh,k are positive integers that are relatively prime. Let ∆

denote the least common multiple (lcm) of the periods of all fixed and migrating tasks and the product eh · yh,k for

each migrating task τh. Then, for all Bi
k ≤ ∆, by (23) and (6), Bi+1

k ≤
∑

τh∈τm
k

⌈⌈

∆
ph

⌉

·
sh,k·ph

eh

⌉

·eh +
∑

τh∈τ
f

k

⌈

∆
ph

⌉

·

eh =
∑

τh∈τm
k

⌈⌈

∆
ph

⌉

·
xh,k·ph

yh,k·eh

⌉

· eh +
∑

τh∈τ
f

k

⌈

∆
ph

⌉

· eh. Since ∆ is as defined, ph for each fixed and migrating task,

and eh · yh,k for each migrating task divide ∆ evenly, and hence, Bi+1
k ≤

∑

τh∈τm
k

∆
ph

·
xh,k·ph

yh,k·eh
· eh +

∑

τh∈τ
f

k

∆
ph

· eh =
∑

τh∈τm
k

∆ · sh,k +
∑

τh∈τ
f

k

∆
ph

· eh. Because the sum of the shares of the migrating tasks and the utilizations of

the fixed tasks assigned to each processor is at most one, the right-hand side of the above inequality is at most ∆.

Thus, the computation converges at least when Bi
k = ∆, and hence, Bk is at most ∆.

Computing tardiness bounds. We first describe how to compute worst-case completion times, and hence,

worst-case response times, for jobs of a fixed task τq released within a tight, busy interval, with a phase or offset

of φq for τq. (A tardiness bound for τq may then be determined from the job completion times computed. Again,

without loss of generality, we assume that each busy interval considered starts at time zero. Therefore, worst-case

completion times directly yield worst-case response times.) The number of jobs of τq, denoted J , released in such

a busy interval is at most
⌈

Bk−φq

pq

⌉

, and the deadline of the J th job is at or after Bk. Since Bk is the length of

a longest busy interval, and hence, an upper bound on the length of the interval under consideration, one of the

following holds: (i) the J th job completes executing by Bk, i.e., at or before its deadline, and hence, its tardiness

is zero; (ii) the processor is idle at some time t before Bk and the J th job is released after t. If (i) holds, then since

the tardiness of the J th job is zero, its response time need not be computed, and if (ii) holds, then the J th job is

not released in the busy interval under consideration. Therefore, in either case, in order to determine a tardiness

bound for τq, it suffices to determine the worst-case response times of only the first J − 1 =
⌈

Bk−φq

pq

⌉

− 1 jobs

released in the interval. Without loss of generality, we denote the `th job of τq released in a busy interval as τq,`.

It is quite possible that the tight, busy interval with phase φq ends before τq,`’s release, rq,`, or fixed jobs with
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deadlines after that of τq,`, dq,`, execute before rq,`. In the former case, clearly τq,` and later jobs are not part of

the busy interval. In the latter case, the interval is not really busy with respect to τq,` and later jobs, and response

times for these jobs will be bounded by those of other jobs released possibly with a different phase. Hence, in either

case, computation of response times can be omitted for these jobs based on whether the total demand up to rq,`

due to migrating tasks and fixed jobs with deadlines at most dq,` is less than rq`
. (For such jobs, the formulas

below may in fact yield lower than the actual response times. However, this is not an issue since we are concerned

with determining the maximum possible response time only.)

Let Cq,`,φq
, where 1 ≤ ` ≤ J−1 =

⌈

Bk−φq

pq

⌉

−1, denote the worst-case completion time, relative to the beginning

of the busy interval (which is time zero by our assumption), of τq,` when τq’s phase is φq. Then, Cq,`,φq
can be

computed iteratively as follows. Let C0
q,`,φq

denote the intial value. Since τq,` is released at time (` − 1) · pq + φq,

and the longest busy interval ends at time Bk, an initial estimate is given by

C0
q,`,φq

= min(Bk − eq, (` − 1) · pq + φq) + eq. (24)

All jobs of migrating tasks released before C0
q,`,φq

and assigned to Pk contend for execution before C0
q,`,φq

. The

deadline of τq,` is given by d(τq,`) = ` ·pq +φq . Hence, jobs of fixed tasks with deadlines at most d(τq,`) and released

before C0
q,`,φq

also contend for execution before C0
q,`,φq

. Hence, Cq,`,φq
can be revised iteratively as follows for i ≥ 0.

Ci+1
q,`,φq

=
∑

τh∈τm
k

⌈⌈

Ci
q,`,φq

ph

⌉

· fh,k

⌉

· eh +
∑

τh∈τ
f

k

min

(⌈

Ci
q,`,φq

ph

⌉

,

⌊

` · pq + φq

ph

⌋

)

· eh (25)

The iterations can be terminated when convergence is reached, i.e., when Ci+1
q,`,φq

= Ci
q,`,φq

for some i ≥ 0.

Convergence is guaranteed because Cq,`,φq
is at most Bk for all `, φq.

Earlier we explained that it suffices to consider φq in the range [0, pq). This range can be lowered further in

some cases by noting that if φq ≥ Bk − pq, then the number of jobs,
⌈

Bk−φq

pq

⌉

− 1, of τq whose worst-case response

times need to be computed is at most zero. Therefore, it suffices to consider φq in the range [0, min(pq, Bk − pq))

only, and assuming that all task parameters are integral, Cq,`,φq
needs to be computed for all integers φq in

[0, min(pq − 1, Bk − pq − 1)]. Since d(τq,`) = ` · pq + φq, a tardiness bound for τq is given by the following.

tardiness(τq) ≤ max
0≤φq≤min(pq−1,Bk−pq−1)

{ max
1≤`≤(

�
Bk−φq

pq �−1)

{max(Cq,`,φq
− ` · pq − φq, 0)}}

Though convergence is guaranteed while computing the length of the busy interval and worst-case response times,

the length of the busy interval, and hence, the number of iterations, could be exponential in N . Similarly, the

number of jobs whose response times have to be computed could be exponential.
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Numerical example. Let us consider computing tardiness bounds of fixed tasks assigned to P1 in the task

system in Example 1. In this example, τf
1 = {τ1(5, 20), τ2(3, 10)} and τm

1 = {τ3(1, 2)}. Further, s3,1 = 9
20 , hence,

x3,1 = 9 and y3,1 = 20. Therefore, e3 · y3,1 = 1 · 20 = 20. lcm(p1, p2, p3, e3 · y3,1) = lcm(20, 10, 2, 20) = 20. Also,

f3,1 = s3,1 ·
p3

e3
= 9

20 · 2
1 = 9

10 .

We will first compute the length, B1, of a longest possible busy interval, on P1. Using (22), B0
1 = e3+e1+e2 = 9.

By (23),

B1
1 =

⌈⌈

B0
1

p3

⌉

· f3,1

⌉

· e3 +

⌈

B0
1

p1

⌉

· e1 +

⌈

B0
1

p2

⌉

· e2

=

⌈⌈

9

2

⌉

·
9

10

⌉

· 1 +

⌈

9

20

⌉

· 5 +

⌈

9

10

⌉

· 3

= 5 + 5 + 3 = 13,

B2
1 =

⌈⌈

B1
1

p3

⌉

· f3,1

⌉

· e3 +

⌈

B1
1

p1

⌉

· e1 +

⌈

B1
1

p2

⌉

· e2

=

⌈⌈

13

2

⌉

·
9

10

⌉

· 1 +

⌈

13

20

⌉

· 5 +

⌈

13

10

⌉

· 3

= 7 + 5 + 6 = 18,

B3
1 =

⌈⌈

B2
1

p3

⌉

· f3,1

⌉

· e3 +

⌈

B2
1

p1

⌉

· e1 +

⌈

B2
1

p2

⌉

· e2

=

⌈⌈

18

2

⌉

·
9

10

⌉

· 1 +

⌈

18

20

⌉

· 5 +

⌈

18

10

⌉

· 3

= 9 + 5 + 6 = 20,

B4
1 =

⌈⌈

B3
1

p3

⌉

· f3,1

⌉

· e3 +

⌈

B3
1

p1

⌉

· e1 +

⌈

B3
1

p2

⌉

· e2

=

⌈⌈

20

2

⌉

·
9

10

⌉

· 1 +

⌈

20

20

⌉

· 5 +

⌈

20

10

⌉

· 3

= 9 + 5 + 6 = 20.

Since B4
1 = B3

1 , the procedure terminates with the computation of B4
1 , and B1 = 20.

We now compute tardiness bounds for fixed tasks of P1 by computing their worst-case response times. We begin

with τ1. As explained earlier, it suffices to consider φq in the range [0, min(pq − 1, Bk − pq − 1)] for each fixed task

τq on Pk. Since B1 = 20, the range for φ1 is [0,−1], which is empty. This implies that tardiness for τ1 is zero.

We next consider τ2, for which, φ2 is in the range [0, 9]. The number of jobs of τ2 for which worst-case response

times need to be determined is given by J − 1 =
⌈

B1−φ2

p2

⌉

− 1 =
⌈

20−φ2

10

⌉

− 1 = 1, for all 0 ≤ φ2 ≤ 9. We

compute the response time for the first job (i.e., ` = 1) of τ2, which is τ2,1, when phase φ2 = 0. By (24),

C0
2,1,0 = min(20 − 3, 0) + 3 = 3. By (25),

C1
2,1,0 =

⌈⌈

C0
2,1,0

p3

⌉

· f3,1

⌉

· e3 + min

(⌈

C0
2,1,0

p1

⌉

,

⌊

` · p2 + φ2

p1

⌋

)

· e1 + min

(⌈

C0
2,1,0

p2

⌉

,

⌊

` · p2 + φ2

p2

⌋

)

· e2

=

⌈⌈

3

2

⌉

·
9

10

⌉

· 1 + min

(⌈

3

20

⌉

,

⌊

1 · 10 + 0

20

⌋)

· 5 + min

(⌈

3

10

⌉

,

⌊

1 · 10 + 0

10

⌋)

· 3
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= 2 + 0 + 3 = 5,

C2
2,1,0 =

⌈⌈

C1
2,1,0

p3

⌉

· f3,1

⌉

· e3 + min

(⌈

C1
2,1,0

p1

⌉

,

⌊

` · p2 + φ2

p1

⌋

)

· e1 + min

(⌈

C1
2,1,0

p2

⌉

,

⌊

` · p2 + φ2

p2

⌋

)

· e2,

=

⌈⌈

5

2

⌉

·
9

10

⌉

· 1 + min

(⌈

5

20

⌉

,

⌊

1 · 10 + 0

20

⌋)

· 5 + min

(⌈

5

10

⌉

,

⌊

1 · 10 + 0

10

⌋)

· 3

= 3 + 0 + 3 = 6,

C3
2,1,0 =

⌈⌈

C0
1,1,2

p3

⌉

· f3,1

⌉

· e3 + min

(⌈

C0
1,1,2

p1

⌉

,

⌊

` · p2 + φ2

p1

⌋

)

· e1 + min

(⌈

C0
1,1,2

p2

⌉

,

⌊

` · p2 + φ2

p2

⌋

)

· e2

=

⌈⌈

6

2

⌉

·
9

10

⌉

· 1 + min

(⌈

6

20

⌉

,

⌊

1 · 10 + 0

20

⌋)

· 5 + min

(⌈

6

10

⌉

,

⌊

1 · 10 + 0

10

⌋)

· 3

= 3 + 0 + 3 = 6.

Thus, convergence is reached after four iterations and the worst-case response time of τ2,1 = 6. Since d(τ2,1) = 10,

τ2,1’s tardiness is zero. It can similarly be verified that tardiness for τ2,1 is zero for every φ2 in [1, 9]. Hence,

tardiness bounds for both τ1 and τ2 are zero. On the other hand, tardiness bounds computed for τ1 and τ2 using

the formula in Section 6.4 are 9.01 and 5.45, respectively.

7 Simulation-Based Evaluation

In this section, we describe the results of four sets of simulation experiments conducted using randomly-generated

task sets to evaluate EDF-fm and the heuristics described in Section 6.

The experiments in the first set evaluate the various task assignment heuristics for M = 4 and M = 8 (where

M is the number of processors), and umax = 0.25 and umax = 0.5 (where umax is the maximum utilization of any

task in a task set). For each M and umax, 106 task sets were generated. Each task set τ was generated as follows:

New tasks were added to τ as long as the total utilization of τ was less than M . For each new task τi, first, its

period pi was generated as a uniform random number in the range [1.0, 100.0]; then, its execution cost was chosen

randomly in the range [umax, umax · pi]. The last task was generated such that the total utilization of τ exactly

equaled M . The generated task sets were classified by maximum and average execution costs (denoted emax and

eavg). The tardiness bound given by (21) was computed for each task set under a random task assignment and

also under heuristics HUF, LUF, and LEF. The average value of the tardiness bound for task sets in each group

under each classification and heuristic was then computed. The results for the groups classified by emax and eavg

for M = 4 and umax = 0.5 are shown in insets (a) and (b), respectively, of Figure 10. Insets (c) and (d) contain

the results under the same classifications for the same M but for umax = 0.25. Results for M = 8 are shown in

Figure 11. (99% confidence intervals were also computed but are omitted due to scale.)

Results for task sets grouped by umax and uavg are shown in Figure 12 for M = 4 and M = 8. Data for these

results also come from 106 task sets. However, for this subset of experiments, tasks were generated by uniformly

choosing an execution cost in the range [1.0, 20.0] and a utilization in the range [umin, umax]; the pair (umin, umax)
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Figure 10: Tardiness bounds under different task assignment heuristics for M = 4 and umax = 0.5 by (a) emax

and (b) eavg, and for M = 4 and umax = 0.25 by (c) emax and (d) eavg.

for each task set was uniformly chosen from those in the set {(0.0, 0.2), (0.0, 0.4), (0.1, 0.5), (0.3, 0.5)}. This strategy

was used so that a sufficient number of task sets fall under each uavg group.

From the plots, we first observe that there is only a slight increase in the tardiness bounds as the number of

processors is increased from four to eight. This is because the tardiness bound given by (21) is independent of

M . However, the maximum of the tardiness bounds computed for all the tasks can be expected to increase as the

number of processors, and hence, the number of tasks increase. The increase, however, seems to be negligible.

Coming to the comparison of the different heuristics, the plots show that LEF guarantees the minimum tardiness

of the four task-assignment approaches. LUF is the next best with the difference between LEF and LUF being wider

on M = 8 processors than on M = 4 processors. Another interesting observation is that HUF performs worse

than even Random most of the time. Under LEF, tardiness is quite low (approximately 8 time units mostly) for

umax = 0.25 (insets (c) and (d) of Figures 10 and 11 and insets (a) and (c) of Figure 12), which suggests that
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Figure 11: Tardiness bounds under different task assignment heuristics for M = 8 and umax = 0.5 by (a) emax

and (b) eavg, and for M = 8 and umax = 0.25 by (c) emax and (d) eavg.

LEF may be a reasonable strategy for such task systems. Tardiness increases with increasing umax, but is still a

reasonable value of 25 time units only for eavg ≤ 10 when umax = 0.5. However, for eavg = 20, tardiness exceeds

75 time units when M = 8, which may not be acceptable. For such systems, tardiness can be reduced by using

the job-slicing approach, at the cost of increased migration overhead. Therefore, in an attempt to determine the

reduction possible with the job-slicing approach, we also computed the tardiness bound under LEF assuming that

each job of a migrating task is sliced into sub-jobs with execution costs in the range [1, 2). This bound is also plotted

in the figures referred to above. For umax = 0.5, we found the bound to settle to approximately 7–8 time units,

regardless of the execution costs and individual task utilizations. (When umax = 0.25, tardiness is only 1–2 time

units under LEF with job slicing.) In our experiments, on average, a seven-fold decrease in tardiness was observed

with job slicing with a granularity of one to two time units per sub-job. However, a commensurate increase in the

number of migrations is also inevitable.
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Figure 12: Tardiness bounds under different task assignment heuristics for (a) M = 4 and umax (b) M = 4 and
uavg (c) M = 8 and umax (d) M = 8 and uavg. In all the graphs, emax = 20 and eavg = 10.

Overall, the results indicate that the tardiness bounds guaranteed may be tolerable if task execution costs are

not high and the LEF strategy is used for task assignment.

The second set of experiments evaluates the different heuristics in their ability to successfully assign task sets

that contain non-light tasks also. Task sets were generated using the same procedure as that described for the

first set of experiments above, except that umax was varied between 0.6 and 1.0 in steps of 0.1. All of the four

approaches could assign 100% of the task sets generated for M = 2, as expected. For higher values of M , the

success ratio plummeted for all but the LUF approach. The percentage of task sets that LUF could successfully

assign for varying M and umax is shown in Figure 13(a). LEF performed next best (graphs not provided). However,

even when umax = 0.6, its success percentage is approximately 79% when M = 4 and 24% when M = 16; the

corresponding values are approximately 23.9% and 0.3%, respectively, when umax is increased to 1.0. In this set of

experiments also, HUF almost always performed worse than Random, and its success percentage was close to zero
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Figure 13: (a)Percentage of randomly-generated task sets with non-light tasks successfully assigned by the LUF

heuristic. (b) & (c) Comparison of estimated and observed tardiness under EDF-fm-LEF by (b) average execution
cost and (c) average utilization.

except when M = 4.

The third set of experiments was designed to evaluate the pessimism in the tardiness bound of (21). 300,000

task sets were generated with umax = 0.5 and Usum = 8. The tardiness bound estimated by (21) under the LEF

task assignment heuristic was computed for each task set. A schedule under EDF-fm-LEF for 100,000 time units

was also generated for each task set (when each task releases jobs in a synchronous, periodic manner) and the

actual maximum tardiness observed was noted. (The time limit of 100,000 was determined by trial-and-error as an

upper bound on the time within which tardiness converged for the tasks sets generated.) Plots of the average of

the estimated and observed values for tasks grouped by eavg and uavg are shown in insets (b) and (c) of Figure 13,

respectively. In general, we found that actual tardiness is only approximately half of the estimated value.

Finally, experiments were run to compare the bounds computed iteratively, which could require exponential
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Figure 14: Comparison of tardiness estimated by the iterative formulas to that estimated by the closed-form
formula in (21) and observed tardiness under LEF task assignment by (a) average execution cost and (b) average
utilization.

time, to the actual tardiness. For this set of experiments, to facilitate computations, both periods and execution

costs were chosen to be integers. Further, to reasonably constrain the length of the busy interval, the maximum

period was restricted to 20, and some odd values such as 13, 17, and 19 were forbidden. Results are shown in

Figure 14 and indicate that the bounds computed using this approach are very close to actual tardiness observed.

8 Related Work

A primary goal of research on soft real-time systems is to provide weaker guarantees on meeting timing constraints,

where permissible, in an attempt to improve resource utilization. Most prior work on soft real-time scheduling

has focussed on uniprocessor systems only. On uniprocessors, several real-time models that differ in the type of

soft real-time guarantees they provide have been proposed in the literature. We will classify the models as either

deterministic or probabilistic based on the predominant nature of the soft real-time guarantees they provide.

Deterministic models. Among the early deterministic models is the skippable periodic task model of Koren and

Shasha [23]. In this model, jobs of a task may be skipped , i.e., may either miss their deadlines or be aborted at

any time, as long as there is a minimum separation between two consecutive skips. Koren and Shasha showed

that utilizing skips optimally is NP-hard and proposed algorithms that can exploit skips. Variations on this theme

have been proposed by others either independently or as follow-up work. In [20], Hamdaoui and Ramanathan

introduced the (m, k)-firm deadline model , in which at least m jobs in every k consecutive jobs should meet their

deadlines, and devised algorithms that can provide probabilistic guarantees on meeting the (m, k) constraint. The

window-constrained model [40] is another similar model, whereas the weakly-hard real-time model [12] strives to
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provide a general framework for the specification of soft real-time constraints. In particular, in the weakly-hard

model, a specification for soft real-time constraints (referred to as weakly-hard constraints by the authors), which

can allow multiple constraints to be associated with each task, and an algebra that relates different constraints,

are developed. Schedulability analysis for such task systems under fixed-priority scheduling is also presented. The

weakly-hard real-time model also allows jobs that do not meet their deadlines to complete late, but no bound on

tardiness is provided.

The models discussed above allow some jobs to be treated as optional and their executions to either complete

late or be discarded entirely. In contrast, the imprecise computation model [29] is another deterministic model in

which some portion of every job can be optional and can be discarded. In this model, each job is composed of a

mandatory part and an optional part. The goal is to execute the mandatory part of each job by the job deadline,

and to schedule the optional part so that one or more performance metrics, such as, the number of jobs whose

optional parts are discarded, the total amount of time by which all the optional parts are late, etc., are optimized.

In [7], Aydin et al. associate a reward function, which is non-decreasing with the amount of work completed, with

the optional parts of the jobs of each periodic task, and show how to schedule imprecise tasks such that the weighted

average reward is maximized.

The soft real-time model considered in this paper also provides deterministic guarantees. This model, where

sporadic tasks with implicit deadlines have a tardiness threshold, has not been considered much in the context of

uniprocessors. This is due to the fact that for systems that are not overloaded, scheduling under EDF is sufficient

to ensure that each job completes execution by its deadline, and there is no scope of allowing a higher utilization

even if bounded tardiness is tolerable. This model can alternatively be viewed as one in which timing constraints

are hard, but the relative deadlines of the sporadic tasks are larger than their periods.6 When viewed in this

alternative manner, the model has been the focus of some research in the context of deadline-monotonic scheduling

on uniprocessors. In [25], Lehoczky provides a demand-based test, which may require exponential time, to determine

the schedulability of task systems that use the model, and also derives utilization bounds when the relative deadline

of each task is a multiple (greater than one) of its period. However, determining the maximum time after the end

of its period that any job may complete executing has not been addressed.

Probabilistic models. For some tasks, such as those in video-conferencing applications or animation games,

the inter-arrival time between two consecutive jobs or the execution requirements of different jobs can vary widely

over time. For such systems, reserving resources based on worst-case parameters (shortest inter-arrival time and

longest execution time) can be extremely wasteful. One way of improving resource utilization for such systems is to

model task parameters probabilistically (using probability distributions for inter-arrival times or execution times)

6It should be noted that if the relative deadlines of all tasks are not increased by equal amounts, then it is possible for a task
with a shorter period to have a larger relative deadline, or vice versa. Hence, when viewed in this alternative manner, task priorities
determined based on relative deadlines or job priorities based on absolute deadlines may not match those determined in our model in
which relative deadlines equal periods.
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and provide probabilistic guarantees on meeting deadlines. Examples of research in this direction can be found in

[38, 6, 1, 2, 17]. Within the probabilistic domain, Lehoczky’s real-time queueing theory [26] strives to provide a

framework for combining the timing constraints of real-time scheduling with the stochastic elements of queueing

theory. This theory may be used to determine the fraction of jobs missing their deadlines in either single-queue

(i.e., single task), single-server systems [18], or acyclic networks of servers with multiple queues [24] under heavy

traffic conditions.7

Almost all of the work on the models described above is concerned with dealing with overload on uniprocessors,

i.e., scenarios in which the total system utilization exceeds the available capacity, which is 1.0. (In general,

deterministic models are used when the overload is over longer terms, such as system lifetimes. Probabilistic

models are more suited for systems that may be overloaded occasionally for short durations but whose average

loads do not exceed the available capacity. Combinations of both are also possible.) However, in the context of

multiprocessors, there exist scheduling algorithms under which guarantees on timeliness that can be provided are

not known when the total utilization exceeds the schedulable utilization of the algorithm (but not the available

processing capacity). Since the worst-case schedulable utilization of the concerned algorithms is (M +1)/2, possible

guarantees on timeliness are not known even when the system is much below full load. This is true of most of the

known algorithms except optimal Pfair algorithms, necessitating a study of the model of this paper. We conjecture

that on multiprocessors, results based on this model may, in fact, be necessary in dealing with overload.

On multiprocessors, soft Pfair-based real-time scheduling has previously been considered in [37] and [15], where

tardiness bounds are derived for a suboptimal Pfair scheduling algorithm that is less expensive than optimal

algorithms. As already mentioned, deriving tardiness bounds under global preemptive EDF has been considered in

[16] and [39], and that under non-preemptive EDF in [16].

9 Concluding Remarks

We have proposed a new algorithm, EDF-fm, which is based on EDF, for scheduling recurrent soft real-time task

systems on multiprocessors, and have derived a tardiness bound that can be guaranteed under it. Our algorithm

places no restrictions on the total system utilization, but requires per-task utilizations to be at most one-half of a

processor’s capacity. This restriction is quite liberal, and hence, our algorithm can be expected to be sufficient for

scheduling a large percentage of soft real-time applications. Furthermore, under EDF-fm, only a bounded number

of tasks need migrate, and each migrating task will execute on exactly two processors. Thus, task migrations are

restricted and the migration overhead of EDF-fm is limited. We have also proposed heuristics for assigning tasks

to processors and evaluated them, and proposed the use of the job-slicing technique, when possible, for signifi-

cantly reducing the actual tardiness observed in practice. Finally, we have presented exponential-time formulas for

7Under heavy traffic conditions, the traffic intensity or the average utilization of the processor converges to one.
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computing more accurate tardiness bounds, which may be used during offline system design.

We have only taken a first step towards understanding tardiness under EDF-based algorithms on multiprocessors

and have not addressed all practical issues concerned. Foremost, the migration overhead of job slicing would trans-

late into inflated execution costs for migrating tasks, and to an eventual loss of schedulable utilization. Hence, an

iterative procedure for optimally slicing jobs may be needed. Next, our assumption that arbitrary task assignments

are possible may not be true if tasks are not independent. Therefore, given a system specification that includes

dependencies among tasks and tardiness that may be tolerated by the different tasks, a framework that determines

whether a task assignment that meets the system requirements is feasible, is required. Finally, our algorithm,

like every partitioning-based scheme, suffers from the drawback of not being capable of supporting dynamic task

systems in which the set of tasks and task parameters can change at runtime. We defer addressing these issues to

future work.
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Appendix

Lemma 1 For any two synchronous, periodic tasks T and U that are complementary, a schedule in which every

subtask of T is scheduled in the first slot of its window and every subtask of U in its last slot, or vice versa, is

feasible on one processor.

Proof: To show that the lemma holds, it suffices to show the following: for all t, if r(Ti) = t holds for some i,

then there does not exist a j such that d(Uj) = t + 1. (Here t is a non-negative integer, and i and j are positive

integers.) The contrapositive of the above assertion would then imply that for all t, if there exists a j such that

d(Uj) = t + 1, then there does not exist an i for which r(Ti) = t. Hence, a schedule as described in the statement

of the lemma would be feasible.

By (3), r(Ti) = t implies that

⌊

i − 1
wt(T )

⌋

= t holds. Therefore,

i − 1

wt(T )
≥ t

⇒ i ≥ t · wt(T ) + 1

⇒ t − i ≤ t(1 − wt(T )) − 1

⇒
t − i + 1

1 − wt(T )
≤ t. (26)
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Furthermore, by

⌊

i − 1
wt(T )

⌋

= t, we also have the following.

i − 1

wt(T )
< t + 1

⇒ i − 1 < wt(T ) + t · wt(T )

⇒ t − i + 1 + wt(T ) > t(1 − wt(T ))

⇒
t − i + 1 + wt(T )

1 − wt(T )
> t

⇒
t − i + 1 + wt(T )

1 − wt(T )
+

1 − wt(T )

1 − wt(T )
> t +

1 − wt(T )

1 − wt(T )

⇒
t − i + 2

1 − wt(T )
> t + 1 (27)

By (26) and (27), it follows that there does not exist an integer j for which

⌈

j
1 − wt(T )

⌉

= t + 1 holds. By

Definition 1, wt(U) = 1 − wt(T ). Therefore, by (4), it follows that there does not exist a subtask Uj such that

d(Uj) = t + 1 holds. �
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