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In this paper we describe a new class of orderings-associative path orderings-for proving
termination of associative-commutative term rewriting systems . These orderings are based on
the concept of simplification orderings and extend the well-known recursive path orderings to E -
congruence classes, where E is an equational theory consisting of associativity and
commutativity axioms . Associative path orderings are applicable to term rewriting systems for
which a precedence ordering on the set of operator symbols can be defined that satisfies a
certain condition, the associative path condition . The precedence ordering can often be derived
from the structure of the reduction rules . We include termination proofs for various term
rewriting systems (for rings, boolean algebra, etc .) and, in addition, point out ways to handle
situations where the associative path condition is too restrictive .

1. Introduction

Term rewriting systems provide a simple mechanism for computing with equations . The
Knuth-Bendix completion method and its extensions to equational term rewriting
systems have been applied to a wide variety of problems, including the word problem in
universal algebra (Knuth & Bendix, 1970), algebraic specification of data types (Guttag
et al ., 1978), theorem proving in first order logic (Hsiang, 1985), and computing with
rewrite programs (Dershowitz, 1985b) . Termination of the reduction relation
corresponding to a given equational term rewriting system (R, E) is a prerequisite for
these completion methods . For the classical case, i .e . E = 0, various powerful techniques
for proving termination have been developed, among them the recursive path ordering, the
recursive decomposition ordering and other simplification orderings. These termination
orderings have in common that they extend a precedence ordering on the set of operator
symbols to the set of terms. They are not directly applicable to the more general problem
of proving termination of a reduction relation modulo a non-empty set of equations E .
The only methods suitable for the general E-termination problem are polynomial
interpretations, which are sometimes applicable to sets of equations E that consist of
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associativity and commutativity axioms. The problem with polynomial orderings is to
find appropriate polynomials, a task which can be quite tiresome .

In this paper we introduce a new class of simplification orderings, called associative
path orderings, that are applicable to the problem of proving termination of a reduction
relation modulo a set of associativity and commutativity axioms . Associative path
orderings are based on the idea of transforming terms and generalise recursive path
orderings . The transform that is used can be described by a reduction relation . It is simple
enough to allow efficient implementations, yet is applicable to a variety of theories .

Termination orderings based on transforms were first proposed in Dershowitz et al.
(1983) . The transform used in Dershowitz et al . (1983) is rather complex, however, and it
was not possible to lift the corresponding ordering to non-ground terms . Our ordering is
conceptually simpler, more efficient, and, most important, can be lifted to non-ground
term t=f(t l , . . ., t„) is f. The size It! of a term t is the number of operator symbols and
variables it contains . For example, the term t =f(x, f(x, y)) has size It! = 5. To enhance
readability we will often use infix notation . For instance, we may write 0+1(x+y) instead
of + (0, I(+ (x, y))) .

In sections 2 and 3 we give a brief overview of term rewriting systems and termination
orderings . In sections 4 and 5 we discuss E-termination, in particular for the case of
associative-communitative theories and adapt general results on termination to the
problem of E-termination . In sections 6 and 7 we describe associative path orderings .
Termination proofs for various term rewriting systems (for abelian groups, rings, boolean
algebra, etc .) are included in section 8 .

2 . Definitions

We assume that the reader is familiar with the basic concepts concerning reduction
relations and term rewriting systems . We briefly summarise the most important
definitions below and refer to Huet & Oppen (1980), Huet (1980) and Jouannaud &
Kirchner (1984) for more details .

A signature or arity function is a function a : F-->N, where N is the set of non-negative
integers . Elements of F are called function or operator symbols and denoted f, g, h, • • • .
An operator symbol f of arity a(f)=0 is called a constant . Let V be a (denumerable) set
disjoint from F. Elements of V are called variables and denoted x, y, z, • • - . The set
T(F, V) of terms over F and V is defined as being the smallest set such that
f(t 1 , . . ., t„) e T(F, V) if a(f) = n and t	t„ e T(F, V) (we implicitly assume that
a(x) = 0 for all variables x) . We will abbreviate T(F, V) by T and denote terms by
s, t, u, v, w . . . . The set of all ground terms, i .e . terms containing no variables, is denoted
by G .

For any term t, V(t) denotes the set of variables occurring in t . A term in which no
variable appears twice is called a linear term . The (top-level) operator symbol op(t) of a
term t=f(t1 , . . ., t„) is f. The size ItI of a term t is the number of operator symbols and
variables it contains. For example, the term t = f(x, f(x, y)) has size It! = 5. To enhance
readability we will often use infix notation . For instance, we may write 0+I(x+y) instead
of + (0, I(+ (x, y))) .
A substitution is a homomorphism a from T into itself, i.e . a(f(t i , . . ., t„))

=f(a(t i ), . . ., a(t„)), for all terms f(t i , . . ., t„) . A substitution a is totally determined by
specifying its values for all variables . The set D(a) = {x : a(x) # x} is called the domain of
a. We will only consider substitutions with a finite domain . A substitution is called ground
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if o(x) is a ground term, for all x in the domain of o• . Let p denote the position of a
subterm of s. Then s[p .- t] denotes the term that results from replacing the subterm of s
at position p by t (positions may be represented as sequences of integers, see, for instance,
Huet (1980) for a formal treatment) .

A binary relation is called a (strict) partial ordering if it is transitive and irreflexive . A
partial ordering > is well founded if there is no infinite chain t1i t2 , t 3 , • • • such that
t l > t2 > t 3 > • . A relation > on T is monotonic if s > t implies f( . . . s . . . )
>f(

	

t

	

), for all terms s, t, f( . . . s . . . ) and f( . . . t

	

•) in T.
An equational theory is a set E c T x T. Elements (s, t) in E are called equations and

written s = t . Groups, for example, are an equational theory :

{0+x=x, 1(x)+x=0, (x+y)+z=x+(y+z)} .

We define HE to be the smallest symmetric relation that contains E and is closed under
monotonicity and substitution . The reflexive-transitive closure of H E is denoted by - E . A
relation > is compatible with E if s'E S' > t ' -Et implies s > t.

A term rewriting system R over F is any set {(li , r i) :li , ri eT, V(r i) c V(li )} . The pairs
(li , r i) are called rewriting or reduction rules and written l i ->r i . If all the left-hand sides l i
are linear, then R is called a left-linear rewriting system . The reduction relation --).R on T is
defined as being the smallest relation containing R that is closed under monotonicity and
substitution . We say that s reduces to t (in one step) if s->R t . Occasionally we will
abbreviate -->R by -> and write t+-RS instead of S 3R t . The symbols ->+, ->* and H denote
the transitive, transitive-reflexive, and symmetric closure of -T, respectively .
An equational term rewriting system is a tuple (R, E), also written R/E, where R is a

term rewriting system and E an equational theory. The reduction relation ->R/E is defined

by ^'E ° -'R ° -E, where ° denotes composition of relations .
Let R be a term rewriting system and E be an equational theory . A term rewriting

system R is E-terminating if there is no infinite sequence t 1 , t 2 , t 3 , • - • such that

t1+R/Et24R/Et3+R/E • - - . Note that R is E-terminating if and only if -+R/E is a well-
founded partial ordering on T. We say that R is terminating or noetherian if it is
E-terminating for E = 0. A term t is R-reducible if there is a term t' such that t--+R t' .
Otherwise, t is said to be R-irreducible or in R-normal form . If t' is irreducible and t-+* t',
then t' is called an R-normal form oft, written t-3Rt' . We will omit the prefix R if it is clear
from the context .
R is Church-Rosser modulo E if, for all terms s and t, S' R „E t implies that there exists a

term u such that s-->R /EU4R/E t .
We say that two terms s and t converge modulo E, written SIR . Et, if there exist terms s'

and t' such that S--)'Rs'-Et'<--Rt. If E = 0 we say that s and t converge and write SIR t' R is
called confluent modulo E if whenever s{-R* u-->Rt, then sJR,E t. R is locally confluent modulo
E if whenever s <--Ru->R t, then S J.R , E t . R is (locally) confluent if it is (locally) confluent
modulo E for E = 0. Note that confluence of R/E and confluence modulo E of R are two

different conditions . R/E is confluent if and only if R is Church-Rosser modulo E .
R is called coherent modulo E if 8+*R U- E t implies S . R, E t . R is locally coherent modulo

E if S'<-R S HEt' implies S'J.R ,E t' . Coherence is vacuously true if E is empty .
The following theorem shows how these properties are connected .

THEOREM 1 (Jouannaud & Kirchner, 1984) . Let (R, E) be an equational term rewriting
system . If R is E-terminating then the .following conditions are equivalent :

(a) R is Church-Rosser modulo E .
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(b) R is confluent modulo E and coherent modulo E .
(c) R is locally confluent modulo E and locally coherent modulo E,
(d) For all terms s, s', t and t', s'-'RS-R„Lt--}Rt' implies S'-Et' .

Confluence is decidable for finite noetherian term rewriting systems. A decision
procedure based on critical pairs was given by Knuth & Bendix (1970) . Let /-+r and
be two reduction rules and p be a position in 1 such that l/p is not a variable and l/p and l'
are unliable, and let 0 be the most general unifier of l/p and 1' . The superposition of l-+r
onto l'-+r' determines a critical pair (s, t)=(0(r), 0(l)[pF 0(r')]) . The terms s and t are the
two outcomes of reducing 0(l) by l-->r and l'->r', respectively . A critical pair (s, t)
converges if s and t converge, otherwise it diverges . The following lemma holds :

LEMMA I (Knuth & Bendix, 1970 ; see also Huet, 1980) . Let R be a noetherian term
rewriting system . R is confluent if and only if no critical pair (s, t) between rules in R
diverges .

Knuth & Bendix (1970) partially solved the problem of constructing, for a given non-
confluent term rewriting system, an equivalent confluent one, by designing a so-called
completion method . The basic idea of completion is, to add, for every diverging critical
pair (s, t), a new reduction rule s'->t' or t'-+s', where s' and t' are normal forms of s and t,
respectively. The method is not guaranteed to succeed and need not terminate . It may
also abort when s' and t' are incomparable and cannot be made into a directed rewrite
rule without violating termination . Both the critical pair lemma and the completion
method have been generalised to rewriting modulo equations . In the general case
additional critical pairs between rules in R and equations in E have to be considered .
These results are discussed in detail in Jouannaud & Kirchner (1984) .

Termination is a prerequisite for the completion method . Techniques for proving
E-termination are therefore of great importance in practice . Although various powerful
methods have been developed for proving termination when E = 0, very little is known
about the more general problem of E-termination for non-empty equational theories E . In
this paper we address the latter problem . Since our approach is based on and extends
techniques for proving ordinary termination (E 0), we give a brief review of such
methods in the next section .

3. Termination Orderings

Proving termination of term rewriting systems is a non-trivial task, in general, and the
uniform halting problem for term rewriting systems is undecidable, even though it is
decidable for ground systems, i .e . systems where the reduction rules consist of ground
terms only (see Huet & Lankford, 1978) . A survey of various techniques for proving
termination of term rewriting systems is given in Dershowitz (1985a) . We will briefly
describe several important techniques in this section . We will assume from now on that F,
the set of operator symbols, is finite, and G, the set of ground terms, is non-empty .

Let R be a term rewriting system over T . First note that R is noetherian if and only if
there is no ground term t having an infinite sequence of reductions, In other words, R is
noetherian if and only if --+R defines a well-founded partial ordering on G . Therefore R is
noetherian, if we can find a well-founded partial ordering > on G such that, for all
ground terms s and t, s --+,,t implies s > t . The problem with this method is that it
quantifies over all possible reductions (on ground terms) S-+Rt . An important refinement
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is based on the concept of simplification orderings, which was introduced by Dershowitz
(1979) .

DEFINITION 1 . A partial ordering > on G is called a simplification ordering if it is
monotonic and has the following subterm property : f( . . . t---)>t, for all terms t and

f( . . . t . . . ) . We say that a term s=f(s1, • • • , s,„) is homeomorphically embedded in a term
t = g(t1, • • , t„), written s fit, if and only if

(a) f=g and, for some permutation xc, st Stn(i), for all i, 1 < i < m, or
(b) s tj for some j, 1 < j < n .

For example, 1(x)+0-_-~ ~0 + (I(x + y) + 1(0 + z))The following lemma holds :

LEMMA 2. Let > be a simplification ordering on G and let s and t be ground terms . Then
s 7:~ t implies s * t.

Non-termination may be characterised as follows :

THEOREM 2 (Kruskal, 1960) . In any infinite sequence of ground terms t1, t2,

	

over a finite
set of function symbols there exist i and j, i <j, such that t ; ::~ tj .

The following termination theorem is based on Kruskal's Theorem :

THEOREM 3 (Dershowitz, 1979) . A term rewriting system R terminates if there exists a
simplification ordering > on G such that o(l) > a-(r), for all reduction rules l-3r in R and for
every ground substitution u with V(l) c D(o-) .

PROOF. Let > be a simplification ordering satisfying the stated requirements . It can easily
be proved that > contains --4R. Suppose that R does not terminate . Then there is an
infinite sequence of ground terms tt-rRt2-->Rt3 By Theorem 2 there exist i
and j, i < j, such that tip tj, and therefore, by Lemma 1, t ; 4> tj. But since > contains -+ R
we may also infer t; > tj, which is a contradiction .

An important class of simplification orderings are recursive path orderings (see
Dershowitz, 1982), which extend a given partial ordering >, also called a precedence
ordering, on the set of operator symbols F to the set of ground terms G .

333

DEFINITION 2. Let > be a partial ordering on F . The recursive path ordering >rpo
corresponding to > is defined recursively as follows :

s =f(s1, . . . , se) >rpot = g(t1, • . . , t„)
if and only if

(a) f=g and {s1,..-Is ,„} >>rpo{t1, . . . , to}, or
(b) f > g and s >,P, ti, for all i, 1 < i < n, or
(c) f ;~- g and s; ?r,, t, for some i, 1 < i < m .

Here >>rpo is the extension of >rpo to multisets and s>rpot means s>rpot or s't, where
the permutation equivalence '- is defined by

s =f(s1, . . ., s„) - t =f(t1	to)

if and only if for some permutation fir, s ;-tntt), for all i, 1 < i < n .
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A multiset is an unordered collection of elements, where elements may appear more
than once . For any partial ordering > on a set S, the multiset ordering >> on the set of all
finite multisets over S, defined by

M >>N if and only if, M :,P4- N and, for every y e N - M, there exists x e M - N, such that
x> Y9

is also a partial ordering . If M(x) and N(x) denote the number of occurrences of x in M
and N, respectively, then the number of occurrences (M - N)(x) of x in M-N is defined
as max(0, M(x)-N(x)) . The ordering >> is well founded if and only if > is well founded .
For details see Dershowitz & Manna (1979) .

THEOREM 4 (Dershowitz, 1982) . Any recursive path ordering is a simplification ordering .

The ordering, as given above, is defined on ground terms, but can be extended to non-
ground terms by including the following clause :

s=f(s 1 , . . ., s„) > rPax if and only if xe V(s) .

This means that variables are treated as constants that are unrelated to other operator
symbols in the precedence ordering > .

LEMMA 3 (Huet & Oppen, 1980) . Let s and t be terms in T. Then s > rPa t implies
a(s) >rPo fl(t), for every ground substitution a .

Simplification orderings are discussed in detail in Dershowitz (1979, 1982) . Extensions
of the recursive path ordering that incorporate the semantics of operators were proposed
by Kamin & Levy (1980) . Other simplification orderings include the "path of subterms"
ordering (Plaisted, 1978a, b), the recursive decomposition ordering (Lescanne, 1981, 1982 ;
Jouannaud et al ., 1983), and another path ordering similar to the (extended) path
of subterms ordering (Kapur et al ., 1985). The recursive path ordering is used in
the RRL rewrite rule laboratory, along with the lexicographic recursive path ordering by
Kamin & Levy, see Kapur & Sivakumar (1983) . It was also used in the first version of the
REVE rewrite rule laboratory (Lescanne, 1983) . In recent versions of REVE the recursive
decomposition ordering is used as the main tool for proving termination .

All these orderings have in common that they extend a precedence ordering > on
function symbols to an ordering on terms . Dershowitz (1982) remarks that whenever > is
a total ordering then the recursive path ordering is essentially the path of subterms
ordering, and whenever > is a partial ordering, then the recursive path ordering is
contained in an obvious extension of the path of subterms orderings . The recursive
decomposition ordering also contains the recursive path ordering, but both orderings are
the same when the precedence ordering is a total ordering . A detailed analysis of the
relationship between these orderings may be found in Rusinowitch (1985) .

Manna & Ness (1970) (see also Lankford, 1979) proposed a different technique that is
based on the idea of associating with every n-ary operator f an n-ary function T(f) over
the natural numbers . Every function r(f) has to be monotonically increasing in each
argument, i .e. if x > y then t(f)( . . . x . . . ) > r(f)( . . . y • - • ) . The function 2 can be
extended to terms in the obvious way . A term rewriting system R is noetherian if
r(a(I)) > i(a(r)) for every rule l -> r in R and every ground substitution a whose domain
contains all variables in 1 . Usually this method is applied with polynomials over the non-
negative integers as interpretations for the operators in F .
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4. Equational Term Rewriting Systems

A basic idea underlying the concept of rewriting systems is that of reducing a given
term to a simpler one . An equation is converted into a directed rewriting rule in such a
way that the right-hand side of the rule is "simpler" than the left-hand side . However,
there are equations where left-hand side and right-hand side are intrinsically
incomparable. For example, using the commutativity axiom x + y = y + z as a directed
rewriting rule results in a non-terminating term rewriting system . One way to handle
theories that contain such equations is to partition the given equational theory in two sets
R and E, where E is used as a set of equations and R as a set of directed rewriting rules .
The reduction relation ->R/E corresponding to the equational term rewriting system R/E
allows reductions modulo the equations in E . The classical Knuth-Bendix completion
procedure has first been extended to rewriting modulo equations by Lankford &
Ballantyne (1977), for the case of sets of equations that consist of permutativity axioms,
for instance, associativity and commutativity . A different approach by Huet (1980) deals
with left-linear rewriting systems . The method by Peterson & Stickel (1981) may be
applied to linear theories E with a finite and complete unification algorithm . These
approaches have been unified in a more general framework by Jouannaud & Kirchner
(1984) .
E-termination is a prerequisite for all these methods . The termination orderings

described in the previous section are not directly applicable to the problem of proving
E-termination, however . Polynomial interpretations may be used for proving termination
of associative-commutative rewriting systems, provided the proposed interpretation is
compatible with the given associativity and commutativity axioms . The class of
polynomials that satisfy these conditions consists of all polynomials p(x, y) of the form
axy + b(x + y) + c, where ac +b= b 2 . For example, the polynomials p(x, y)-x+y+c and
p(x, y) __ cxy are associative and commutative in x and y, but p(x, y) = xy + 1 is not . In
the following sections we introduce a new class of orderings that are also applicable to
associative-commutative rewriting systems, but provide a conceptually simpler alternative
to polynomial interpretations . Before we formally describe the ordering we adapt the
general results on termination from the previous section to the case of equational term
rewriting systems .

THEOREM 5 . An equational term rewriting system R/E terminates if there is a simplification
ordering > on G such that s--*R/E t implies s > t, for all ground terms s and t .

The proof of the theorem is similar to the proof of Theorem 3 . The theorem quantifies
over all possible reductions s-+R,E t on ground terms . This requirement can be refined . If
> is compatible with E, then > contains -4,E if and only if it contains --4 . To see this
assume that > contains ->R, i .e . u--+ RV implies u > v, for all terms u and v . Let s, s', t and
t' be such that S 'ES ' +Rt'" E t . Then s'> t' and therefore, since > is compatible with E,
also s > t . Thus > contains --4R /E . This suggests the following theorem :

THEOREM 6 . An equational term rewriting system R/E terminates if there exists a
simplification ordering > on G that is compatible with E, such that a(l) > cr(r), for every rule
l -> r of R and every ground substitution u with V(l) c D(o) .

PROOF . Let > be a simplification ordering satisfying the stated requirement . By Theorem
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5 and the remarks above it suffices to show that s->R t implies s > t, for all ground terms s
and t. But this can be proved easily under the given assumptions .

Our approach to the problem of E-termination is based on this theorem . A different
approach, based on the following theorem, has been suggested by Jouannaud & Munoz
(1984) .

THEOREM 7 (Munoz, 1983) . Let R/E be an equational term rewriting system and let -> be a
reduction relation with R c -r c R/E . If -+ terminates and is E-commuting then R is
E-terminating .

A reduction relation -+ is E-commuting if and only if for all terms s, s' and t with
s'-ES-+ + t, there exists a term t' such that S'-->+t'-Et . If a reduction relation is not
E-commuting it can sometimes be extended to an E-commuting relation by adding
appropriate rules to R. This process is similar to the completion process for term
rewriting systems and need not always terminate . The termination property of the
extended (E-commuting) set of rules can be proved using existing methods for proving
termination of -+ . Candidates for -> are -*R and ->R , E . The reduction relation -+R E is
defined as follows : s-+ R , E t if and only if there exist an occurrence p of s, a rule l-+r in R,
and a substitution a, such that s/p is not a variable, SIP - . E a(l) and t=s[p<--a(r)] . Note
that ->R , E is different from -~ R/E , since -->R , E allows E-equality to be applied only to the
subterm at occurrence p, whereas -'RAE allows unrestricted E-equality steps . Consequently
it should be simpler to prove termination of ---~R , E than of 4R/E . However, at the present
time no specific orderings are known for proving termination of -> R, E . Of course, if E is
an associative-commutative theory, the associative path orderings we will describe below
can be used for that purpose .

5. Associative-commutative Term Rewriting Systems

We will now give a formal definition of associative-commutative rewriting systems and
introduce a formalism for representing associative-commutative terms . Let f' be some
operator symbol . A commutativity axiom forf is an equation of the form f(x, y) =f(y, x),
an associativity axiom for f is an equation of the form f(x, .f(y, z))=f(f(x, y), z) or
f(f(x, y), z) =f(x, f(y, z)) . An equational theory E is called an associative-commutative
(AC) theory if every equation in E is either an associativity or commutativity axiom . An
equational term rewriting system (R, E) is called an AC rewriting system if E is an AC
theory. Let E be an AC theory . FC (FA ) denotes the set of all operators f such that E
contains a commutativity (associativity) axiom for f. Elements of Fc and FA are called
commutative and associative operator symbols, respectively . FAC = FA n Fc is called the set
of associative-commutative (AC) operators. A term f(s, t), where f is an AC operator, is
called an AC term .

We will use varyadic terms for representing AC terms . Given a set of operator symbols
F, a varyadic signature over F is a function a : F_,2", where 2' is the set of all subsets of
N. This basically means that we allow operators with variable arity . For example, if
a(f) = { 2, 3} then both f(a, b) and f(a, b, c) are syntactically correct terms . More
precisely, the set TV(F, V) of varyadic terms is defined as being the smallest set such that
f(t	t„) is in TV(F, V) if feF, nEa(f) and t 1 , . . ., t,eTV(F, V) . (We assume that
a(x) = {0} for every variable x .) Let a be an (ordinary) signature over some set of function
symbols F and let E be an AC theory over T . The varyadic signature a' corresponding to
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a is defined as follows : a'(f) :={a(f)} if foFA, and a(f) :=N-{0}, otherwise. That is,
associative operators may take any positive number of arguments, whereas non-
associative operators have fixed arity . Associative path orderings are based on transforms
that map terms over an ordinary signature a into terms over the corresponding varyadic
signature a' . The results on recursive path orderings from section 3 can easily be extended
to varyadic terms, see Dershowitz (1982) .

AC terms are conveniently represented as flattened terms, i .e, terms that have no nested
occurrences of AC operators and where the order of subterms does not matter . We will
use a multiset notation to denote such terms (see also Plaisted, 1983) . That is, we will use
the expression f(N), where N is the multiset It,, . . ., t o }, to denote a term f(t l , . . ., t„) .
Let now FI be the set of all reduction rules (on varyadic terms) of the form
f(X,f(Y))-- f(Z), where f is an AC operator, X and Y are disjoint sets of distinct
variables, and Z = X u Y. (A similar notation, using vectors instead of multisets, can be
used for operators that are associative but not commutative.) The rewriting system Fl is
terminating because the number of AC operators occurring in a term decreases with each
application of a flattening rule . Furthermore, all critical pairs (s, t) between rules in
FI are convergent modulo the permutation equivalence -, and Fl therefore is confluent
modulo - . The Fl-normal form of a term t, also called the flattened version oft, is denoted
by T. An Fl-irreducible term t is also calledflattened . Whenever two terms are equal under
associativity and commutativity then their flattened versions are equivalent under
permutation, that is, s- E t implies s' T, for any AC theory E . If N is a multiset of terms
It,, . . ., t, J, then N denotes the multiset It,, . . ., t„} . Also, given multisets N,, . . ., Nk , we
will write f(N1 , . . ..

	

NJ to denote the multiset {f(t l , . . ., t,) : t ; e Ni , for 1 < i < k} .

EXAMPLE l . Let f be an associative operator and t be the term f(a, f(b, f(c, d))) . Then
T=f(a, b, c, d) and may also be denoted by f(N), where N = {a, b, c, d} . The multiset
expression f({a, b}, {c, d}) denotes the multiset {f(a, c), f(b, c), f(a, d), f(b, d)} .
Frequently, we will delete brackets of singleton multisets and write, for example,
f({a, b}, c) instead off({a, bj, {c}) . Suppose that M = g(N) is a multiset of flattened terms,
then flattening f(f(a, b), f(M)) yields .f(P), where P= {a, b} u g(N) .

6. Associative Path Orderings

In this section we will outline how to use the recursive path ordering in combination
with a transform for termination proofs of AC rewriting systems . Let (R, AC) be an
associative-commutative rewriting system . Note that the case of commutative operators is
already handled by the recursive path ordering, since two terms equivalent under
commutativity are equivalent under permutation and s- s' >rpot'-t implies s >,.O t . But
the recursive path ordering cannot handle associative operators . For example, if a > b > c
then f(a, f(b, c)) -Acf(f(a, b), c) > rpo f(a, f(b, c)) . Therefore the recursive path ordering is
not compatible with AC and not well-founded for R/AC-reductions, in general . Since
s-4c t implies that s and T are permutationally equivalent, we might try to apply the
recursive path ordering to flattened terms . Let A be the transform given by A(t) = t. We
define the associative path ordering >rpo by: s >„ pp t if and only if A(s) >rpo A(t) . But this
ordering is not monotonic, as the following counterexample illustrates . Let fand g be AC
operators with .f > g, and let a be a constant . Then 1*(a, a) >apog(a, a), but
f(a, f(a, a)) >„ pa f(a, g(a, a)) is false. In fact, we even have f(a, g(a, a)) >rp„ f(a, a, a)
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= f(a, f (a, a)), and therefore f(a, g(a, a)) >,,,, o f (a, f(a, a)) . Thus the monotonic extension
of >a,,o is not well founded .

The example above indicates that monotonicity is violated for those terms in which an
AC operator is embedded within a larger AC operator . We will design a transform that
maps T into a subset T' c T that contains no such "critical" terms . For example, we will
transform the term f(a, g(a, a)) to g(f(a, a), f(a, a)) . This transformation process can be
conveniently characterised using a rewriting system . In order to simplify the presentation
we will assume from now on that every associative operator in F is commutative, and
every commutative operator is associative, that is, FAC = FA = Fc . Our results can easily be
adapted to the case where F also contains functions that are associative but not
commutative .

Let > be a precedence ordering on the set of operator symbols F . The set of
distributivity rules D corresponding to > consists of all reduction rules of the form
f(g(x, y), z) - g(f(x, z),f(y, z)) or .f(x, g(y, z)) - g(f(x, y), .f(x, z)), where f and g are AC
operators with f > g . In order to be able to compute with D, we have to prove that D/AC
is terminating and confluent . Then D-normal forms exist and are unique up to
associativity and commutativity . Confluence is not satisfied for sets of distributivity rules,
in general, but we can enforce it by properly restricting the precedence ordering
> . We say that > satisfies the associative path condition if for all AC operators f either

(a) f is minimal in F, or
(b) there exists an AC operator g such that f is minimal in F-{g} .

For example, let f and g be AC operators . Then the precedence ordering >, defined by
f > g and h > g, where h may be any operator, satisfies the associative path condition,
whereas a precedence ordering with f > g and f > h does not (see Figs 1 and 2) . The
ordering >, defined by h > f > g, only satisfies the condition if h is not an AC operator
(see Fig . 3) .

LEMMA 4 . Let > be a precedence ordering that satisfies the associative path condition, and
D be the corresponding set of distributivity rules . Then D/AC is confluent and terminating.

PROOF . AC-termination of D can easily be proved by using the following polynomial
interpretation :

,c(f) = Ax y . x x y, if f is a non-minimal AC operator,
,r(g) = Ax y . x+y+ l, if g is a minimal AC operator, and
z(x) = 2, if x is a variable .

Fig. 1 Fig. 2
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Fig. 3
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Given that D is AC-terminating, by Theorem 1, D/AC is confluent if it is locally
confluent modulo AC and locally coherent modulo AC. To prove local confluence
modulo AC and local coherence modulo AC we use the following results by Huet (1980)
for left-linear rewriting systems : a rewriting system R is locally confluent modulo E if, for
every critical pair (s, t) between rules in R, sIR , E t ; it is locally coherent modulo E if, for
every critical pair (s, t) between a rule in R and an equation in E, sjR, E t .
We first prove local confluence modulo AC . The only non-trivial critical pairs result

from superposing the rules

and

	

f(g(x, Y), z)) - 9(f(x, z), f(Y, z))

f(x, 9(Y, z)) - 9(f(x, Y), f(x, z)) .
The corresponding critical pair is (s, t), where

and

	

s = g(f(x, 9(x', Y')),f(Y, 9(x', Y')))

t = g(f(g(x, Y), x'),f(9(x, Y), Y')) .
We may reduce s and t as follows :

and

	

s-'D9(9(f(x, x'),f(x, Y')), 9(f(Y, x'),f(Y, Y'))) = s'

t-)D9(9(f(x, x'),f(Y, x')), g(f(x, Y'),f(Y, Y'))) = t' .
Obviously, s'- AC t', therefore sID, ACt .

For local coherence we have to consider critical pairs between rules in D and equations
in AC. A typical critical pair results from superposing

and

	

f(x, 9(Y, z)) - g(f(x, Y), f(x, z))

f(f(x, Y), z) = f(x,f(y, z)) .
The corresponding critical pair is (s, t), where

and

	

s = g(f(f(x, Y), x'),f(f(x, Y), Y')))

t Ax, fly, 9(x, Y'))).

We may reduce t as follows :
t->Df(x, 9(f(Y, x'),f(Y, Y')))-'D 9(f(x,f(Y, x')),f(x,f(Y, Y'))) = t' .

We see that S-AC t', therefore s .I.D,AC t . Other critical pairs are handled similarly .

We may define now the transform A by A(t) = t', where t' is a D-normal form of t . We
will define associative path orderings in a slightly more general way than we indicated
above. Namely, if two terms have the same transform we may still compare them using
some given partial ordering > that is monotonic, compatible with AC, and well founded
on every set [t] = Is IA(s)-A(t)} . We call such a partial ordering admissible for the
transform A .

DEFINITION 3. Let > be a precedence ordering on F that satisfies the associative path
condition and > be a partial ordering that is admissible for the transform A associated
with > . The corresponding associative path ordering >, po on G is defined by

s >opo t if and only if A(s) >,po A(t) or A(s)---A(t) and s >t.

EXAMPLE 2 . Let f and g be AC-operators with f > g, and let s and t be the terms
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f(a, f(a, a)) and f(a, g(a, a)), respectively. Then

A(s) =f(a, a, a) >rpag(f(a, a),f(a, a)) = A(t),
and therefore s >a po t .

Comparing terms by the inverse of their sizes is an admissible ordering for our
transform . More precisely, let D be defined by

s > t if and only if Isi -<Itl and no variable appears more often in s than in t .

(Here -< is the natural order on integers .) The ordering > is monotonic and compatible
with AC. Furthermore, there is a bound on the size of the terms in [t], i .e . there is a
constant k such that s e [t] implies Isi -< k. As a consequence, there can be no infinite
sequence t t t 2 > . with A(t t ) - A(t2 ) ti The ordering is therefore admissible .
For example, let s and t be the terms f(a, g(a, a)) and g(f(a, a), f(a, a)), respectively . Then
A(s) = A(t), but s > t, and therefore s > apo t .

The use of distributivity rules for transforming terms was proposed by Plaisted (1983) .
The termination orderings in Dershowitz et al. (1983) are also based on the idea
of transforming terms . Here terms are transformed into multisets of terms and no
requirement is imposed oil the precedence ordering > . Our ordering is conceptually
simpler and more efficient, since we transform terms into terms . But the advantage of our
ordering lies not only in the improved efficiency (at the cost of imposing restrictions on
the precedence ordering), more important, our ordering can be lifted to non-ground
terms, which was not possible for the ordering in Dershowitz et al . (1983) . This is of
course crucial for practical applications of the Knuth-Bendix completion procedure .

We will sketch now another way to characterise the transform A . Again let > be a
precedence ordering that satisfies the associative path condition . Let DV be the set of all
reduction rules (on varyadic terms) of the form f(X, g(Y))->g(N), where f and g are AC
operators with f> g, X = {x t , . . ., x,,} and Y are disjoint sets of distinct variables, and
N =f(x l , . . ., x, Y) . An instance of a rule in DV is, for example,

f(x, Y, g(z, z')) -* g(f(x, Y, z), f(x, Y, zT .

The rewriting system DV contains all rules in D and the reduction rules in DV may be
viewed as "generalised distributivity rules" . A term t is D V-irreducible if it contains no
subterm I(N), where f is an AC operator and f > op(u) for some term u in N.
The combined system DV u Fl is terminating, since for every rule l->r we have l > rpo r,

where >rpo is the recursive path ordering corresponding to > . The rewriting system
DV u Fl is also confluent (modulo the permutation equivalence ti), as can be seen by
checking all possible critical pairs . (This can be done in a way similar to the proof of
Lemma 4). The following lemma can easily be proved :

LEMMA 5 . Let t be a term in T and t* its (DV u Fl)-normal form . Then A(t) - t* .

Lemma 5 allows us to extend the transform A to varyadic terms by defining A(t) = t*,
where t* is a (DV u Fl)-normal form oft .

We will state now our main results on associative path orderings . We assume from now
on that > is a precedence ordering that satisfies the associative path condition, and that
> is an admissible ordering for the transform A .

LEMMA 6 . Any associative path ordering is compatible with AC .
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PROOF . Follows from the fact that sect implies 7-T, where s' and t' are D-normal
forms of s and t, respectively .

THEOREM 8 . Any associative path ordering is a simplification ordering .

The proof of the theorem is given below. We combine Theorems 6 and 8 and Lemma 6
to get the following termination theorem :

THEOREM 9. A term rewriting system R is AC-terminating if there exists an associative path
ordering > opo on G such that a(l) > npo a(r), for each rule l-*r of R-D and every ground
substitution o whose domain contains all variables in 1 .

The following lemmata are needed for the proof of Theorem 8 .

LEMMA 7. Let s, t, f( . . . s . . . ) and f( . . . t .

	

) be DV-irreducible terms such that s >apo t.
Then f( . . . s . . . ) >npof( . . . t . . . ) .

PROOF . Suppose s > npp t, that is s >,POT. Let u and v be such that u =f( • • • s . . . ) and
v =f( . . . t . . . ) . We have to prove a >, pO D. The only problematic case is when s has top-
level AC operator symbol f and the operator symbol h oft is different from f: We observe
that in this casef * h . This is vacuously true if f is a minimal operator, It is also true if f is
minimal in F-{g}, because if t has top-level operator g then v would be DV-reducible,
which would contradict our assumption, But f 4. h and s = f(s 1 , . . ., s„) >,poT imply that
there is a subterm s ; of s such that s ; >,poT. Therefore

u=f( . . .51, . . .,si, . . .,Sn . . .)>rpof( . . .t . . .)=1) .

As an immediate corollary we get :

COROLLARY 1 . The associative path ordering restricted to D-irreducible terms is monotonic .

The next lemma characterises transforms of certain terms .

LEMMA 8 . Let t1 and t 2 be D-irreducible terms and f be an AC operator. Then the term
t =f(t 1 , t 2 ) is either D-irreducible or A(t) = g(N), where g is an AC operator with f > g,
N = f(T1 , T2 ), and T,• (i = 1, 2) is such that T = (TI}, iff* op(t ;), and Tj = ~(T), iff > op(t ;) .

PROOF . Suppose t is reducible. Then t 1 or t 2 has top-level operator g, where f > g .
Without loss of generality we may assume that op(t 1 ) = g . Let T1 be such thatF1 = g(T1 ) .
Now,

s = f(tl, t2) - Fl .f(1 l, 1) =f(9(T1),T)'-''nv9(M),

where M = f(T1 , T2 ) and T2 is such that T2 = {t2 }, if op(t 2 ) g, and F2 = g(T2), if
OP(t2)=g . Finally, g(M) ->'„v,, F1 g(N) = A(s), where N = f(T1, T2) . This proves our
assertion .

EXAMPLE 3 . Let s bef(t 1 , t 2 ), where t 1 = g(g(a, a), a), t 2 = b, and f > g . Then T1 = { a, a, a},
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T2 = { b}, and s has D-normal form u = g(g(f(a, b), f(a, b)),f(a, b)) . We see that, in fact,

A(s) = g(f(a, b),f(a, b),f(a, b)) = g(N),
where

N =f(Ti, T2) .
We will next prove Theorem 8 .

PROOF OF THEOREM 8 . Let > be a precedence ordering that satisfies the associative path
condition and > be an admissible ordering . We have to show that the corresponding
associative path ordering is a monotonic partial ordering and has the subterm property .

Irreflexivity and transitivity follow immediately from the corresponding properties for
the recursive path ordering and the ordering > .

Subterm property . We have to show s =f( • t • • • ) >apo t, for all terms s and t . We may
assume, without loss of generality, that all top-level subterms of s, including t, are
D-irreducible . Ifs is D-irreducible, then obviously s > rpoT, and thus s >apo t . Otherwise, s
has to be of the form f(u, t) (or f(t, u)), where f is a non-minimal AC operator . Let g be an
AC operator such that f > g . By Lemma 8, A(s) = g(N), where N =f(U, T) and T is such
that T = g(T), if t has top-level operator g, and T = {T}, otherwise. It can easily be seen
that in either case A(s) > rpoT = A(t), and therefore s >,,P, t .

Monotonicity. We have to prove that s >apo t implies f( . . . s . . . ) >apa f ( • • • t . . . ), for
any operator symbol f and terms s, t, u =f( . . . s . . . ) and v =J'( •

	

t • • • ) .
If A(s)-A(t) and s>t, then A(u)-A(v) and the assertion follows from the

monotonicity of > . Let us therefore assume A(s) > rpo A(t), that is, s >rpoT. We show
A(u) >rpo A(v) . Without loss of generality we may assume that all top-level subterms of u
and v, including s and t, are D-irreducible .

If u and v are both D-irreducible then the assertion follows from Corollary 1 . Otherwise
u or v is reducible and f is a non-minimal AC operator . Let g be a minimal AC operator
with f > g and suppose that u is of the form f(w, s) and v of the form f(w, t) .

We consider first the case that v only is reducible . Then w cannot have top-level
operator symbol g because otherwise u would be reducible, By Lemma 8, A(v) = g(N),
where N = f(w, T) and T = g(T) . From Lemma 7 and s> rpaT we may conclude that, for all
terms t ; in T, f(w, s) > rpo .f(W, t,) . This implies f(w, s) »,paf(w, T) = N and, since f > g,
also

A(u) = u = f(w, s) > rpog(N) = A(v) .

Next suppose that u only is reducible. Then A(u) = g(M), where M = f(w, S) and
s = p(S) . Since g is a minimal operator and s >rpoT, there must be some term s; in S such
that s, > rpoT. Then, by Lemma 7, f(w, st) >rpo .fiw, t), and therefore

A(u) = g(M) >rpof(W, s) > rpo f(W, t) = A(v) .
Finally, let us assum e that both u and v are reducible. Then A(u) = g(M) and

A(v) = g(N), where M = f(W, S), N = f(W, T), and the multisets S and T depend on s
and t, respectivel y, as described in Lemma 8 . It can easily be shown that S >> rpo T holds .
This implies S' = f(W, S) >> rpof(W, T) = T' and, as a further consequence, A(u) > rpo A(V) .
To prove S' >> rpo T' we assume that f(w;, tj) is some element in T'-S' . Then tj is contained
in T-S, and therefore, since S>>rpo T, S-T must contain an element s k such that Sk > rpo tj.
From Lemma 7 we obtain f(w ;, sk) >rpof(W;, tj), where f(W;, sk) is in S ' - T' . In summary,
S'>> T'. This completes the proof of monotonicity and of Theorem 8 .



Termination Orderings for Associative-commutative Rewriting Systems

	

343

7 . Lifting the Ordering to Non-Ground Terms

We will next give a method for comparing terms with variables in the associative path
ordering . When applying Theorem 9 we have to compare, for given terms s and t, a(s)
and a(t), for every ground substitution a whose domain contains all variables in s and t .
We will generalise the associative path ordering in such a way that only a finite number of
the potentially infinitely many ground substitutions a have to be checked .

In the recursive path ordering terms that contain variables are compared by treating
variables like constants . The equivalent of Lemma 3 does not hold for the associative path
ordering, however . The corresponding method for associative path orderings is more
complicated since the result of transforming a term may depend on the particular
substitution and, in general, A(a(t)) 0 u(A(t)) . For example, given a term f(x, c), where c
is a constant, we may substitute g(c, c) for x to obtain f(g(c, c), c), a term that can be
reduced to g(f(c, c), f(c, c)) (assuming f and g are AC operators with f > g) . However, if
we substitute c for x we get the irreducible term g(c, c) . When comparing g(x, c) with
some other term we have to consider both cases . In general, we say that a variable x has a
critical occurrence for a (minimal) AC operator g in a term s ifs contains a subterm of the
form f(u, x) or f(x, u), where f is an AC operator with f > g . Note that a variable may
have critical occurrences with respect to more than one AC operator .

A substitution a is called normalised for a rewriting system R (or R-normalised) if a(x)
is R-irreducible, for all x . Let s and t be terms and a be a substitution . The substitution aL
associated with a, s, and t is defined as follows :

CL(X) = 9(X I, x2 ), if op(a(x)) = g and x has a critical occurrence for g in s or t,

CL(X) = x, otherwise .

The following lemma shows why we are interested in associated substitutions .

LEMMA 9 . Let s and t be terms, a a D-normalised ground substitution whose domain contains
all variables in s and t, and a L its associated substitution . Then A(c L(s)) > rpo A(7L(t)) implies
A(c(s)) >rpoA(oa (t)) .

PROOF . Let u and v be D-normal forms of aL(s) and aL (t), respectively. Then A(aL(s)) = u
and A(aL(t)) = ii . We have to show that a >rpa v implies A(d(s)) >rpoA(a(t)) . Let p be a
substitution such that a=aLop . Then

and similarly

	

a(s) = P(aL(s)) -- %p(u)-11M),
a(t) = P(cL(t))-->*np(v)-;FIP(v) .

Let p'(x) = p(x) and let u' and v' be (D V- Fl)-normal forms of p'(u) and p'(v),
respectively . Obviously, A(a(s)) = A(p(u)) = u' and A(a(t)) = A(p(v)) = v' . Therefore,
A(a(s)) >rp0 A(a(t)) if and only if u' >rpo v' . In order to show that u >,P,1 implies u' >rpo v'
we first analyse the connection between u and u' and between v and v', respectively .
Suppose w = f(M, x) is some subterm of a or v and p'(x) = g(N), where N = It,, . . ., t„} .

(a) If f is an AC operator and f = g, then p'(w) = f(M, f(N)) -)TIAR, 9)-
(b) If f is an AC operator and f > g, then w must be embedded in a or v in a term

w' = g(P, w). Then

P(w) = g(P, f(M, g(1')))-nvg(f, g(f(M, t,), . . .,f(M, t„)))

-'nvg(P,f(M, ti), . . .,f(M, t„)) = g(P,f(M, N)) .
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(c) In any other case, no reduction rule in DV or Fl is applicable to p'(w) at the
position of p'(x) .

To summarise, u' and v' may be obtained from a and v, respectively, by replacing each
occurrence of a variable x either by p'(x) or, depending on the particular context, by N or
N, where p'(x) = g(N) . Using these facts we may prove that u >rpO D implies u' >'.P0 v' . This
part of the proof is similar to the proof of Lemma 3 (induction on the size of terms) and is
omitted here .

EXAMPLE 4. Let
s = f(x, a), t = g(x, a) and a(x) = g(b, g(c, c)) .

Using the same notation as above,

aL(x) = g(xl, x2), p(x1) = b = p'(x1), and p(x2) = g(c, c) = p'(x2) .
Now,

A(aL(s)) = A(f(g(x1, x2), a)) = g(f(x1, a),f(x2, a))

and, in fact

	

>rpog(X1, x2 , a) = A(g(g(x1, x2), a)) = A(aL(t)),
A(a(s)) = A(f(g(b, g(c, c)), a)) = g(f(b, a), f(c, a), f(c, a))

>rpog(b, c, c, a) = A(g(g(b, g(c, c)), a)) = A(o-(t)) .
We see that g(f(b, a), f(c, a), f(c, a)) may be obtained from g(f (x l , a), f(x2 , a)) by
replacing x l by {b} and replacing x 2 by {c, c} .

Let A(s, t) denote the set of all substitutions a such that a(x) = x or a(x) = g(x l , x 2 ), if x
has a critical occurrence for g in s or t . Clearly, for any ground substitution a, the
substitution aL associated with a, s, and t is contained in A(s, t) . We require that the
ordering >, which is used for comparing terms s and t with A(s)-A(t), can be extended
to non-ground terms and is compatible with substitution : whenever A(S)-A(t) and s > t
then a(s) D a(t), for all ground substitutions a . We assume from now on that > is an
admissible ordering that is compatible with substitution . The ordering given in Example 3
is compatible with substitution .

THEOREM 10 . An AC rewriting system R/AC terminates if there exists an associative path
ordering >apa such that, for every rule 1--r in R-D, either

(a) A(l)-A(r) and l>r, or
(b) A(5 L (l)) >apoA(aL(r)), for every substitution UL in A(1, r) .

PROOF . Let R/AC be an AC rewriting system and let >ape be an associative path ordering
that satisfies the given conditions . By Theorem 9, R/AC is terminating if a(l) >apa a(r) for
every rule l-->r in R but not in D and for every ground substitution a. Let l-+r be a rule in
R-D and a be a ground substitution .

If A(1)-A(r) then, by our assumption, l > r, and therefore, since > is compatible with
substitution, a(l) > a(r) . This, together with A(a(l)) - A(a(r)), implies a(l) > apa a(r) .

Suppose next that A(l) and A(r) are not permutationally equivalent . Let o'(x) be
the D-normal form of a(x), and let aL be the substitution associated with a', 1 and r .
The substitution aL is contained in A(l, r) and therefore, by our
assumption, A(oL(1)) >rpo A(aL(r)) . By Lemma 9, A(a'(1)) >rpoA(a'(r)), which implies
A(a(1)) >rpoA(a(r)) .

EXAMPLE 5 . Suppose s is f(x, y) and t is g(x, y), wheref> g . Both x and y have critical
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occurrences for g in s . Therefore A(s, t) contains the substitution r with c(x) = 9(x1, x2 )
and a(y) = 9(Y1, y 2 ) . Then

A(o'(s)) = 9(f(x1, Y1),f(x1, Y2),f(x2, Y1),f(x2, Y2)),

A(Q(t)) = 9(x1, x2, Y1, Y2),

and we see that A(u(s)) >rpoA(o'(t)) .
Terms may be compared more efficiently in the associative path ordering if we replace x

by g(S,,) instead of g(x 1 , x 2 ), where the symbolic multiset Sx represents {x 1 , x 2 } . For
instance, in the example above, we have oT(x) = g(Sx) and or(y) = g(S,,), and obtain

A(u(s)) = A(f(9(Sx), g(S,))) = 9(N),

A(o'(t)) = A(9(9(S'x), g(Sr))) = g(Sx, Sr ) .
where N = f(Sx, Sy ), and

Theorem 10 provides the basis for our method of proving termination of AC rewriting
systems. In the next section we will demonstrate the method with several examples .

8. Examples

EXAMPLE 6 . Abelian group theory . Let AC be the set of equations

{x+y = y+z, (x+y)+z = x+(y+z)}

and let R consist of the following rules :

R/AC is a confluent equational rewriting system for abelian group theory. In this example
the associative path ordering reduces to the recursive path ordering since there is only one
AC operator and all terms in R are already flattened . Rules (R1), (R3) and (R4) are
ordered correctly by the subterm property . For rule (R5) we need I > + . Rule (R2) is
ordered correctly since 0 is a minimal constant . The resulting ordering > satisfies the
associative path condition, therefore R is AC-terminating .

EXAMPLE 7 . Boolean algebra . The following confluent equational rewriting system for
Boolean algebra is taken from Hsiang (1985) . R contains the following rules :

(R1) x+0-+x,
(R2) x 0 -> 0,
(R3) x 1--' x,
(R4) x x -> x,
(R5) (x+y) •z -.x •z +y •z ,
(R6) x+x--~0,
(R7) xv y-->(x y)+(x+y),
(R8) x y-+(x y)+(x+1),
(R9) x= y->(x+y)+1,

(RIO) -x->x+l .

(RI) x+0--•x ,
(R2) x + 1(x) -> 0,
(R3) 1(0)-.0,
(R4) 1(1(x)) - x,
(R5) I(x + y) ->I(x) + 1(y) .



346

	

Leo Bachmair and David A . Plaisted

AC consists of the associativity and commutativity laws for • and + . 0 and 1 are
constants, they stand for FALSE and TRUE, respectively . The operators . , + , v, :D, __ and
- denote conjunction, exclusive disjunction (EXCLUSIVE-OR), disjunction, implication,
equivalence and negation, respectively . We have to construct an appropriate precedence
ordering. Rules (R1)-(R4) can be ordered correctly by the subterm property . Rule (R5) is
a distributivity rule corresponding to • > + . For rule (R6) we need 1 > 0 ; for rules (R7)
and (R8) v > • and > > • ; for rule (R9) - > + and = > 1 ; and for rule (RIO) - > + and
- > 1 . The ordering > in fact satisfies the associative path condition, therefore R/AC is
terminating .

EXAMPLE 8 . The following example is taken from Huet (1980) . F consists of operators 0, 1,
e, +, *, where 0 and 1 are constants, e is unary, and + and * are binary . Let AC be the
set of equations

{(x+y)+z = x+(y+z), x+y = y+x, (x*y)*z = x*(y*z), x

	

}

and let R consist of the following rules :

The associative path ordering corresponding to the following precedence ordering on
F can be used to prove termination : e>* and e>1 . A different termination proof,
based on extending the set of reduction rules rather than on transforms, is given by
Jouannaud & Munoz (1984) . They have to design a rather complex ad hoc ordering for
proving termination of ->R ., E , where R' is a certain extension of R .

EXAMPLE 9 . Rings . The following example is taken from Hullot (1980) . Let R be the
following set of rules : rules (R1)-(R5) for abelian group theory from Example 6 and the
following additional rules :

AC contains the associativity and commutativity axiom for + . R/AC is a confluent
equational rewriting system for rings . AC-termination may be shown using the associative
path ordering corresponding to >, where * > 1 > + . The following polynomial
interpretation can also be used for proving termination :

r(0) = 2,
r(-) = Ax . 2x(x+1),
r(+) = Ax y . x+y+5,
r(*)=A ,x y .xxy+1 .

It clearly requires more expertise to find an appropriate polynomial interpretation than to
find a suitable precedence ordering > .

(R1) x+0-3, x,
(R2) x* 1- x,
(R3) e(0)-- 1,
(R4) e(x+ y) -~ e(x)*e(y),

(R6) x*(y+z)->(x*y)+(x*z),
(R7) (x +Y)*z --> (x *z) + (Y* z),
(R8) x*0-> 0,
(R9) 0*x-+0,
(RIO)
(R11)

x*1(Y) - I(x*Y),
I(x)*y - 1(x*Y) •
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EXAMPLE 10 . The following is a confluent equational rewriting system R/AC for
associative-commutative rings with unit . AC consists of the associativity and
commutativity axioms for + and *, R consists of the following rules :

(R1) x+0-*x,
(R2) x+I(x)--•0 ,
(R3) 1(0)-0,
(R4) 1(I(x)) -> x,
(R5) I(x+y)-+I(x)+1(y),
(R6) x*(y+z)-- (x*y)+(x*z),
(R7) x*0->0,
(R8) x*I(y) - I(x*y),
(R9) x* 1 -). x .

We cannot use the ordering > given above, since now both + and * are AC operators,
and therefore the associative path condition is not satisfied anymore . We introduce a
different confluent equational rewriting system for the same structure . The idea is to
introduce a new constant c which represents 1(1) . Using AC completion we obtain the
following system :

(RO)

	

I(x) -->c*x,
(R1) x+O-*x,
(R2') x + (c*x) --~ 0,
(R2") 1+c-->0,
(R4') c*c-> 1,
(R6) x*(y+z)-+(x*y)+(x*z),
(R7)

	

x*0->0,
(R9)

	

x* 1-> x .

Termination of this equational rewriting system can be proved using the associative path
ordering corresponding to the precedence ordering >, with I > * > +, I > c > 0, and
c>1 .

EXAMPLE 11 . Let us consider the standard confluent equational term rewriting system R
for associative-commutative rings again . We cannot use an associative path ordering since
the AC operator * has to be greater than both I and +, which violates the associative
path condition . One way to deal with this situation is to consider the operators I and +
as being equivalent . That is, we preprocess R by introducing a new operator f that
replaces both I and + . Let R' denote the resulting rewriting system, AC denote the AC
theory corresponding to the new set of operator symbols, assuming f is an AC operator,
and let t' denote the term resulting from t by replacing all occurrences of I and +
byf. Then s-AC t implies s'-AC 't' and s-+R t implies s'->R ,t' . Therefore, for any infinite
sequence of terms t1_4R/ACt24R/ACt3 . . . there is an infinite sequence of terms
ti->R'/AC-t'2-->R'/AC-t3 , • • . Thus AC'-termination of R' implies AC-termination of R . For
our example we get the following set of rules R' :

(R 1') J'(x, 0) -> x,
(R2') f(x,f(x)) -> 0,
(R3') f(0)-+ 0,
(R4') f(f(x)) - x,
(R5') f(f(x, y))-'f(f(x),f(y)),



Rules (RI'), (R3'), (R4'), (R7') and (R9') can be ordered correctly by the subterm
property, (R2') if 0 is minimal among all constants, that is, if 1 > 0 . Rules (R6') and (R8')
are distributivity rules for * > f. Finally, in (R5') both terms are transformed to f(x, y),
but they may be ordered by inverse of size . The resulting precedence ordering satisfies the
associative path condition. This proves that R'/AC and therefore R/AC is terminating.

The technique outlined in the last example is applicable in general, subject to the
restriction that any newly introduced operator f that replaces an AC operator has to be
an AC operator too . The new operator f may be of variable arity, as in the example
above. In general, if FD denotes the set of operators that occur in one of the distributivity
rules in D, then FAC must be a subset of FD in order to ensure that the corresponding
associative path ordering is compatible with AC. But FD may also contain other operators
that are not in FAC .

9. Summary

We have introduced a class of termination orderings for associative-commutative term
rewriting systems, called associative path orderings, that are based on the idea of
transforming terms . Associative path orderings extend the well-known recursive path
orderings and provide a conceptually simpler alternative to polynomial interpretations .
They may be applied in any context in which a precedence ordering that satisfies a certain
condition, the associative path condition, can be specified . The precedence ordering can
often be derived from the structure of the reduction rules. We have shown how to
compare non-ground terms in this ordering and have demonstrated the usefulness of the
ordering with a number of examples . In addition, we pointed out ways to deal with
situations where the associative path condition is too restrictive .

We believe that our approach of using transforms for termination orderings is also
applicable to equational theories other than associativity-commutativity . Transforms
should also be applicable in connection with orderings other than the recursive path
ordering: the recursive decomposition ordering or a semantic path ordering, for instance .
For example, if we include an associativity rule in R rather than in E, this rule cannot be
ordered using a recursive path ordering, although it can be ordered using the
lexicographic path ordering of Kamin & Levy (1980) . Some of these problems are
explored in Bachmair & Dershowitz (1985) .

We would like to thank Nachum Dershowitz for his valuable suggestions and are also thankful to
the referees for their comments .
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