
JOURNAL OF 
PURE AND 
APFLlED ALGEBRA 

ELSXER Journal of Pure and Applied Algebra 96 (1994) 97- 112 

Some factorization properties of Gull domains with infinite 
cyclic divisor class group 

David F. AndersorP*, Scott T. Chapmanb.‘, William W. Smith’ 

a Depurrtttenr qf‘ Mu~hettturic.~. TIIP Unirersit~~ q f Tentte.s.w~. Ktto.rtdk. TN 37996. L’SA 
bDeparnttett~ ctf Maihenta~ic~. TI ittiy C’nkersi~v. 715 Sktdiuttt Drive. Sutt Attrottio. TX. 78212-72011. C’SA 
cDepurmen~ of Muthettturirs. The Cbtiwrsir~~ ctf Xorrh Curolinu UI Chupd Hill, Chupel .Hiit. 

WC 27599-3250, C’SA 

Communicated by C.A. Weibel: received 19 October 1992; revised 3 Juiy 1993 

Abstract 

In this paper, we study factorization properties of Krull domains with divisor ctass group Z. 

This continues a preliminary study of Dedekind domains with class group Z in Section IV of 

f73. In Section 1, using the @-function we introduce the notion of a G-finite domain and then 

determine the relationship between these domains and BFDs and RBFDs (see [l]). in 
particular, we show that a G-finite domain need not be an RBFD. In Section 2, we obtain 

necessary and sufficient conditions on the set S of divisor classes of D which contain height-one 
prime ideals so that D is @-finite. This leads to the following result: if D is a Kruil domain with 

divisor class group Z, then D is Q-finite if and only if D is an RBFD. We also find a bound for 
the elasticity, p(D), of the domain D and show in Section 3 that, unlike the case where the divisor 

class group of D is finite, the elasticity of D may not be “attained” by the factorization of a singfe 
element. 

0. Introduction 

The study of unique factorization domains (UFDs) has been a central area of 
research in several branches of algebra. Gnly recently has much attention centered on 
the factorization properties of integral domains which fail to satisfy the unique 
factorization condition. Many of the simplest examples of integral domains which fail 
to be UFDs are rings of algebraic integers. For this reason, it is not surprising that 
much recent research in this area has centered on the study of Gull (and hence 
Dedekind) domains. The papers [l-3,6-9] study factorization properties of Krull (or 
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Dedekind) domains D where the divisor class group of D is finite or torsion. In this 
paper, we study factorization properties of Kruli domains with divisor class group Z. 
This continues a preliminary study of Dedekind domains with divisor class group 
h which appeared in Section IV of [7]. 

After some preliminary definitions, this paper is divided into three sections. In 
Section 1, using the @-function (studied in the papers [6-91) we introduce the notion 
of a Q-finite domain and then determine the relationship between these domains and 
bounded factorization domains (BFDs) and rationally bounded factorization do- 
mains (RBFDs) studied in [I] and [4]. In particular, we show that a Q-finite domain 
need not be an RBFD. In Section 2, we show that factorization properties of Krull 
domains with divisor class group Z are dependent (as in the finite divisor class group 
case) on the distribution of height-one prime ideals in the divisor class group. For such 
a Krull domain D we obtain necessary and sufficient conditions on the set S of divisor 
classes of D which contain height-one prime ideals so that D is @-finite. This leads to 
the following result: if D is a Krull domain with divisor class group Z, then D is 
G-finite if and only if D is an RBFD. We also find a bound for the elasticity, p(D), of the 
domain D (see [l-3,9, 16, 171) and show in Section 3 that, unlike the case where the 
divisor class group of D is finite, the elasticity of D may not be “attained” by the 
factorization of a single element. 

We will use the standard notation and definitions of [l-9] throughout this paper. 
Let Z!, Z+, [w, and [w+ represent the integers, the nonnegative integers, the real 
numbers, and the nonnegative real numbers, respectively. Let D be an atomic domain 
(i.e. every nonzero nonunit of D can be written as a product of irreducible elements of 
D) and let D* represent the set of nonzero elements of D. Then D is a Izalfifactorial 
domain (HFD) if for any irreducible elements x1 . . . ,Q,, fil, . . . ,/$ of D, the equality 
Z. .-.cy, = /?I .../$ implies that s = t( see [4, 6, 7, 15, 18-j). D is a bounded factorization 
dkzain (BFD) if for each nonzero nonunit x ED there is a positive integer n such that if 
_Y = CXI ... x, with each Cli irreducible in D, then IU I n. Krull and Noetherian domains 
are two classes of domains which satisfy the BFD condition (see [4]). If .Y is a nonzero 
nonunit of D, then set 

p&u) = sup {m/n1 there are irreducibles xl, . . . , cx,,, /II,. . . ,fim of D 

such that x = 3~~ -S-Z,, = ,!?1 .../Im), 

and 

p(D) = sup(p&)~x is a nonzero nonunit of D>. 

p(D)is called the elasticity of D and is studied in one form or another in the papers 
[l-3,9, 16, 173. Note that 1 5 p(D) I %x and p(D) = 1 if and only if D is an HFD. D is 
a rationally bounded factorization domain (RBFD) if p(D) < cc. Clearly if D is an 
RBFD, then D is a BFD, but [l] contains many examples which show that the 
converse (even in the Krull domain case) does not hold. In [3], the present authors 



iyith D.D. Anderson showed that if D is a Krull domain with finite divisor class group, 
then 

(i) p(D) = Y -C x for some rational number 1’ 2 1, and 
(ii) there exists a nonzero nonunit XE D such that pn(.u) = I’. 
The papers [6-91 consider factorization problems in Dedekiild domains. While we 

concern ourselves here with the more general Krull domain setting, the proofs for 
factorization properties in the Dedekind domain case extend naturally to Krull 
domains by replacing the unique factorization of a principal ideal as a product of 
maximal ideals in a Dedekind domain by its unique factorization as a v-product of 
height-one prime ideals in a Krull domain. Because of this, we will usually refer to 
height-one prime ideals simply as prime ideals. 

Most of the examples in this paper are given in the Dedekind domain setting and 
hence we will need the following notation and definitions. If for a given abehan group 
G and subset S c G - fOj there exists a Dedekind domain D such that Cl(D) z G and 
S = {YI~EG and y contains a nonprincipal prime ideal of Di, then the pair [G,S) is 
called rea?izah!e. Two Theorem; of Grams [I 3, Corollaries I .6 and I.71 can be used to 
characterize realizable pairs of the form {G, S), where G =I Z’ or G is a torsion abehan 
group. These characterizations are as follows: (i) [Z,St is realizable if and only if 
S generates 22 and S contains both positive and negative elements of Z and, (ii) if G is 
a torsion abehan group, then (G,S) is realizable if and only if S generates G. The 
concept of a realizable pair extends naturally to a Krull domain D, where in this case 
the set S would represent the nonzero divisor classes of D which contain height-one 
prime ideals. Notice the following relationship between two Krull domains with 
similar realizable pairs. Let G be an abelian group and RI and R2 be Krull domains 
with realizable pairs (G, S,; and (G,S,l respectively. If Si c S2, then p(R,) < p(R,j. 

Let G be an abelian group, S a subset of the nonzero elements of G, and F(G) be the 
multiplicative free abelian monoid with basis G. The elements of 9 (G) can be viewed 
as products of the form 

where v&F)E Ef and U,(F) = 0 for almost all go G. Set 

B(G) = {BEF(G)I c o,(B)g = 0;. 
FG 

*g(G) is known as the block semigroup ocer’ G. More generally, set 

5?(S) = {BEGIN, = 0 for CJEG\S). 

Block semigroups have been studied in great detail in [lo, 11, 141. An element 
REP is called irreducible if it cannot be written in the form B = BIB2, where Bi 
and B2 are nonzero blocks of a(S). 

While our interest in factorization problems is rooted in the study of ring theory, 
results about the lengths of factorizations in a Krull domain D with realizable pair 



‘G, Si are combinatorial results about the block semigroup g(S). To see this, let N and H’ 
& (multiplicative) atomic monoids and y a nonunit of H. Set 9(y) = {~IEZ+ 1 there are 
irreducibles yt, . . . , y,, E H such that y = y, . ..y.,i. A surjective homomorphism.f: H --f H’ 
is called length-preserving if L?(y) = Y(.f(y)) for each nonunit y of H. In the obvious 
manner, one can define p(H) and @(H) for an atomic monoid H (see [3]). Iff: H + H’ is 
a length-preserving homomorphism, then clearly p(H) = p(H’) and @(H) = @(H’). Let 
D be a Krull domain with realizable pair {G,Si and XED*. Define x:D* -+ .%9(S) by 

where (_Y) = (P, ... Pk)” for PI . . . , Pk height-one primes of D and [Pi] denotes the 
divisor class of the ideal Pi. By [lo, Proposition I], II is length-preserving. Notice that 
irreducible elements .YE D* correspond to irreducible blocks X(X) in .$9(S). Hence, the 
factorization properties of D are identical to those of .49(S). In particular, 

p(D) = p(D*) = p(B(S)). 

In Section 3, we will generalize the following concept, which is central to the study 
of factorization problems in Dedckind domains with torsion divisor class group. 
Suppose that D is such a domain and that x is a nonzero of D. Then 

where each Pi is a nonprincipal prime ideal of D. If r-ij is the order of [Pi], then set 

. . . + _. 

flk 

In [7] the authors define T(X) to be the Zaks-Skula constant of 2. Notice that if SI and 
p are nonzero nonunits of D, then 9(@) = F(r) + S(b). If D has torsion divisor class 
group, then D is an HFD if and only if T”(X) = I for all irreducibles x in D (see [lSJ, 
[i S] or [lt Corollary 2.41 for a proof ). 

Let D be an atomic integral domain. The study of functi0ns.f: D* + Z+ has proven to 
be valuable in examining factorization problems in Krull domains. Two of these func- 
tions, studied extensively in [S], are defined as follows: if XE D*, then set 
1(x) = inf{rzjx = x1 ... x,,, XiED and irreducible) and L(xj = sup(nl.; = _I~ -.-A,, _XiED 
and irreducible) (if II is a unit of D, then set i(u) = L(u) = 0). Note that p,(x) = L(x)/!(x). 
The Zaks-Skula constant is an exampIe of what is known more generally as a semi-length 
function. A functionf: D* + RI'+ ’ IS a semi-length.function on an integral domain D if (i) 

f(XY) = fW +fb) f or all x,y~ D* and (ii) f(x) = 0 if and only if x is a unit of D. If 
a semi-length function f has inf JJ(x)Ix is irreducible in D> > 0 and supcf(x)lx is 
irreducible in D> c ‘jc , then ,f is called a bounded smi-length function on D. If D is an 
atomic domain with bounded semi-length functionfI then Theorem 2.1 of [1] shows that 

P(D) I 
sup{f(x)lx is irreducible, but not prime, in D) 

inf(f(x)lx is irreducible, but not prime, in Dj . 



In working with abelian groups, we will later need what is known as the Dauengort 

constant of a finite abelian group G. The Davenport constant of G (denoted D(G)) is 
defined as the smallest positive integer n such that for each sequence T c G with 
1 T( = d, some nonempty subsequence of T has sum 0. Notice that for an abelian group 
G, D(G) I IGI. The paper [12] outlines many of the known results concerning the 
Davenport constant of a finite abelian group G. If G 2 Z,,,@ ... @,Z,,‘ is such a group 
written with Mi(ni+ 1 for I _< i 5 k - 1, then it is known that D(G) 2 1 -I- C”= 1 (/Ii - 1). 

Equality holds for a large class of groups (including cyclic groups, groups of rank < 2, 
and p-groups), but not in gene raf (see Theorem 2 in [ 121). The problem of computing 
the Davenport constant for a general finite abelian group is still open. 

Finally, for any positive integer n, set 

r’/(n) = {M 1 there are irreducibles p,, . . . ,/Jm, x1, . . . , CI, of D 

with CI~ ... ,cI,, = p1 ... ant> 
and let 

@(n) = IF-(n)l. 

Q(n) is known as the @-function and has been studied extensively in [6-91. If D is 
a Dedekind domain with finite divisor class group G such that each nonprincipal ideal 
class of D contains a prime ideal, then the main result of [S] indicates that in D 

li,n @i(n) D(G)’ - 4 - = 
n + ‘L n 2D(G) . 

1. @-Finite Domains 

Call an atomic domain D a Q-finite domain if Q(n) < oc for each positive integer 
n (we shall refer to a Q-finite domain D as simply being @,finite). Not all Krull 
domains are Q-finite (see Example 5 in [6] or Theorem 2.1 beiow). We immediately 
deduce the following relationship between domains which are RBFDs and those 
which are @-finite. 

Lemma 1.1. Let D he an RBFD. Then 

@(n)s[p(Dp)(; ‘I.,, 1. 

Hence, fD is an RBFD, then D is Q-finite. 

Proof. The proof is similar to the proof of Corollary 1 in ES] and Theorem 2.1 in [9]. 

Suppose that cll, . . . , CI,,, PI, . . . , pt are irreducible elements of D such that 
Xl .a* LY,, = /?, . ..p.. Then l/p(D) I r/n I p(D), and hence [l/p!D)]-n < t I p(D).n. 

Thus 

W4 I Cp(W nl - Cl/p(D)] - 11 + 1, 



and the inequality in the lemma follows. The second statement cl::arly follows from the 
first. 3 

Hence, by the main result of [3], Krul! (an d thus Dedekind domains with finite 
divisor class group are @-finite. Let I) be an atomic domain and suppose that s is 
a nonzero nonunit of D with irreducible factorization of the form .Y = rl ... x,. If D ;s 

@-finite, then there is a bound on the length of a factorization :c = /jr ... p,, into the 
product of irreducibles (namely, IPI 2 max Y(H)). We can thus drduce the following 
theorem. 

D is a11 RBFD =j D is @finite = D is a BFD. 

Proof. We have already shown that the implications listed above are valid. Since 
a Krull domain is a BFD, Theorem 2.1 will later provide us with an example of a BFD 
which is not @-finite (see Example 5 in [6] for an alternate example). A @-finite 
domain need not be an RBFD, as Example 1.3 will show. Thus none of the above 
implications are reversible. El 

cr.1 =(I,0 ,... ), L‘2.1 =(O,l,O ,--. ). 1.2.2=(0,0.1,0 . . . . ), 1’3.1 =(O,O,O,l,O ,... ). 

iv2 = (0,3,3,0, . . . ), 11’3 = (O,O, 0,7,7.7,0. . . . ), . . . ~ 

be elements of G, and 

s = (Ol.,, 1’2.1, z-2.2, L-3.1, . . . . w2, 11’3, . . . 1. 

Then (G, S) is a realizable pair by [f 31. Let D be a Dedekind domain associated with 
this pair and let {(P;.j};= ,}T=, and IQjf,~~ 1 be prime ideals of D such that the prime 
ideal P;.j comes from the ideal class 0i.j and the prime ideal Qj comes from the ideal 
class rr’? The irreducible blocks of :3(S), along with irreducible elements from D which 
correspond to them, and their Zaks-Skula constants are 

(1) [Pj.i32’ = ~(Xj.;) d/z ~(Xj.~) = 1 forj 2 1, I < i 5.i. 

(2) [Qj12’ = n(fij) with Z?‘(/j’j) = 1 forj 2 2, and 
(3) [Qj] [Pj.,][Pj.l] ... [Pj,J = n(;‘j) with S(yj) = (j + 1)/2’ for j 2 2. 

For a given irreducible < of D, we will refer to the value ofj which appears in its 
irreducible block, as listed above, as the index of c. Since S(yj) -+ 0 as j + x , by 
Corollary 1.7 in [9] we have that p(D) = z. Thus D is not an RBFD. We next argue 
that @(tz) < x for each 11 E Z+. Let 0 = 8, ... 6, be the product of H irreducibles in D. 

Notice that if any of the irreducibles (5,, . . . , 6, are of index 2 11, then the same 
number of irreducibles with this irreducible block appear in any factorization of 0. So 
without loss of generality, assume that all the irreducibles 6,, . . _ . ii, are of index < II. 



Then 1 2 ZZ’“(bi) 2 H/Y ~- ’ for each i, and hence ~?(cS~ ... 6,) = 2’(~3,) + ... + 

$?(i&) I II. So if 6, ... ii,, = 2, ... 2, for irreducibles i,, . . . .ik of D, then 
SY(“(i., ... &j 5 II. Hence 

which implies that k I 2”- I. Thus, with the above assumption G(n) I 2”- ‘, and hence 
D is @-finite. 

The last example suggests the following question. 

Question. Let D be a Krull domain such that the elements of the divisor class group of 
D have bounded order. Does D a @-finite domain imply that D is an RBFD? 

2. On Krull domains with divisor class group Z 

We now consider Krull (and hence Dedekind) domains with divisor class group Z. 
if [Z, St is a realizable pair, then call S hourzcled ahorz if there exists an s E S with s’ I s 
for ail s’ E S. Similarly, call S hourrded he/all: if there exists a t E S with t I t’ for all 
t’ E S. If S is neither bounded above nor bounded below, then we will say that S is not 
hounded. We first have the following theorem. 

Theorem 2.1. Let D he a Krull dmrairl with irreducible pair- [Z, Si such thar S 
hounded. Therl D is nor @-jinite, and hence D is a BFD v&irh is nor an RBFD. 

is rror 

Proof. We again note that by “prime ideal” we mean “height-one prime ideal”. Let n’ 
be the smallest positive element in S and - m, be the largest negative element in S. 
Let 4’ and ri be the positive integers such that LCA4(!r1, nt,) = ql~rl = cl!rrl. If P is 
a prime ideal of class ttl and Q a prime ideal of class - nz,, then [PI”* [IQ]“’ = n(;‘) for 
some irreducible y of D. Now let k 2 2 be any positive integer. Choose nk,-r?tk E S so 
that for LCM(n,, nrk) = Barr, and LCM(rn’, &) = I:~~~z~ we have that q2 > kq, and 
u2 > ktl, (this is possible since S is not bounded). If LCM(n:, :n,:) = IV~X~, 
LCM(m,, nk) = x&, R is a prime ideal of class - I?z~, and T is a prime ideal of clacs I k, 

we have that 

[P]“‘[R]” = x(z) and [Q]“[T]” = z(p) 

for irreducibles x and fi of D. Hence 

( [f’]“2[R]“‘*( [Q]“2 [ T-j”) = ( [PI”’ [Q-J“‘)“. B, 

where B is some block of 9(S). Thus 2 irreducibles factor as at least k irreducibles. Let 
B = z(6). Then k + L(6) E Y(2), and since this argument can be repeated for dny 
integer greater than k + L(6), we have that G(2) = z. 3 



Corobry 2.2. Let D he u Krull domuin with realizable pair {Z, .§I. iJD is an HFD, then 

S is either hounded ahoce or bounded helow. 0 

Making the assumption that the set S is bounded leads us to the following theorem. 

Theorem 2.3. Let D he a Krull domain with realizable pair {Z. S). If S is either hounded 

ahnce or bounded helow, then D is @-finite. 

Proof. We prove the case where S is bounded below. The case where S is bounded 
above follows by using an automorphisn argument (see Lemma 1.9 in [7]). Assume 
that S = i - ml, - in2, . . . , - mk, ill. n2, . . . ] with the elements listed in ascending 
order so that each mi and ni is positive. Set nr = ml. If m = 1, then Theorem 4.9 of [7] 
implies that D is an HFD. Further, if S is al-so bounded above, then p(D) is rational (see 
Theorem 10 in [3]) and the theorem follows from Lemma i.1. So suppose that S is not 
bounded above and 111 i 1. The proof proceeds in three steps. 

Claim 1: Let ;’ be an irreducibIe of D and R a prime ideal of D contained in class 
t > 0 such that rr(j’) = [Z][R]“, where R does not v-divide I. Then there exists 
a positive constant c (which depends only on nr) such that 2: I C. 

Proofqf Claim 1: Set c = m(m + 1)/2. Notice that c 2 /Vrj for each 1 <j < k. Sup- 
pose that 

where 
(1) the prime ideals Pj come from class - i?rj, 
(2) Q is a product of prime ideals taken from positive ideal classes, 
(3) R does not v-divide Q, and 
(4) w > C. 

We first show that each Sj < t. For suppose that some Xj 2 t. Then (P$f(y) and 
(R”J),~(;,) implies that [Pj]‘[R]“J = x(rCp) f or some ,!I E D*, contradicting the irreduci- 
bility of ;‘. Thus Xj < t for each j. 

Now, (2.1) implies that 

i i?lj_Xj 2 Wt. 

j=l 

By the observation that each _Yj < t, we have 

and hence 
k 

lr I C tnnl 5 f i = 
m(m + 1) 

j= 1 i=l 2 
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Clnir~ 2: For any irreducible 7 of D, let 

9Q = (z/z > 0, (7) has a prime v-divisor from class z).. 

Then there exists a positive constant d (which depends only on m) such that 19e;.I < d 
for each irreducible y in D. 

Proof of Claim 2: Suppose that y is an irreducible in D with 

(2.2) 

where 
(1 j each Pi is a prrme ideal taken from class - mi, 
(2) [& RTj] is a product of prime ideals taken from classes between 1 and 

m- 1, 
(3) each ui is distinct and greater than or equal to m, and 
(4) each U’i > 0. 

Notice that (2.2) implies that 

k 1 

C ilaiyi 2 C UjbVk 

i=l j= 1 
We first show that t < m(m + 1)/2. Suppose that t 2 m(m + 1)/2. Let 

(2.3) 

%k=bm+m,+ . +m 
k-1 

+1, ---J4n+r?12+...+m,~- 
Hence 1 W,J = M, for 1 I r I k. Consider ‘%Zm. Recall that the Davenport constant of 
Z, (denoted D(Z,)) is m. Hence there is a subsum of the terms ur, . . . , u, which sums to 
zero module m. SO suppose that tEi, -I- ... + l{iX = z’tn for t’ 2 1. NOW y1 < C, for 
otherwise 

for some /I E D*, contradicting the irreducibility of ;J (note that (/Yl) = (7) implies that 
m = 1, a contradiction). Hence y, .rn < x,?= 1 ui- Repeating the argument mod in2 on 
%:,,, we obtain 

m+t?Q 

y2-m2 < C ui* 
i=m+ 1 

Repeating this argument k - 2 times, we obtain 

i YiY < 

m+m2+ ... +mk f 

1 Uj 5 C Uj”‘j, 

i= 1 j= 1 j= 1 

which contradicts (2.3). So 199,) < (m - 1) + m(m + 1)/2. 



C/aim 3: For each n E Z+, 46(n) < X. 
“roqfqf Claim 3: Let XI ... x, be a product of n irreducibles in D. Each principal 

io al (xi) is v-divisibie by at most CIc positive prime ideals. Thus (x1 ... x,) is v-divisible 
b; at most ndc positive prime idcak. If xr ... x, = j:, ... 13, with each Bi irreducible, 
tk n t I ndc. The proof of the theorem is complete. 0 

d.-‘ombining Theorems 2.1 and 2.3, we obtain the following theorem. 

Th wem 2.4. Let D he G Krull domain with realizable pair -(Z, St. Then the,Jollowing 

saal wents are equivalent. 

(1 I D is an RBFD. 

(2: D is @-jnite. 

(3) S is either bounded above or bounded below (or both). 

Proof. (1) implies (2) by Theorem 1.2, and (2) implies (3) by contradiction using 
Theorem 2.1. We use Claims 1 and 2 in the proof of the previous theorem to show that 
(3) implies (1). We will again assume that S is bounded below, the proof oi the 
assertion if S is bounded above is similar. Suppose that S = ( - l?zr, - m2, . . . , - m,, 

ill, 112, . . . 3, where the integers mi and nj are positive. If ;’ is a nonzero nonunit of D, 

then 

7-4;‘) = m?JX’CQmz3X* ... CQm,lX’ [PJ)” ... [P”JY (2.4) 

where the prime ideal Qnt, comes from class - mj and the prime ideal P, comes from 
class rlj. Set q(y) = x!= 1 JJje It is easy to see that ~p(;‘r;.~) = cp(;lr) + cp(;12). Ciaims 1 and 
2 imply that cp is a bounded semi-length function on D (set q(u) = 0 if u is a unit of II), 
and hence y(D) < ac by Theorem 2.1 of [l]. Thus D is an RBFD. Cl 

Using Theorem 2.1 in [l], we can derive the following upper bound for p(D) for 
a Krull domain with divisor class group Z when D is an RBFD. 

Corollary 2.5. Let D be a Krull domain with realizahie pair (Z, Si, where S G { - m, 
- m+ I,... 1 orSE{ . . . . m - 1, m) for m a positive integer. Then 

p(D) I 
m(m + l)(m2 + 3m - 2) 

4 

Proof. The theorem cited in [l] shows that if cp is a bounded semi-length function on 
D, then 

P(D) 5 
max ( q(y)17 is irreducible, but not prime, in D‘, 

min (cp(;,)l;’ is irreducible, but not prime, in D ‘,’ 

The result follows by applying the bounds c and d derived in Claims 1 and 2 of 
Theorem 2.3. Cl 



% -e end this section with an example which demonstrates how the elasticity of 
a M :ul! domain may behave when its divisor class group is a direct sum of copies of Z. 

Example 2.5. Ler G 2 Z@Z and S = i( - 1.0). (1,O). 42.0). (3.0). . . . . 1 u i(O. - I), 

(0. I), (0,2). (0.3). . . . i. The pair IG, Si is realizable by [13-J. Let L) be a Dedekind 
domain associated to this pais.Now. let P be a prime ideal of class ( - 1,O) and T be 
a prime ideal of class (0, - 1). For each positive integer n, let A, be a prime ideal of 
clas:; (0.n) and 8, a prime ideal of class (n. 0). The only irreducible blocks of .8(S) are 
[7‘3”[.4,] = n(x,) and [P]“[B,J = X(//J for some irreducibles 2,; and I), of n (for each 
n .< Z’). A simple counting argument shows that D is a HFD, and hence p(D) = I. 

Let S’ = S u (( - 1. - I) 1. Again. [G, S’i is realizable; let D’ be a Dedekind domain 
associated to this realizable pair. Let Q be a prime ideal taken from ciass ( - 1. - I ). 

Using the same notation as above, we obtain that the blocks [Q3”[31]“~.4,,3. 

CQI”ChJ I3 Jn3 CQI CW CA J- and CQl”EAJ3~J are all irreducible (for each II E Z + ). 
Let I.. 1 f I,jjizl* jSiiTTf* iii):= *. and I’ be irreducibles of D such that Q”& A, = I;:,). 
Q”B,Aq = (8,). QBr A, = (v), and Q”A,,& = (2,). Hence ;;d, = I.“& in D’, and thus 
p(D’) 2 (IZ + l)/2. Letting II -+ CC. we see that p( D’) = z. Thus. by adding one ;rddi- 
tional element to the set S associated to an HFD. we obtain a new realizable pair and 
an associated Dedekind domain with infinite elasticity. Notice that by Theorem 2.4 
this cannot happen when the divisor class group of D is Z. 

3. On KruH domains where S is an infinite bounded set 

Let D be a Krull domain with realizable pair :Z, Si. Theorem 10 in [3] indicates 
that if S is a finite set, then p(D) is rational and there exists some nonzero nonunit 
_Y E D such that pl,(.u) = p(D). Earlier in Section 2. we showed that if D is either an 
HFD, an RBFD, or @-finite, then S is either bounded above or bounded below. 
Because of these results, we shall center our attention in this section on the case where 
S is an infinite bounded set (i.e., S is either bounded above or bounded below). We will 
consider the following problems: 

(I) If S is an infinite bounded set and D is a Krull domain with realizable pair 
[Z_ Si, then is p(D) rational? 

(11) Moreover, if p(D) is rational, then does p(D) = p&) for some nonzero nonunit 
s of D? 

While we do not completely settle question I, we construct an example which gives 
a negative answer to question II. 

For problems I and 11, we can use an automorphism argument and consider only 
sets S which are bounded below. Thus. let 

s = : - ift,r - 1112. . . . , - I?l,,lZ,,ii_r, . . . f (3.1) 

with each frri, rtj positive. In Theorem 4.1 of [7], the authors determine for the case 
where S is finite and r = 1 when D is an HFD. The Sam2 proof easily extends to the 



case where S is infinite. In this case, let 2 E D*, Ui = order of Iii modulo m,, and set 

where 

n(x) = [Q]“[PI]” ... [PJYk (3.2) 

for Q a prime ideal of class - m, and Pi a prime ideal of class Hi. Then D with 
realizable pair {Z, S) is an HFD if and only if Z,, (SI) = 1 for all irreducibles CI E D. 
One consequence of this characterization is the following: If D is a Krull domain with 
realizable pair (Z, S> and S E { - 1, 1,2,3, . . . >, then D is an HFD (this also follows 
directly from Corollary 2.5). 

In the case where t = 1, we now answer question II in the affirmative. In this case. 
we will construct another Dedekind domain D’ with finite divisor class group such 
that p(D) = p(D’). The following simple observation will be necessary. 

Lemma 3.1. Let D and D’ be atomic integral domains with the property that for any 

set of irreducihles c(~, . . . ,cI,, /?,, . . . ,p,,* ofD such that rl ..3~,, = /I, ... /I,,, there exist 
irreducibies cr’, , . . . , ai,fl’,, . . . ,/I’;, of D’ such that a’, ... aA = B’, ... /3;. Then 

p(D) I p(D’). 0 

Theorem 3.2. Let D be a Krull domain with realizable pair {Z, S>, where S = ( - m, nI, 
n,, . . . >. Then D is an RBFD, p(D) is rational, and there exists a nonzero nonunit x oj 
D such that p.(x) = p(D). 

Proof. Let }I: Z + Z, be the natural map with q(n) = fi for all II E Z. Let 
S’ = rr(S) - (0) = (Ci>~= 1. It. 1s easy to argue that since the set S generates the group Z, 
the set S’ generates Zm. Let D’ be a Dedekind domain associated to the realizable pair 
{Z,, S’}. Throughout this discussion, let Q, PI, P2, . . . be prime ideals of D as in (3.2) 
and R,, . . . , R,&, be prime ideals of D’, where the ideal Ri is taken from the class Ci. 

Let JJ be an irreducible from D’ with irreducible block rc(y) = [RI]” ... [RJrb: 
hence C+“, yici = 0 in &,. Let nj,, . . . , njwbe a fixed sequence of positive integers taken 
from S such that Ci = r?ji. Then ‘,Y+” 1 YiItj, E 0 (mod m). Let 6 E D* with 

~(4 = CQI” n?’ 1 Cp,jly’, w h ere x is the positive integer such that xm = Cy= 1 yinj,. If 
6 were not irreducible in D, then there would exist nonnegative integers x’, y;, . . . ,yi 
(which are not all zero) such that x’ c x, I,: I yi for each 1 I i I w with strict 
inequality for at least one of the y, and I”‘, yi’tlj, z 0 (mod m). This would contradict 
the irreducibility of y in D’. Using the construction above, notice that if 

%x1, *-. 7 a,, 813 -*- Jr are irreducibles in D’ and yl, . . . , yx,bl, . . . ,6, are the correspond- 
ing irreducible elements in D, then a, ... SI, = PI ... /Ir implies that 
“j, . . . yn = c‘i, ... 6,. By Lemma 3.1, p(D’) I p(D). 

We are able to reverse the above construction with some modifications. For D, the 
irreducible blocks of 98(S) arc either of the form [Q]” pI 4x 1 [Pn,J” with ni $0 (mod fn) 



for each i: or of the form [Q-JX[Pn,] with /zi E 0 (mod m). Since in any factorization in 
D into irreducibles of the form x = ;‘r -. yn the number of irreducible blocks of the 
second type is uniquely determined by srmply coun&g the number of prime ideals in 
the v-ideal factorization of(x) in classes which are congruent to 0 modulo yrr, we can 
associate to such irreducibles some fixed irreducibie of D’. Hence, if we have irredu- 
ciblesg, ,... ,;ln.dl ,..., 6,inDwith;r ...;tn=6r ... &, then we are able to construct 
irreducibles rr* . . . ,x”,b,, . . . ,pr of D’ with xl ... 2, = fir ... PI. Again, by Lemma 3.1, 
p(D) I p(D’j. We now conclude p(D) = p(U) and the existence of an _Y in D for which 

p,(x) = p(D). 0 

We can deduce the following special cases from the last theorem. 

Corollary 3.3. Let D be a Krull domain with realizable pair -(Z, S). 
(I) ZfS = ( - 2, n,, 1z2, . . . i, then D is an HFD. 
(2) If IIZ 2 2 and S = f - m, nl, n2, . . . f, then p(D) I nt/2. If n,, II,, . . . ,forms 

a complete set of residues modulo m, then p(D) = m/2. 
(3) !f p 2 2 is prime and S = { - p, n 1, tt2, . . . ), then D is an HFD if and only f 

there is a fixed integer k with 1 I k < p such that each nj is congruent to 0 or k 
modulo p. 

Proof. If D’ is a Dedekind domain (which is not a PID) with finite divisor class group 
G, then p(D’) I D(G)/2, with equality occurring when each nonprincipal ideals class of 
D’ contains a prime ideal (a form of this result appears in [ 161, [17], and as Corollary 
2.3(b) in [ 11). By the proof of Theorem 3.2, p(D) = p(D’) for some Dedekind domain D’ 
with finite divisor class group. For (I), the divisor class group of D’ is Z2, and thus 
p(D) = 1. For (2), D’ has divisor class group Z,. Since D(h,) = m, the result follows. 
Part (3) follows from Corollary 3.3 of [7]. q 

We next present an example which helps contrast elasticity problems in Krull 
domains with finite divisor class group with those of Krull domains with infinite 
divisor class group. We have shown in Theorem 2.1 that a Krull domain with divisor 
class group Z may have infinite elasticity. Our next example shows that if p(D) < x 
for such a domain, then there may not exist an x E D* such that p(D) = pD(x). This 
shows that the t = 2 case is very different from the t = 1 case. 

Example 3.4. Let D be a Dedekind domain with realizable pair (Z, Sl such that 
S = ( - IN, - 1, sl, s2, . . . 1, where the elements m. sl, s2, . . . are positive integers and 
infmitely many of the elements {si>i”= 1 are congruent to 1 modulo llr. We claim that 
p(D) = m, but pD(x) < m for every nonzero nonunit x E D. 

To see this, suppose that ;’ is an irreducible element of D whose irreducible block 

has representation as in (2.4) of the form 

~(7) = [Q,,JX’[Q,]*‘[PJrl ... [PJ’? 



We first show that y1 + ... + _v~ I: t~z. Suppose that I;~ + _t’2 + ... + yk > IYI. Let 
s;, . . . ,.$ be integers such that 0 I .s: < 111 and .$ = Si mod m. Notice that the set 

T;. = [s;, . . . , s;, s;. . . . , s;, . . , s;, . . . , s;; 
-w c J 

y1 times yz times yk times 

contains more than m elements, and since the Davenport constant of Z’, is nr, some 
subset of T;. sums to zero modulo 17:. Hence, there exists nonnegative integers t, 

Y; ,...,J$ withO<$<_v;such that 

j/;.s1 + y;s2 + ... -k l’;sk = rn7 < j’,S, + *.. + I’& 

Thus .y,iTz + _y2 > ~1; sr + ... + _v;s~ = tnz. If’ .Y, 2 t, then there exists a proper divisor 
9 of ;‘, where 

?r(x) = [Q,]‘[PJ’; ... [PJ’L, 

contradicting the fact that ;’ is irreducible. If s1 < t, then set s; = rrn - s,nz. Notice 
that _u; < _y2 and again there exists a proper divisor p of ;‘, where 

n(p) = [Q,]X’[Q,]“i[P,s,]“; ... [PJ’~, 
another contradiction. Hence ;‘r + ... + ~7~ I IFI. Again, as in the proof of Corollary 
2.5, p(D) _< m. To see that p(D) = VZ, let sj be an element of S which is congruent to 
1 modulo M. Write sj = lrzk + 1 for k E Z +. Then 

[ IC k [Q1]“‘k+ I I[ 1 
mk+l 

CQJnk+ ’ CPmk+ I]“’ cPmk+ I] = [Qn,]k[f?,zk+ I] CQII . 

Hence, there exist irreducibles x, /?, and ;’ of D with x”j = ;,“I” ‘. Thus the product of 
k + 1 irreducibles factors as tnk + 1 irreducibles. and hence (mk + l)/(k + 1) I p(D). 
Since there are infinitely many sj which are congruent to 1 modulo IX 

mk + 1 
p(D) 2 lim 

k_7 k+l = iT’. 

Consequently, p(D) = nt. 

To prove the second assertion of the claim we will need the following lemma. 

Lemma 3.5. [f x is irreducible in D wirh 

(x) = Q;‘Qf’ I’;,’ ... Pi; 

trndy, + ... + yk = rn, rherl s2 = 0. Furrlrermore,~for such an x, Si $0 (mod 111) for any 
1 <ilk. 

4 

Proof. We first show that 

L’ISI d- .vzsz + ... + )‘ksk = tin (3.3) 



for SOme t > 0. Suppose that yrsr + ... + yk& # t/n for any f E z+. Again, SOme 

subsum of the elements in T, sums to zero module IX As before, suppose that 

y,‘s* + ... + yk’sk = qi?l 

for q e Z+. if .x1 2 q, then there exists a proper divisor /? of x with 

70) = CQ”JVS,l” ... [PsJ’“, a contradiction. Thus s1 < q and .Y~IU + _y2 > qm. Let 
_u; = qm - xln2. Then there exists a proper divisor ;j of r with 

n(y) = [QJ-” [Q,]“~[PJ”~ -.- [P,J”‘*, 

another contradiction. Thus (3.3) holds. Now suppose that 

is irreducible with yl + ... + yk = 172 and s2 # 0. If ylsl + -.- + yksk = tm, then 
notice that xrlyl + .y2 = tm implies that x2 = m(t - x1) and hence .y2 2 122. Now, T, has 
exactly m elements; suppose T, = [9;~2 + Vi)?= 2, where each 0 I ri < 112. Then 

Since x2 2 m, each ti > xl; for if not, then for some .u; I _yl and _u; < .y2 we would 

have 

Xi272 + _U; = tjm + Yj. 

Hence, there exists a divisor /I of x with rr(fi) = [Q,J’; [QI]“;[PsJ] (for some 
I I j I nt) which contradicts the irreducibility of x. Now, choose any i with 1 I i I 112. 

For _u; = (tin2 + ri) - x,m we have that _xlrn + s ; = tim + ri and there exists another 
divisor 6 of z with ~(6) = [QJX1[Q1]“;[PS,], a g ain contradicting the irreducibility of 
CI. Thus x2 = 0. 

Now, suppose that z(z) = [Q,JX’ [P,~,]” ... [PSJk is irreducible with sj E 0 
(mod m) for some 1 <j < k and yr + .-. -t- yk = tn. If Sj = w?2, then nOtiCe that 
x,m 2 wm. Hence, [Qm]*[Psj] is an irreducible block in %7(S) and there exists an 
irreducible /3 of D with rr(fi) = [QmlWIPs,] which divides x. This contradicts the 
irreducibility of C.Y. Thus sj $0 (mod 2~2) for each j, and the proof of the lemma is 

complete. q 

We now show that pD(x) # 111 for any x in D. Suppose that p&) = 172 for some s, 
where the prime ideal factorization of _Y is given by (x) = Qz Q;* Pz; ... P:;. Using 
the semi-length function discussed earlier, we have 

Therefore, pa(x) = f.(.u)/l(x) = 112 implies for this s that /(.u) = t(y, + -.. + yk) and 

L(x) = yl + .-a + yk. However, 1(-u) = &(y, + ... f yk) occurs only when 
_Y = X(1 ... qx), where each of the Xi’s is of the form discribed in the preceding lemma. 



112 D.F. Anderson et nl./J~urt~ul cf Pure und Applied Algebra 96 (19941 97- ii2 

On the other hand, L(x) = y, + ... + yk occurs only when x = PI ... pLCXl, where 
each of the Bj’S is of the form Qnt x~Psj. In the first case, Lemma 3.5 implies that Sj $0 
(mod m) for allj. In the second case, we have Sj E 0 (mod m) for all j. Therefore, such an 
x cannot exist. 
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