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Sébastien Roch

Department of Mathematics

UC Los Angeles

August 6, 2018

Abstract

We use computational phylogenetic techniques to solve a central problem in inferential network
monitoring. More precisely, we design a novel algorithm for multicast-based delay inference, that
is, the problem of reconstructing delay characteristics of a network from end-to-end delay measure-
ments on network paths. Our inference algorithm is based on additive metric techniques used in
phylogenetics. It runs in polynomial time and requires a sample of size only poly(log n). We also
show how to recover the topology of the routing tree.

1 Introduction

Network tomography. Inferential network monitoring—also known as network tomography [27]—
consists in reconstructing various properties of large communication networks from indirect measure-
ments in order to facilitate the management of these networks. Network inference can be achieved
by two general approaches. In the internal approach, one takes measurements directly at the edges
and nodes of the network. This approach suffers from several drawbacks: the network operator may
not allow access to internal devices of the network or may not make public measurements on them;
the routers may not have the technological capabilities to perform the required measurements; direct
measurements may create extra computational burden as well as congestion in the network. This has
led some in the networking community to consider instead the external approach. In this case, one uses
so-called “end-to-end” measurements, e.g., measurements of delays or rate of packet drops between
nodes in the network, and seeks to infer the desired network properties from them. This gives rise to
an inverse problem similar to tomographic image reconstruction.

Our aim in this paper is to propose a novel approach to this problem. We focus on multicast-based
inference. Multicast routing consists in sending a packet from a source to a set of receivers through
a routing tree. The packet is duplicated at each branch point and sent further down the tree. The
routing tree is generally unknown to the user. The idea is to use inherent correlation of measurements
between different receivers to reconstruct the topology of the routing tree as well as to estimate link
properties of this tree. The main link property we consider here is the delay distribution. The multicast
inference approach was introduced in [4, 23].

A core difficulty of the problem is to devise efficient, scalable algorithms which consistently estimate
the desired network properties. Several techniques have been used in the network tomography liter-
ature, notably maximum pseudo-likelihood, EM algorithms and Markov chain Monte Carlo methods.
See [6] for a detailed survey and bibliographic references. In this paper, we introduce a new methodol-
ogy for multicast delay inference inspired by techniques from the field of phylogenetics in biology, that
is, the reconstruction of evolutionary trees from molecular data. Our methodology has the advantage
of being provably consistent and computationally efficient. It also uses a small asymptotic sample size.
This is crucial to reduce the burden on the network as well as to obtain a consistent “snapshot” of
the network, which is intrinsically dynamic in nature. Typical networks undergo sporadic medium
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to large-scale changes in structure over time, therefore algorithms with low sample complexity are
essential. Concurrently to our work, Liang et al. [15] used similar ideas to tackle the related multicast
packet loss inference problem. Also, Ni and Tatikonda [19] independently proposed a Markov-based
inference algorithm similar to ours for multicast delay inference—although our work appears to be
the first rigorous analysis of the sample complexity of this approach. See Section 1.2 for a precise
statement of our results and Section 1.3 for a discussion of previous work. The results detailed here
were first announced in [2].

Phylogeny background. A core problem in evolutionary biology is the inference of evolutionary
histories of organisms from molecular data. Evolution is usually represented by a tree where branching
points indicate speciation events. The root of the tree is the common ancestor to all species in the tree
and the leaves are contemporary (extant) species. Molecular data is assumed to evolve according to a
standard Markov model. The phylogenetic reconstruction problem is the following. From measurement
of sequences of molecular data at the leaves, one seeks to reconstruct the topology of the evolutionary
tree as well as mutation characteristics along the branches. See [11] and [25] for an overview of the
field of phylogenetics.

Various statistical and computational techniques have been used to solve the phylogenetic recon-
struction problem: maximum likelihood, bayesian, parsimony, and distance-based methods. In this
paper, we adapt and extend distance-based techniques to deal with a class of models introduced in [23]
in connection with the multicast network inference problem—this new class of models is similar to the
Markov models used in phylogenetics but presents challenges of its own. The main idea in distance-
based methods is to define a so-called tree metric from mutation parameters. A tree metric is a metric
on the leaves of the tree which can be realized as a path metric on a corresponding weighted tree. (See
Section 2 for more details.) After being estimated, the metric allows the reconstruction of the tree
and its characteristics. A main advantage of this approach is that it leads to computationally efficient
algorithms with provable sample requirement guarantees.

1.1 Basic Definitions

A broadcasting process on a tree. We now give a more formal statement of the multicast inference
problem introduced in [23]. Let T = (V,E) be a tree on n+1 leaves L—representing the routing tree—
and let {de}e∈E be a set of independent positive random variables on the edges—representing the
delays. Leaf 0, the source, is the root of the tree. The remaining n leaves are the receivers. We assume
that all internal nodes have degree at least 3.

A realization of the multicast delay process works as follows: the root sends a packet to the receivers
through the routing tree; at every branching point, the packet is duplicated; on every link e, an
independent random delay de is experienced by the packet. More formally, we define the multicast
delay process {Du}u∈V as follows. Let Pij be the path (set of edges) between nodes i and j in T . For
a node u, let

Du =
∑

e∈P0u

de. (1)

Note that Du is the total delay at node u in the network.

The multicast inference problem. The tree and delay distributions are actually unknown to us.
We are only given access to k independent samples of delays at the leaves {D1

a}a∈L, . . . , {Dk
a}a∈L. Our

goal is to reconstruct the routing tree and estimate the delay distributions using these samples. We
now define more precisely what we mean by the estimation of the delay distributions. In this work, we
assume that each edge delay distribution (in general, different) is characterized by a constant number,
say J − 1 > 1 (independent of n), of consecutive central moments. That is, we assume there are
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characteristic moments
w(j)
e = E

[
(de − E[de])

j
]
,

for all e ∈ E and 2 ≤ j ≤ J . Our goal is to estimate these moments within a fixed accuracy. More
formally, we make the following assumption. We first need a definition.

Definition 1 (Regular Families) Let ε > 0 and J ≥ 2 be fixed. Let Q = {Qθ}θ∈Θ be a family of dis-
tributions on R parametrized by θ ∈ Θ where Θ is a subset of an Euclidean space. Let

{
w(j)(θ)

}
{2≤j≤J}

be the first J − 1 central moments of Qθ. We say that the family Q is (ε, J)-regular if there exists a
map Ψ from R

J−1 to Θ and a δ > 0 such that if the vector ŵ =
{
ŵ(j)

}
{2≤j≤J}

satisfies

∣∣∣ŵ(j) − w(j)(θ)
∣∣∣ ≤ δ

for all 2 ≤ j ≤ J , then ∥∥Qθ −QΨ(ŵ)

∥∥
1
≤ ε.

In Appendix A, we give simple examples of regular families.

Assumption 1 (Regularity and Boundedness) Let ε > 0 and J ≥ 2 be fixed (independent of
n). We assume that all edge delay distributions are from a fixed (ε, J)-regular family of distributions.
Furthermore, we assume that the delays are uniformly bounded, namely there is a constant M > 0
independent of n such that for all e ∈ E, de ∈ [0,M ].

This framework is simple enough to be tractable yet general enough to accommodate large classes of
distributions: parametrized distributions, e.g., beta distributions; and nonparametrized distributions,
e.g., discretized distributions on {0, 1, . . . ,M}. Further we need the following assumption.

Assumption 2 (Lower Bound on Second Moment) We assume that there is a constant f > 0
(independent of n) such that for all e ∈ E,

w(2)
e ≥ f.

To sum up, the multicast inference problem is defined as follows.

Definition 2 (Multicast Inference Problem, Moment Version) Let ε > 0 and J ≥ 2 be fixed.

The multicast inference problem consists in the following. Let T and
{
w

(j)
e

}
{e∈E,2≤j≤J}

be any tree

(with internal degrees at least 3) and set of central moments on edges. Given samples of delays at the
leaves, we are required to:

1. Tree Reconstruction. Recover T .

2. Moment Estimation. Estimate all characteristic moments
{
w

(j)
e

}
{e∈E,2≤j≤J}

within ε.

Remark 1 As noted by Lo Presti et al. [23], the means of the edge delay distributions are, in general,
unidentifiable. See Figure 1 for an illustration. In particular, one cannot hope to recover the deter-
ministic transmission delay on each link. But, as noted in [23], this is not a major issue. Indeed, in
practice, one is only interested in the variable portion of the delay, that is, the portion resulting from
traffic. To restore identifiability, Lo Presti et al. proceed by subtracting the lowest observed delay on
each receiver, in order to remove the (estimated) deterministic component of the delay. They further
assume that the variable portion of the delay “starts at 0.” We also make this last assumption (see our
examples of regular delay distributions in Appendix A). However, instead of subtracting the minimum
observed delay (which may be unreliable on a large network), we use central moments—which are not
affected by the deterministic transmission delay.
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Figure 1: Unidentifiability of Mean Delay: If one were to replace d1 with d1 + µ and d2, d3 with
d2 − µ, d3 − µ for µ > 0 (assuming µ can be chosen so that all delays remain positive) then the
distribution of delays at a, b would be unchanged. This example also shows that one cannot deduce
the delays on all edges given total delays at all leaves.

1.2 Our Results.

Our main result is the following theorem.

Theorem 1 (Main Result) Let ε > 0 and J ≥ 2 be fixed. Let Assumptions 1 and 2 hold. Then,
there is a polynomial-time algorithm which solves the multicast inference problem with high probability
using k = O (poly(log n)) samples.

See Theorems 3, 4, and 5 below for more precise statements.
The proofs of the main theorems rely on the important notion of a tree metric from phylogenetics.

Roughly speaking, a tree metric is a metric on the leaves of a tree such that the distance between
any two leaves can be written as a sum of edge weights on the corresponding path. (See Section 2 for
definitions.) There are two components to our algorithm:

1. Topology reconstruction: The reconstruction of the routing tree can be achieved by adapting
known phylogenetic reconstruction algorithms—once the proper delay-based metric is defined.
This result is proved in Section 3. The relevant phylogenetic background is introduced in Sec-
tion 2.

2. Moment estimation on edges: Most of the technical work of this paper is in deriving and
analyzing a metric-based algorithm for inferring edge delay distributions (Theorems 4 and 5).
For this purpose, a) we relax the notion of a tree metric to allow nonnegative edge weights, b)
we define appropriate delay-based metrics, and c) we show how to estimate these metrics. The
analysis relies on large deviations arguments.

As far as we are aware, our algorithm is the first multicast inference algorithm to be both provably
efficient and consistent. Previous work concerned mostly non-rigorous techniques such as maximum
pseudo-likelihood and EM algorithms. See [6] for details. An exception is the independent, unpublished
work of Liang et al. [15] which uses techniques similar to ours in the related context of multicast packet
drop inference.

1.3 Discussion

Validity of assumptions. The multicast delay process defined in Section 1.1 relies on two basic
assumptions about routing and traffic which makes its analysis possible: temporal and spatial inde-
pendence. In reality, of course, both assumptions are violated to some extent. Lo Presti et al. [23]
(see also [4]) studied the effect of these violations empirically and concluded that the multicast delay
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process is a useful first approximation to the underlying complex process. We briefly summarize their
findings.

Temporal dependence—delays at a given link being correlated at different points in time—is common
in communication networks. But, as it turns out, its impact is rather mild for our purposes. Indeed
the type of inference procedure studied in [23] (as well as in the current paper) does not actually
require independence in time but only ergodicity—a much weaker assumption; more precisely, the
estimator in [23] (and in the current paper) is consistent as long as the delay process is ergodic. Hence,
the temporal dependencies impact only the convergence rate of the inference procedure. Lo Presti
et al. showed empirically that, although this effect cannot be ignored, it is rather mild. Quantifying
exactly the effect of temporal correlations on the theoretical convergence rate of an estimator is non-
trivial.

As for spatial correlations—dependencies in delays on neighboring links—Lo Presti et al. found
that they can produce a systematic bias in the estimation. However, they showed empirically that
the bias is a small, second-order effect, possibly—they argue—because the diversity of traffic on the
network results only in localized, short-term correlations in delays. They also point out that very little
is known about the precise structure of such spatial correlations in real networks, making it hard to
derive a good model for them.

Another assumption implicit in our model is that the process, including the routing tree itself,
remains homogeneous over time. In fact, there are sporadic large-scale changes in the network. These
explain why a low sample complexity is critical for an inference procedure to be useful in practice.
Minimizing the sample complexity is the main focus of this paper.

Related results. The multicast delay inference problem was formalized by Lo Presti et al. in [23].
In that paper, the authors give a procedure to infer a discretized delay distribution on each link, given
the routing tree topology. Their algorithm is based on an ad-hoc fixed point equation that is solved
by least squares. Moreover, these authors show that their estimator is asymptotically normal with a
variance-covariance matrix depending implicitly on the delay characteristics. More explicit formulas
are given in the limit of small delays. The algorithm is tested on small networks and the dependence
on the size is not given.

More recently, Ni and Tatikonda [19, 20, 21, 22]—in work subsequent to ours [2]—used phylogenetic
techniques to recover the routing tree topology in this context. Similarly to the current paper, they
use distance-based techniques. The basic algorithm they consider is the well-known Neighbor-Joining
(NJ) algorithm which they apply to various tree metrics, for instance, the delay variance metric (as
we do here). They also deal with trees of internal degrees higher than 3 by introducing a variant of
NJ called Rooted Neighbor-Joining (RNJ) [21] (based on a technique equivalent to what is known
in phylogenetics as the Farris transform [10]). They show more precisely that RNJ is a consistent
estimator of the routing tree, but no convergence rate is given. Note, however, that RNJ has in fact
a high sample complexity due to its reliance on the diameter of the tree. See, e.g., [1]. See also our
discussion about diameter v. depth in Section 2.2. Here, we make use of state-of-art phylogenetic
reconstruction techniques to derive a low sample complexity algorithm for routing tree reconstruction.
We also show how to infer delay distributions. A technique to infer discrete delays was also subsequently
obtained by Ni and Tatikonda [20] (although no convergence rate is provided).

A related network tomography problem is the so-called multicast link loss inference problem, where
one observes packet losses at the receivers of a multicast routing tree—instead of delays—and seeks to
infer the routing tree and packet drop probabilities on the links. This problem was formalized in [4]
where a maximum-likelihood estimation procedure was analyzed. In [4], the network topology is as-
sumed known. In more recent independent work, Liang et al. [15] (unpublished) applied phylogenetic
techniques to the inference of the routing topology in this context. Indeed, the multicast link loss
problem is in essence a special case of the standard model of DNA evolution used in biology. Similarly
to the current paper, Liang et al. use distance-based techniques. More precisely, they give a com-
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putationally efficient reconstruction algorithm with sample complexity O(b−2 log n) where b (possibly
depending on n) is a lower bound on the link loss probability. Ni and Tatikonda [19, 20, 21, 22] (see
above) also considered the link loss inference problem.

1.4 Organization of the Paper

The paper is organized as follows. We start with some phylogenetic background in Section 2. Our
results concerning the topology reconstruction can be found in the Section 3. We then present and
analyze our delay inference algorithm in Section 4.

2 Phylogenetic Reconstruction Techniques

In this section, we summarize and adapt to our setting the DMR algorithm of [8].

2.1 Basics

We begin with a few basic notions from phylogenetics.

Tree metrics. In phylogenetics, the notion of a tree metric is useful for reconstructing the topology
of phylogenies. We use the notation R++ = {x ∈ R : x > 0}.

Definition 3 (Tree Metric) Let L be a finite set with cardinality n. A function W : L × L → R+

defines a (nondegenerate) tree metric if the following holds. There exist a tree T = (V,E) with leaf set
L and a weight function w : E → R++ such that W (a, b) =

∑
e∈Pab

we for all a, b ∈ L where Pab is the
path between a and b in T .

Tree metrics are usually estimated from samples of the tree process at the leaves. In that context,
Azuma’s inequality is useful (see, e.g., [18]).

Lemma 1 (Azuma-Hoeffding Inequality) Suppose X = (X1, . . . ,Xk) are independent random
variables taking values in a set S, and f : Sk → R is any t-Lipschitz function: |f(x) − f(y)| ≤ t
whenever x and y differ at just one coordinate. Then, ∀λ > 0,

P [f(X)− E[f(X)] ≥ λ] ≤ exp

(
− λ2

2t2k

)
,

and

P [f(X)− E[f(X)] ≤ −λ] ≤ exp

(
− λ2

2t2k

)
.

Bipartitions. A useful combinatorial description of a tree T = (V,E) is obtained by noticing that
each edge e ∈ E of the tree naturally corresponds to a partition of the leaves L into two subsets (that
is, the leaves on either “side” of e). Such partitions are called bipartitions and they characterize the
tree: it is easy to generate all bipartitions corresponding to a given tree, and on the other hand, there is
a simple efficient iterative procedure to recover a tree from the set of all of its bipartitions. See [11, 25]
for details.
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2.2 Distorted Metric Algorithms

Classical distance-based reconstruction algorithms (that is, those methods based on tree metrics) such
as UPGMA [26] or Neighbor-Joining (NJ) [24], typically make use of all pairwise distances between
leaves. This leads to difficulties because “long” distances are more “noisy” and require a large number
of samples to be accurately estimated. For instance, in the phylogenetic context, the widely used NJ
algorithm is computationally efficient, but it is known to require exponentially many samples—even
for simple linear trees [13].

An important breakthrough was made in [9] where it was shown that it was in fact enough to
use “short” distances to fully recover the tree under reasonable assumptions. To help understand this
result, we need a notion of tree “depth.” Given an edge e ∈ E, the chord depth of e is the length (in
graph distance) of the shortest path between two leaves on which e lies1. That is,

∆(e) = min {d(u, v) : u, v ∈ L, e ∈ Puv} ,

where d is the graph distance on T . We define the chord depth of a tree T to be the maximum chord
depth in T

∆(T ) = max {∆(e) : e ∈ E} .
It is easy to show that ∆(T ) ≤ log2 n if the degree of all internal nodes is at least 3 (argue by
contradiction). In a nutshell, the key insight behind the results in [9] is that the diameter and the
depth of a tree behave very differently: even though the diameter can be as large as O(n), the depth
is always O(log n), in other words, each edge lies on a “short” path between two leaves. Using clever
combinatorial arguments, Erdös et al. [9] showed that one can reconstruct trees with much fewer
samples by ignoring those distances corresponding to paths longer than O(log n).

More recently, Daskalakis et al. [8] relaxed some of the assumptions in [9]. In particular, they gave
a reconstruction algorithm based on short distances allowing internal degrees bigger than 3—which is
particularly relevant in the networking context. Their algorithm, which we will call the DMR algorithm,
reconstructs all bipartitions using only distances smaller than a threshold of order O(log n). To check
that the algorithm works, one only needs to show that such distances are accurately estimated for a
given number of samples. In the tomography setting, the DMR algorithm will allow us to reconstruct
the routing tree using as few as poly log n samples (see next section). The details of the algorithm are
sketched in Appendix B.

We now state a corollary of [8] that will be useful to us. We first need the following definition
which formalizes the idea that short distances are accurately estimated (and that long distances can
in some sense be ignored).

Definition 4 (Distorted Metric [16, 12]) Let T = (V,E) be a tree with leaf set L and edge weight

function w : E → R++. Let W : L× L → R+ be the corresponding tree metric. Fix τ̃ , M̃ > 0. We say
that Ŵ : L× L→ (0,+∞] is a (τ̃ , M̃)-distorted metric for T or a (τ̃ , M̃ )-distortion of W if:

1. (Symmetry) For all u, v ∈ L, Ŵ is symmetric, that is,

Ŵ (u, v) = Ŵ (v, u);

2. (Distortion) Ŵ is accurate on “short” distances, that is, for all u, v ∈ L, if eitherW (u, v) < M̃+τ̃

or Ŵ (u, v) < M̃ + τ̃ then ∣∣∣W (u, v)− Ŵ (u, v)
∣∣∣ < τ̃.

1Note that unlike [8] we use the graph distance in the definition of chord depth. Because of our assumptions (see
below) the two graph and weighted distances are the same up to a constant factor. Note also that we are using a different
definition than [9]. But again the difference is only a constant factor.
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Let f, g > 0 be bounds on the edge weights, that is, f ≤ we ≤ g for all e ∈ E. We say that such an
edge weight function satisfies the (f, g)-condition.

Theorem 2 (DMR Algorithm [8]) Let 0 < f < g < +∞, α̃ < 1/6, and β̃ > 2. There is a
polynomial-time algorithm A such that, for all trees T = (V,E) with edge weight function w satisfying

the (f, g)-condition and all (α̃f, β̃g∆(T ))-distortions Ŵ ofW (whereW is the tree metric corresponding

to w), A applied to Ŵ returns T .

Note that the previous theorem is a deterministic statement about distorted metrics. We show how to
estimate such a distorted metric from random samples with high probability in Section 3.2.

3 Routing Tree Reconstruction

The goal of this section is to reconstruct efficiently the topology of the routing tree using Theorem 2.

3.1 Variance Metric

From Definition 3, one can define a tree metric by first choosing a tree—in our case, the routing tree—
and then defining a weight function on its edges. Any positive quantity can serve as a weight. The
important point is that one must be able to estimate the resulting tree metric from samples at the
leaves. This governs the choice of the weight function.

Let T = (V,E) be the (unknown) routing tree with leaf set L and consider the choice of weights

w(2)
e = Var[de],

for all e ∈ E and the corresponding tree metric

W (2)(a, b) ≡
∑

e∈Pab

Var[de],

for all a, b ∈ L. Our first task is to check that this metric can be estimated from samples at the leaves.

Let a, b be leaves and consider the quantity δ
(2)
ab ≡ Var[Da −Db] (where recall from (1) that Du is the

delay at u). The delays Da and Db are observed at the leaves a and b respectively and therefore the

variance of Da −Db can be easily estimated. Moreover, we claim that the equality δ
(2)
ab = W (2)(a, b)

holds. Indeed, denote γab the common ancestor of a and b, that is, the node at which all three paths
Pab, P0a, and P0b intersect (where we assume a, b 6= 0). Then, by independence of the edge delays, we
have

δ
(2)
ab = Var[Da −Db] = Var


 ∑

e∈Paγab

de −
∑

e∈Pγabb

de


 =

∑

e∈Paγab

Var[de] +
∑

e∈Pγab
b

Var[de] =W (2)(a, b).

Therefore, we can estimate W (2) by estimating δ(2) at the leaves.

To estimate δ
(2)
ab from k samples, we use the standard unbiased estimator for the variance of Da−Db

δ̂
(2)
ab =

1

k − 1

k∑

i=1

[
(Di

a −Di
b)− δ̂

(1)
ab

]2
,

where

δ̂
(1)
ab =

1

k

k∑

i=1

(Di
a −Di

b).

Below, we will need to show that δ̂
(2)
ab is well concentrated around δ

(2)
ab , which follows from the Azuma-

Hoeffding inequality (see Lemma 1). The next lemmas provide the necessary Lipschitz condition.
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Lemma 2 Suppose X = (X1, . . . ,Xk) are independent random variables taking values in [−B,B] with
k ≥ 2. Then, the variance estimator

s2X =
1

k − 1

k∑

i=1

(Xi −X)2 =
1

k(k − 1)

∑

i<j

(Xi −Xj)
2,

where X is the sample average, is 4B2

k -Lipschitz.

Proof: Let X be as above and let Y differ from X in one coordinate. Then

∣∣s2X − s2Y
∣∣ ≤ 1

k(k − 1)

∑

i<j

∣∣(Xi −Xj)
2 − (Yi − Yj)

2
∣∣ ≤ 1

k
4B2.

�

We then get immediately the following.

Lemma 3 (Lipschitz Constant for Delay-based Metric) Say δ̂
(2)
ab is computed with k samples.

Then, δ̂
(2)
ab is then 4|Pab|

2M2

k -Lipschitz.

�

3.2 Inferring the routing tree

Equipped with a legitimate tree metric, we use the DMR algorithm to infer the topology. Here, we
use Theorem 2 to prove that the routing tree can be inferred with poly log n samples at the leaves.
This is our main result for this section. The main technical difficulty (unlike the phylogenetic case) is
in controlling the deviation of “long distances.” (See second part of the proof.) Fix α̃, β̃, f , g as in
Theorem 2. Note that by assumption we have

f ≤ w(2)
e ≤ g, (2)

for all e with
g ≡M2.

Theorem 3 (Efficient Network Inference) Let T = (V,E) be the (unknown) routing tree where
edge delays satisfy Assumptions 1 and 2. Consider the tree metric W (2) = δ(2) and assume that the
estimate Ŵ (2) = δ̂(2) is computed using k samples at the leaves. Then, DMR returns the correct
topology for T with probability 1 − o(1) if k = Ω(log5 n) (where the constant factor depends only on
f, g), as n tends to +∞.

Proof: Assume k is as stated above. We apply Theorem 2 and therefore only need to show that Ŵ (2)

is a (α̃f, β̃g∆(T ))-distortion of W (2) when k = Ω(log5 n).

Part 1. First, we must show that distances smaller than β̃g∆(T )+ α̃f underW (2) are approximated
within α̃f . For reasons that will become clear below, we show instead that distances smaller than twice
that amount are well approximated. Let a, b be a pair of leaves at distance at most 2β̃g∆(T ) + 2α̃f .
Let A be the probability that, for all such pairs, W (2) is approximated within α̃f . By our assumption
(2), the number of edges on the path between a and b is at most

|Pab| ≤ (2β̃∆(T ) + 1)
g

f
,

9



where we used that f < g and α̃ < 1/6. By Lemmas 1 and 3, we have

P

[∣∣∣δ(2)ab − δ̂
(2)
ab

∣∣∣ ≥ α̃f
]

≤ 2 exp


− (α̃f)2k

2[4(2β̃∆(T ) + 1)2 g2

f2M2]2


 ≤ 1

poly(n)
,

from ∆(T ) = O(log n), k = Ω(log5 n), and the fact that f, g,M are constants. The notation poly(n)
means O(nK) for a K as a large as we need as long as the constant factor in k is large enough. Since
there are at most n2 such pairs of leaves, we get A ≤ 1

poly(n) .

Part 2. Let a, b be a pair of leaves at distance at least 2β̃g∆(T ) + 2α̃f under W (2). We now show

that, for all such pairs, Ŵ (2) is at least β̃g∆(T ) + α̃f . Let B be the probability of that event. Note
first that from Azuma-Hoeffding (Lemma 1), it follows that for any pair of leaves a, b,

P

[
|(Da −Db)− E[Da −Db]| ≤

√
|Pab| Θ(

√
log n)

]
≥ 1− 1

poly(n)
. (3)

Let E be the event that the inequality in square brackets in (3) holds for all k samples used to compute

δ̂
(2)
ab . Then from Lemma 2, on E , the Lipschitz constant of δ̂

(2)
ab (as a function of the centered samples

(Di
a −Di

b)− E[Da −Db]) is t =
|Pab|
k Θ(log n) and therefore, by Lemma 1 again,

P

[
δ̂
(2)
ab ≤ β̃g∆(T ) + α̃f

∣∣∣∣ E
]

≤ P

[
δ̂
(2)
ab ≤ E[δ̂

(2)
ab |E ]
2

∣∣∣∣ E
]

≤ P

[
E[δ̂

(2)
ab |E ]− δ̂

(2)
ab ≥ E[δ̂

(2)
ab |E ]
2

∣∣∣∣ E
]

≤ exp

(
−(E[δ̂

(2)
ab |E ]/2)2
2t2k

)

≤ exp

(
− k

O(log2 n)

)

≤ 1

poly(n)
,

where we used δ
(2)
ab = Θ(|Pab|) and

(1− o(1))δ
(2)
ab ≤ E[δ̂

(2)
ab |E ] ≤ (1 + o(1))δ

(2)
ab ,

which follows from E[δ̂
(2)
ab |E ]P[E ] + E[δ̂

(2)
ab |Ec]P[Ec] = E[δ̂

(2)
ab ], E[δ̂

(2)
ab ] = δ

(2)
ab , P[Ec] ≤ 1/poly(n), and

δ̂
(2)
ab = O(n2). Therefore, we have B ≤ 1/poly(n).

Combining the two parts of the argument, we have shown that, except with o(1) probability, Ŵ (2) is

a (α̃f, β̃g∆(T ))-distortion ofW (2). Indeed, by Part 2 the pairs of leaves for which Ŵ (2) < β̃g∆(T )+α̃f
must have W (2) < 2β̃g∆(T )+2α̃f and such pairs satisfy the approximation guarantee required by the
definition of a distorted metric by Part 1. Moreover, Part 1 implies in particular that pairs of leaves
such that W (2) < β̃g∆(T ) + α̃f also satisfy the approximation guarantee. �

4 Edge Delay Inference

In this section, we show how to estimate the characteristic moments of edge delays. In Section 3, we
showed how to reconstruct the topology efficiently with high probability (see Theorem 3). Therefore,
along with Assumptions 1 and 2, we make the following assumption.

10



Assumption 3 (Correct Reconstruction of Routing Tree) We assume that the routing tree was
correctly estimated. (This is true with high probability by Theorem 3.)

Our general idea to recover delay distributions is to define so-called “additive functions” whose
edge weights are moments of delays. Then we use the AFI algorithm below to recover the moments
efficiently from the data at the leaves. As it turns out, even moments are rather straightforward to
estimate inductively while odd moments are trickier. Also, as in the tree reconstruction algorithm (see
also [9, 17]), the AFI algorithm uses only “short” paths during the estimation process, which allows a
significant reduction in the sample size (see Propositions 1, 2 and Theorems 4, 5 for details).

4.1 Additive Functions

In the remainder of this paper, we use additive metric-type ideas to estimate moments of edge delays.
For this purpose, we need to recover edge weights from appropriately defined tree metrics. In fact,
we use a notion of “generalized” tree metric which is useful in treating odd moments. This definition
allows for negative edge weights.

Definition 5 (Additive function) A function on the leaf set of the tree W : L × L → R is called
an additive function on the leaves if there exists weights we ∈ R on each of the edges (not necessarily
positive), such that for all leaves a, b

W (a, b) =
∑

e∈Pab

we.

Suppose we are given access to an additive function W on the leaves. Our goal is now to recover
the we’s from the function W , assuming further that we are given the tree T . For this purpose, we use
a standard algorithm from combinatorial phylogenetics—related to the so-called Four-Point Method of
Buneman [3] (see also [11, 25]). We will refer to this algorithm as the Additive Function Inference

(AFI) algorithm. See Figures 2 and 3.

Algorithm Additive Function Inference

Input: tree T , function W at the leaves;
Output: edge weights we, for all e ∈ E;

• For all internal edges e,

– Let S1, . . . , S4 be the four subtrees hanging from e as in Figure 3;

– For each Si, compute ui the closest (in graph distance) leaf to the root ri of Si;

– Compute

we =
1

2
(W (u1, u3) +W (u2, u4)−W (u1, u2)−W (u3, u4)).

• For all leaf edges e,

– Let e = (a, v) with a a leaf;

– Proceed as above where u3 and u4 are set to a.

Figure 2: Algorithm Additive Function Inference.

4.2 Delay-based metrics

Let T = (V,E) be the routing tree with leaf set L and consider again the choice of weights

w(2)
e = Var[de],

11
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Figure 3: Edge weight inference.

for all e ∈ E and
W (2)(a, b) =

∑

e∈Pab

w(2)
e ,

for all a, b ∈ L. Recall that

δ
(2)
ab = Var[Da −Db] = Var


 ∑

e∈Paγab

de −
∑

e∈Pγabb

de


 =

∑

e∈Paγab

Var[de] +
∑

e∈Pγab
b

Var[de] =W (2)(a, b).

Therefore, using the AFI algorithm, we can recover estimates of the w
(2)
e ’s from the δ̂

(2)
ab ’s.

More generally, we let

w(j)
e = E

[(
d̄e
)j]

,

for all e ∈ E where
d̄e = de − E [de] .

Also, let

W (j)(a, b) =
∑

e∈Pab

w(j)
e ,

for all a, b ∈ L. Let
Da = Da − E [Da] ,

for all a ∈ L. Again, to obtain W (j)(a, b), we seek to use the quantity

δ
(j)
ab = E

[(
Da −Db

)j]
,

for j > 1, which can be estimated from the samples using

δ̂
(j)
ab =

1

k

k∑

i=1

((
Di

a −Di
b

)
− δ̂

(1)
ab

)j

12



where

δ̂
(1)
ab =

1

k

k∑

i=1

(
Di

a −Di
b

)
.

As Lemma 4 below shows, this can be done inductively. However, the lemma also shows that odd
moments have to be treated more carefully.

4.3 Algorithm for Moment Inference

We first need the following definitions. Let a, b be leaves and j ∈ N. We use the notation [h] =
{0, . . . , h} for h ∈ N. Recall that γab is the most recent common ancestor of a and b in the tree.
Denote ν = |Pab|, α = |Paγab |, and β = |Pγabb|, and define

Dj(a, b) =

{
(x,y) ∈ [j − 1]α × [j − 1]β :

α∑

i=1

xi +

β∑

i=1

yi = j

}
.

For (x,y) ∈ Dj(a, b), let (
j

x,y

)
=

j!
∏α

i=1 xi!
∏β

i=1 yi!
.

and consider the function

Fj(a, b) =
∑

(x,y)∈Dj(a,b)

(
j

x,y

) α∏

i=1

w(xi)
ei

β∏

i=1

(−1)yiw
(yi)
fi

,

where Paγab = (e1, . . . , eα) and Pγabb = (f1, . . . , fβ).

Lemma 4 Let j ∈ N and define the function Fj : L× L→ R as above. Then,

1. we have for all a, b ∈ L

δ
(j)
ab −Fj(a, b) =

α∑

i=1

w(j)
ei + (−1)j

β∑

i=1

w
(j)
fi
, (4)

2. in particular, if j is even, we have for all a, b ∈ L

δ
(j)
ab −Fj(a, b) =W (j)(a, b). (5)

Proof: This follows immediately from a multinomial expansion. �

The important point to note in (5) is that Fj(a, b) depends only on delay moments of order strictly

less than j and that δ
(j)
ab can be estimated from samples at the leaves. Therefore, if j is even and if

we have estimates of all edge delay moments of order up to j − 1, we can estimate W (j)(a, b) by (5).

Using the AFI algorithm, we can then get an estimate of the j-th moments w
(j)
e . However, if j is odd,

the coefficient (−1)j in (4) precludes the use of this procedure. Lemma 5 below shows how to handle
this case. We note in passing that Lemma 4 above is sufficient for delay distributions symmetric about
their mean. Indeed, in that case, all odd central moments are zero and one can use (5) recursively to
estimate all even characteristic moments. See Figure 4.

We now tackle odd moments. A proper estimation procedure follows from the next lemma. We
first need a few definitions. For a, b ∈ L, and 1 ≤ i∗ ≤ α, we let

E(1)
j (a, b; i∗) =

{
(x,y) ∈ [j − 1]α × [j − 1]β :

α∑

i=1

xi +

β∑

i=1

yi = j, xi∗ ≥ 1

}
.

13



Algorithm Symmetric Edge Reconstruction

Input: data {D1
a}a∈L, . . . , {Dk

a}a∈L at the leaves; topology T ;

Output: estimated characteristic (even) moments ŵ
(j)
e for all e ∈ E and 2 ≤ j ≤ J even;

• Initialization: set all estimates of odd moments to 0;

• Main Loop: For all 2 ≤ j ≤ J even,

– For all a, b ∈ L,

∗ Estimate δ̂
(j)
ab ;

∗ Estimate Fj(a, b) with

F̂j(a, b) =
∑

(x,y)∈Dj(a,b)

(
j

x,y

) α∏

i=1

ŵ(xi)
ei

β∏

i=1

(−1)yiŵ
(yi)
fi

.

∗ Compute

Ŵ (j)(a, b) = δ̂
(j)
ab − F̂j(a, b)

– Use the AFI algorithm on Ŵ (j)(a, b) to recover all ŵ
(j)
e ’s.

Figure 4: Algorithm Symmetric Edge Reconstruction.

and

G(1)
j (a, b) =

α∑

i∗=1

∑

(x,y)∈E
(1)
j (a,b;i∗)

xi∗

(
j − 1

x,y

) α∏

i=1

w(xi)
ei

β∏

i=1

(−1)yiw
(yi)
fi

,

where we use the notations of Lemma 4. Similarly, for 1 ≤ i∗ ≤ β, we define E(2)
j (a, b; i∗) and G(2)

j (a, b)
by interchanging the roles of x and y. Our next definition requires a few combinatorial notions. Recall
the definition of quartet split from Section 2. Let a, b, c be any leaves in a rooted tree T with root 0
(which is also a leaf). We write ab|c if ab|c0 holds in T . Then, for all leaves a, b, c 6= 0 with ab|c, let

φ
(j)
ab|c = E

[(
Da −Db

)j−1 (
Da +Db − 2Dc

)]
.

Lemma 5 Let j ∈ N. Then, using the notations above, we have for all a, b, c ∈ L

W (j)(a, b) = φ
(j)
ab|c −

[
G(1)
j (a, b) + G(2)

j (a, b)
]
. (6)

Proof: We write

E

[(
Da −Db

)j−1 (
Da +Db − 2Dc

)]
= E

[(
Da −Db

)j−1 (
Da −Dc

)]
+ E

[(
Da −Db

)j−1 (
Db −Dc

)]

Let (as in Figure 5)

H1 =
∑

e∈Paγab

d̄e H2 =
∑

e∈Pbγab

d̄e H3 =
∑

e∈Pγacγab

d̄e H4 =
∑

e∈Pcγac

d̄e.
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Figure 5: The Hi’s are centered sums of delays on the corresponding paths.

Note that all these random variables are independent and have 0 mean. Then

E

[(
Da −Db

)j−1 (
Da −Dc

)]
= E

[
(H1 −H2)

j−1 (H1 +H3 −H4)
]

= E

[
(H1 −H2)

j−1 (H1)
]

= E




 ∑

e∈Paγab

d̄e −
∑

e∈Pbγab

d̄e




j−1
 ∑

e∈Paγab

d̄e






=
∑

e∈Paγab

w(j)
e + G(1)

j (a, b).

Similarly,

E

[(
Da −Db

)j−1 (
Db −Dc

)]
=

∑

e∈Pbγab

w(j)
e + G(2)

j (a, b).

The result follows. �

Again, the key point in (6) is that G(1)
j (a, b) and G(2)

j (a, b) depend only on moments of order strictly

less than j and that φ
(j)
ab|c can be estimated from samples at the leaves. The algorithm for the general

case is detailed in Figure 6. We use the plugin estimator for φ
(j)
ab|c,

φ̂
(j)
ab|c =

1

k

k∑

i=1

((
Di

a −Di
b

)
− δ̂

(1)
ab

)j−1 ((
Di

a −Di
c

)
− δ̂(1)ac +

(
Di

b −Di
c

)
− δ̂

(1)
bc

)
.

5 Analysis of the ER Algorithm

We start with the analysis of the symmetric case.

We begin with a concentration result for the estimate δ̂
(j)
ab . For convenience, we assume M ≥ 1.

(This can always be obtained by rescaling.) Recall the definition of the depth of T from Section 2 and
remember that ∆(T ) = O(log n) if the degree of all internal nodes is at least 3. The dependence of our
bounds on the depth of the routing tree explains the importance of using short paths in the estimation
procedures.
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Algorithm Edge Reconstruction

Input: data {D1
a}a∈L, . . . , {Dk

a}a∈L at the leaves; topology T ;

Output: estimated characteristic moments ŵ
(j)
e for all e ∈ E and 2 ≤ j ≤ J ;

• Initialization: set all estimates of first moments to 0;

• Main Loop: For all 2 ≤ j ≤ J ,

– For all a, b ∈ L,

∗ Pick the closest leaf c above γab

∗ Compute φ̂
(j)
ab|c, the plug-in estimator for φ

(j)
ab|c;

∗ Estimate G(1)
j (a, b) with

Ĝ(1)
j (a, b) =

α∑

i∗=1

∑

(x,y)∈E
(1)
j

(a,b;i∗)

xi∗

(
j − 1

x,y

) α∏

i=1

ŵ(xi)
ei

β∏

i=1

(−1)yiŵ
(yi)
fi

,

and similarly for G(2)
j (a, b);

∗ Compute

Ŵ (j)(a, b) = φ̂
(j)
ab|c −

(
Ĝ(1)
j (a, b) + Ĝ(2)

j (a, b)
)
,

– Use the AFI algorithm on Ŵ (j)(a, b) to recover all ŵ
(j)
e ’s.

Figure 6: Algorithm Edge Reconstruction.

Proposition 1 Let a, b ∈ L at graph distance less than 2∆ where ∆ = ∆(T ) is the chord depth of T .
Fix j ∈ N. We have the following (where the constants depend on J and M only):

1. There exists a constant C such that, ∀λ > 0,

P

(∣∣∣δ̂(j)ab − E

[
δ̂
(j)
ab

]∣∣∣ > λ
)
≤ 2 exp

(
− λ2k

C∆2j−1

)
. (7)

2. There exists a constant C ′ such that

E

(∣∣∣δ(1)ab − δ̂
(1)
ab

∣∣∣
j
)

≤ C ′ ∆
j

kj/2
, (8)

where δ
(1)
ab = E[Da −Db].

3. There exists a constant C ′′ such that, if k ≥ ∆2,

∣∣∣E
[
δ̂
(j)
ab

]
− δ

(j)
ab

∣∣∣ ≤ C ′′M
2j∆j+1

√
k

. (9)

4. If further

C ′′M
2j∆j+1

√
k

≤ λ,

then we have

P

[∣∣∣δ̂(j)ab − δ
(j)
ab

∣∣∣ > 2λ
]
≤ 2 exp

(
− λ2k

C∆2j−1

)
. (10)
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Proof: 1. We use Azuma’s inequality (see Lemma 1). Let

Ki = (Di
a −Di

b)− δ̂
(1)
ab ,

where Di
u is the i-th delay sample at node u. Because |Pab| ≤ 2∆ and de ∈ [0,M ] for all e, it follows

that

|Ki| ≤ 4M∆.

Then let

L =
1

k

k∑

i=1

(Ki)
j ,

and let L′ be the same quantity when an arbitrary die is perturbed by δ with |δ| ≤ M (where die is
the i-th delay sample on edge e). Without loss of generality, assume the perturbation is in the first
sample. Then,

L′ =
1

k

((
K1 +

(k − 1)

k
δ

)j

+
k∑

i=2

(
Ki −

δ

k

)j
)
. (11)

Now expanding (11), we get

|L − L′| ≤ 1

k

(
2j(4M∆)j−1M + (k − 1)

(
2j(4M∆)j−1M

k

))

≤ C
∆j−1

k
,

for some constant C depending on M,J . Noting that L depends on at most 2∆k random variables die,
we get the result by an application of Azuma’s inequality (for a different C).

2. Note that

L = δ
(1)
ab − δ̂

(1)
ab ,

is a 2M∆
k -Lipschitz function of {Di

a −Di
b}i∈[k] thus we have by Azuma’s inequality

P

[∣∣∣δ(1)ab − δ̂
(1)
ab

∣∣∣ > λ
]
≤ 2 exp

(
− kλ2

8M2∆2

)
.

Now we use the fact that for a positive random variable Y ,

E
[
Y j
]
= j

∫ ∞

0
λj−1

P(Y > λ)dλ.

If Y = |δ(1)ab − δ̂
(1)
ab | and ψ = k

8M2∆2 , we have

E
[
Y j
]
≤ ψ− j

2

∫ +∞

0
y

j
2
−1e−ydy =

(
8M2∆2

k

)j/2

C ′.

That proves 2 (for a different C ′).
3. We have

δ̂
(j)
ab =

1

k

k∑

i=1

((
Di

a −Di
b

)
− δ̂

(1)
ab

)j
=

1

k

k∑

i=1

((
Di

a −Di
b − δ

(1)
ab

)
+
(
δ
(1)
ab − δ̂

(1)
ab

))j
.
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Now expand using the binomial theorem and take expectations to get

∣∣∣E
[
δ̂
(j)
ab

]
− δ

(j)
ab

∣∣∣ ≤ 1

k
E

∣∣∣∣∣
k∑

i=1

j−1∑

h=0

(
j

h

)(
Di

a −Di
b − δ

(1)
ab

)h
(δ̂

(1)
ab − δ

(1)
ab )

j−h

∣∣∣∣∣

≤ C ′′(4M∆)j max
0≤h≤j−1

{
E

∣∣∣δ(1)ab − δ̂
(1)
ab

∣∣∣
j−h
}
.

Note that by k ≥ ∆2, it follows that the maximum is attained at h = j − 1 in (8).
4. This follows from 1. and 3. �

We then get the main theorem in the symmetric case. Recall that J = O(1) and that, in general,
∆ = O(log n) where n is the number of leaves.

Theorem 4 Let ε > 0 be arbitrarily small. If k = ω(∆2J2
log n), then after an application of SymER,

one has
P

[∣∣∣δ̂(j)e − δ(j)e

∣∣∣ ≤ ε, ∀e ∈ E, ∀1 ≤ j ≤ J
]
≥ 1− o(1), (12)

as n→ +∞. The algorithm runs in time O(∆Jn2).

Proof: Let (a, b) ∈ L×L be called a short pair if a, b are at graph distance at most 2∆. Denote S be
the set of all short pairs. Let

σj = max
(a,b)∈S

∣∣∣Ŵ (j)(a, b)−W (j)(a, b)
∣∣∣ ,

and
Σj = max

1≤i≤j
σi.

It follows immediately from the application of the AFI algorithm that

max
e∈E

∣∣∣ŵ(j)
e − w(j)

e

∣∣∣ ≤ 2σj .

Therefore, it suffices to prove
ΣJ = o(1),

with high probability as n tends to +∞.
Further, assume we have a uniform bound

max
1≤j≤J

max
(a,b)∈S

∣∣∣δ̂(j)ab − δ
(j)
ab

∣∣∣ ≤ τ∗.

Recall that
Ŵ (j)(a, b) = δ̂

(j)
ab − F̂j(a, b)

where

F̂j(a, b) =
∑

(x,y)∈Dj(a,b)

(
j

x,y

) α∏

i=1

ŵ(xi)
ei

β∏

i=1

(−1)yiŵ
(yi)
fi

.

Note that F̂j(a, b) has at most ∆j terms (including the multinomial factor). Therefore, since the
function

h(x) =

J∏

j=1

xj,
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is continuously differentiable with bounded derivatives in [−MJ ,MJ ], there is C (depending on M,J)
such that

σj ≤ τ∗ + C∆j(2Σj−1),

for small Σj−1. Then we have

ΣJ ≤ τ∗C∗∆J2/2,

for some C∗ > 0 depending on J,M , where we used σ2 ≤ τ∗.
So it suffices to have τ∗ = (ωn∆

J2/2)−1 where ωn → +∞ as n → +∞ arbitrarily slowly. By the
last part of Proposition 1, using a union bound over the O(n2) short pairs of leaves, it follows that
k = C ′ωn∆

2J2
log n samples are enough to guarantee

P

[∣∣∣δ̂(j)ab − δ
(j)
ab

∣∣∣ ≤ (ωn∆
J2/2)−1, ∀1 ≤ j ≤ J, ∀ short pairs a, b

]
≥ 1− o(1),

for some C ′ depending on J,M .
As for the computational complexity of the algorithm, assume first that the tree is represented in

such a way that finding the set of edges on the path between two leaves a, b at distance O(∆) takes
time O(∆) (this is easy in a rooted tree). Note that for each j, a, b the sum

F̂j(a, b) =
∑

(x,y)∈Dj(a,b)

(
j

x,y

) α∏

i=1

ŵ(xi)
ei

β∏

i=1

(−1)yiŵ
(yi)
fi

.

can be computed in time ∆J . Since there are O(n2) pairs of leaves, the total complexity is O(∆Jn2).
�

Similarly, in the general case, we get:

Proposition 2 Let a, b, c ∈ L at graph distance less than 2∆ where ∆ = ∆(T ) is the depth of T . Fix
j ∈ N. We have the following (where the constants depend on J and M only):

1. There exists a constant C such that, ∀λ > 0,

P

(∣∣∣φ̂(j)ab|c − E

[
φ̂
(j)
ab|c

]∣∣∣ > λ
)
≤ 2 exp

(
− λ2k

C∆2j−1

)
. (13)

2. There exists a constant C ′ such that, if k ≥ ∆2,

∣∣∣E
[
φ̂
(j)
ab|c

]
− φ

(j)
ab|c

∣∣∣ ≤ C ′ (M∆)j√
k

. (14)

3. If further

C ′ (M∆)j√
k

≤ λ,

then we have

P

(∣∣∣φ̂(j)ab|c − φ
(j)
ab|c

∣∣∣ > 2λ
)
≤ 2 exp

(
− λ2k

C∆2j−1

)
. (15)

Proof Sketch: The proof is very similar to Proposition 1. We only give a sketch.
To prove 1., it is enough to consider four separate cases depending on which path segment (corre-

sponding to H1, H2, H3 and H4 in Figure 5) we make the perturbation.
To prove 2., note that we can write

φ̂ab|c =
1

k

k∑

1

(Xi + ǫI)
j−1(Yi + ǫII), (16)
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with Xi = (Di
a −Di

b)− δ
(1)
ab , Yi = (Di

a −Di
c − δ

(1)
ac ) + (Di

b −Di
c − δ

(1)
bc ), and

ǫI = δ
(1)
ab − δ̂

(1)
ab ,

ǫII = (δ(1)ac − δ̂(1)ac ) + (δ
(1)
bc − δ̂

(1)
bc ).

Also note that φ
(j)
ab|c = E[Xj−1

i Yi],∀i. Use the Binomial theorem to expand the expression in (16) and
write it as

φ̂
(j)
ab|c =

1

k

k∑

i=1

Xj−1
i Yi +R,

where the error term is

R = ǫII
1

k

k∑

i=1

(Xi + ǫI)
j−1 +

1

k

k∑

i=1

Yi

j−1∑

l=1

(
j − 1

l

)
ǫI

lXj−1−l
i .

Now use the fact that |Xi| ≤ 4M∆, |Yi| ≤ 8M∆, and Part 2. of Proposition 1 to conclude that

E[|R|] ≤ C ′ (M∆)j√
k

.

Part 3. now follows by combining Part 1. and 2.�

Theorem 5 Let ε > 0 be arbitrarily small. If k = ω(∆2J2
log n), then after an application of ER,

one has
P

[∣∣∣δ̂(j)e − δ(j)e

∣∣∣ ≤ ε, ∀e ∈ E, ∀1 ≤ j ≤ J
]
≥ 1− o(1), (17)

as n→ +∞. The algorithm runs in time O(∆Jn2).

Proof: The proof is identical to Theorem 4. �

6 Concluding Remarks

1. We have assumed that delays are finitely supported. This assumption is not essential. Unbounded
distributions for which similar concentration inequalities can be obtained lead to the same results.
For example, using [14, Proposition 4.18], one can treat the case of Exponential and Gamma
delays.

2. It is an interesting problem, from a practical point of view, to improve the dependence of our
results on J .

3. It is somewhat intriguing that the reconstruction of the topology of the tree required the joint
distributions on pairs of leaves whereas the reconstruction of delays (in the asymmetric case)
required the joint distributions on triples of leaves. A similar situation holds in phylogenetics [7].
It could be interesting to prove that this is indeed necessary in some sense.

4. Throughout, the model was assumed to be static. In real-life networks, characteristics of the
network change over time. One could try to adapt our algorithm to a more dynamic setting. See
for example [5] for a discussion of temporal issues.
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A Examples of Regular Delay Distributions

Below, we give two typical examples of families of distributions covered by our results. The first
example is a set of continuous distributions with few parameters. The second example is a general
discrete distribution. The latter is the main focus of [23].

Uniform distributions. Let Q = {Qθ}θ∈Θ be the family of distributions where Qθ is uniform on
[0, θ] with Θ = [θ, θ] for some 0 < θ < θ < +∞. Let ŵ(2) be the estimated variance and define

θ̂2 = Ψ(ŵ(2)) =





θ2, if 12ŵ(2) < θ2,

θ
2
, if 12ŵ(2) > θ

2
,

12ŵ(2), otherwise.

Assume |ŵ(2) −w(2)| ≤ δ ≡ εθ2

12 . From θ2 − θ̂2 = (θ− θ̂)(θ+ θ̂), it follows easily that |θ− θ̂| ≤ εθ
2 . Note

that

‖Qθ −Qθ̂‖1 =
∫ θ

0

∣∣∣∣
1x≤θ

θ
−

1x≤θ̂

θ̂

∣∣∣∣dx,

and assuming w.l.o.g. that θ > θ̂ (the other case is symmetric)

∫ θ

0

∣∣∣∣
1x≤θ

θ
−

1x≤θ̂

θ̂

∣∣∣∣dx = θ̂

(
1

θ̂
− 1

θ

)
+ (θ − θ̂)

1

θ
≤ 2

θ − θ̂

θ
≤ ε.

Therefore, Q is (ε, 2)-regular for any ε > 0.

Bounded discrete distributions. Let M be a positive integer and let [M ] = {0, 1, . . . ,M}. Also,
let 0 < θ < 1 and

Θ =



θ = (θ0, θ1, . . . , θM ) : 0 ≤ θi ≤ 1, ∀i ∈ [M ], θ0 > θ, and

∑

i∈[M ]

iθi ∈ [M ]



 .

Denote by Q = {Qθ}θ∈Θ the family of distributions on [M ] such that X ∼ Qθ means

P[X = i] = θi, ∀i ∈ [M ].

The assumption on the mean of X in the definition of Θ greatly simplifies the calculations below. It
is a reasonable approximation in the standard practical case where Q is a discretization of continuous
densities with a large number of bins M . The assumption on θ0 simply indicates that the distribution
has been translated to “start at 0.” Define µ = E[X] where X ∼ Qθ and let θ′ = (θ′−M , θ

′
−M+1, . . . , θ

′
M )

where θ′i−µ = θi for all i ∈ [M ] and 0 otherwise. Note that the following holds

M∑

i=−M

ijθ′i = w(j)(θ), ∀j ∈ [2M + 1],

or in matrix form Λθ′ = w. From the Vandermonde structure of Λ it follows easily that detΛ ≥ 1,
that is, Λ−1 exists, and furthermore ‖Λ−1‖1 is a strictly positive constant depending on θ,M . Let ŵ
be the estimate of w and let θ̂′ = Λ−1ŵ. Then, it follows that for any ε > 0 there is δ > 0 such that

‖θ̂′ − θ′‖1 ≤ ‖Λ−1‖1‖w − ŵ‖1 ≤ ε,

whenever ‖w − ŵ‖∞ ≤ δ. Assume further that ε < θ/2, then we can recover an estimate θ̂ of θ from
θ̂′ such that ‖θ̂− θ‖1 ≤ ε. Indeed, our assumptions above allow us to infer a distribution centered at 0
which we then translate to start at 0. Therefore, Q is (ε, 2M − 1)-regular. Note that strictly speaking
one should force all components of θ̂ to be in [0, 1] and renormalize appropriately. Details are omitted.

23



bΦw

u v w

bΦx−1

≥ α′τ ?
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(0)
β′

(u, v)

Figure 7: Illustration of routine Mini Contractor.

B DMR Algorithm

We shall now provide an outline of the DMR algorithm. The general DMR algorithm actually allows
the user to build a “forest” when the number of samples is too small. We will not use this feature here
and we therefore simplify the algorithm accordingly. The input to the algorithm is a (τ̃ , M̃ )-distorted

metric Ŵ on n leaves. In particular, we assume that the values τ̃ and M̃ are known to the algorithm.
We denote the true tree by T = (V,E). Take α,α′ > 0 and 0 < β, β′ < 1 such that

6 < α′ + 3 < α < (α̃)−1,

and

(β̃)−1M̃ + τ̃ < βM̃ <
1

2
[β′M̃ − 3τ̃ ].

(Here it is assumed that M̃ = ω(τ̃).) The details of the subroutines Mini Contractor and Exten-

der can be found in Figures 9 and 10. The reader is referred to [8] for a detailed explanation of the
algorithm—which is somewhat involved. In a nutshell, for each pair of leaves u, v that are not “too
far”: 1) the algorithm finds all edges sitting on the path between u and v (as illustrated in Figure 7);
2) then it derives the bipartitions corresponding to these edges by “extending” the bipartitions in a
small ball around u, v (as illustrated in Figure 8).

• Pre-Processing: Proximity Test. Build the graph Ĥβ = (V̂β, Êβ) where V̂β = L and (u, v) ∈
Êβ ⇐⇒ Ŵ (u, v) < βM̃ ;

• Main Loop.

– For all pairs of leaves u, v ∈ V̂β such that (u, v) ∈ Êβ:

∗ Mini Reconstruction. Compute

{ψj(u, v)}r(u,v)j=1 := Mini Contractor(Ĥβ;u, v);

∗ Bipartition Extension. Compute

{ψ̄j(u, v)}r(u,v)j=1 := Extender(Ĥβ, {ψj(u, v)}r(u,v)j=1 ;u, v);

– Deduce the tree T̂ from {ψ̄j(u, v)}r(u,v)j=1 ;

• Output. Return the resulting tree T̂ .
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Figure 8: Illustration of routine Extender.

Algorithm Mini Contractor

Input: Graph Ĥβ ; Leaves u, v;

Output: Bipartitions {ψj(u, v)}r(u,v)j=1 ;

• Ball. Let
B̂

(0)
β′ (u, v) :=

{
w ∈ Ĥβ : Ŵ (u,w) ∨ Ŵ (v, w) < β′M̃

}
;

• Intersection Points. For all w ∈ B̂
(0)
β′ (u, v), estimate the point of intersection between u, v, w

(distance from u), that is,

Φ̂w :=
1

2

(
d̂(u, v) + d̂(u,w)− d̂(v, w)

)
;

• Long Edges. Set S := B̂
(0)
β′ (u, v)− {u}, x−1 = u, j := 0;

– Until S = ∅:
∗ Let x0 = argmin{Φ̂w : w ∈ S} (break ties arbitrarily);

∗ If Φ̂x0 − Φ̂x−1 ≥ α′τ̃ , create a new edge by setting ψj+1(u, v) := {B̂(0)
β′ (u, v)− S, S} and let

Cj+1 := {x0}, j := j + 1;

∗ Else, set Cj := Cj ∪ {x0};
∗ Set S := S − {x0}, x−1 := x0;

• Output. Return the bipartitions {ψj(u, v)}r(u,v)j=1 .

Figure 9: Algorithm Mini Contractor.
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Algorithm Extender

Input: Graph Ĥβ ; Bipartitions {ψj(u, v)}r(u,v)j=1 ; Leaves u, v;

Output: Bipartitions {ψ̄j(u, v)}r(u,v)j=1 ;

• For j = 1, . . . , r(u, v) (unless r(u, v) = 0):

– Initialization. Denote by ψ
(u)
j (u, v) the vertex set containing u in the bipartition ψj(u, v), and

similarly for v; Initialize the extended partition ψ̄
(u)
j (u, v) := ψ

(u)
j (u, v), ψ̄

(v)
j (u, v) := ψ

(v)
j (u, v);

– Modified Graph. Let K be Ĥβ where all edges between ψ
(u)
j (u, v) and ψ

(v)
j (u, v) have been

removed;

– Extension. For all w ∈ v̂
(i)
β − (ψ

(u)
j (u, v) ∪ ψ(v)

j (u, v)), add w to the side of the partition it is
connected to in K (by definition of K, each w as above is connected to exactly one side);

• Return the bipartitions {ψ̄j(u, v)}r(u,v)j=1 .

Figure 10: Algorithm Extender.
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