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Abstract

In this paper, we study factorization properties of Krull domains with divisor class group Z.
This continues a preliminary study of Dedekind domains with class group Z in Section 1V of
[7]. In Section 1, using the ®-function we introduce the notion of a P-finite domain and then
determine the relationship between these domains and BFDs and RBFDs (see {1]). In
particular, we show that a &-finite domain need not be an RBFD. In Section 2, we obtain
necessary and sufficient conditions on the set S of divisor classes of D which contain height-one
prime ideals so that D is ®-finite. This leads to the following result: if D is a Krull domain with
divisor class group Z, then D is &-finite if and only if D is an RBFD. We also find a bound for
the elasticity, p(D). of the domain D and show in Section 3 that. uniike the case where the divisor
ciass group of D is finite, the elasticity of D may not be “attained” by the factorization of a single
element.

0. Intreduction

The study of unique factorization domains (UFDs) has been a central area of
research in several branches of algebra. Cnly recently has much attention centered on
the factorization properties of integral domains which fail to satisfy the unique
factorization condition. Many of the simplest examples of integral domains which fail
to be UFDs are rings of algebraic integers. For this reason, it is not surprising that
much recent research in this area has centered on the study of Krull {(and hence
Dedekind) domains. The papers [ 1-3, 6-9] study factorization properties of Krull (or
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Dedekind) domains D where the divisor class group of D is finite or torsion. In this
paper, we study factorization properties of Krull domains with divisor class group Z.
This continues a preliminary study of Dedekind domains with divisor class group
Z which appeared in Section IV of [7].

After some preliminary definitions, this paper is divided into three sections. In
Section 1, using the @-function (studied in the papers [6-9]) we introduce the notion
of a @-finite domain and then determine the relationship between these domains and
bounded factorization domains (BFDs) and rationally bounded factorization do-
mains (RBFDs) studied in [ 1] and [4]. In particular, we show that a @-finite domain
need not be an RBFD. In Section 2, we show that factorization properties of Krull
domains with divisor class group Z are dependent (as in the finite divisor class group
casej on the distribution of height-one prime ideals in the divisor class group. For such
a Krull domain D we obtain necessary and sufficient conditions on the set S of divisor
classes of D which contain height-one prime ideals so that D is ®-finite. This leads to
the following result: if D is a Krull domain with divisor class group Z, then D is
@-finite if and only if D is an RBFD. We also find a bound for the elasticity, p(D), of the
domain D (see [1-3, 9, 16, 17]) and show in Section 3 that, unlike the case where the
divisor class group of D is finite, the elasticity of D may not be “attained” by the
factorization of a single element.

We will use the standard notation and definitions of [1-97 throughout this paper.
Let Z, Z*, R, and R™ represent the integers, the nonnegative integers, the real
numbers, and the nonnegative real numbers, respectively. Let D be an atomic domain
(1.e. every nonzero nonunit of D can be written as a product of irreducible elemenis of
D) and let D* represent the set of nonzero elements of D. Then D is a half-factorial
domain (HFD) if for any irreducible elements %, ..., o, B, ..., B, of D, the aquality
oy -2 = fiy - B, implies that s = t (see [4, 6, 7, 15, 18]). D is a bounded factorization
domain (BFD) if for each nonzero nonunit x € D there is a positive integer n such that if
x = oy --- o, with each o; irreducible in D, then m < n. Krull and Noetherian domains
are two classes of domains which satisfy the BFD condition (see [4]). If x is a nonzero
nonunit of D, then set

pp(x) = sup {m/n|there are irreducibles oy, ..., %, B1,...,Bn of D
such that x = oy -2, = B, -+ B}

and
p(D) = sup{pp(x)|x is a nonzero nonunit of D}.

p(D)is called the elasticity of D and is studied in one form or another in the papers
[1-3,9, 16, 17]. Note that 1 < p(D) < o and p(D) = 1 if and only if D is an HFD. D is
a rationally bounded factorization domain (RBFD) if p(D) < oc. Clearly if D is an
RBFD, then D is a BFD, but [1] contains many examples which show that the
converse (even in the Krull domain case) does not hold. In [3], the present authors
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with D.D. Anderson showed that i D is a Krull domain with finite divisor class group,
then

(i) p(D}=r < oc for some rational number r > 1, and

(i1) there exists a nonzero nonunit x€ D such that ppy(x) = r.

The papers [6-9] consider factorization problems in Dedekind domains. While we
concern ourselves here with the more general Krull domain setting, the proofs for
factorization properties in the Dedekind domain case extend naturally to Krull
domains by replacing the unique factorization of a principal ideal as a product of
maximal ideals in a Dedekind domain by its unique factorization as a v-product of
height-one prime ideals in a Krull domain. Because of this, we will usually refer to
height-one prime ideals simply as prime ideals.

Most of the examples in this paper are given in the Dedekind domain setting and
hence we will need the following notation and definitions. If for a given abelian group
G and subset S © G — {0} there exists a Dedekind domain D such that CI(D) = G and
S = {glye G and ¢ contains a nonprincipal prime ideal of D}, then the pair {G,S} is
called realizable. Two Theorems of Grams [ 13, Corollaries 1.6 and 1.7] can be used to
characterize realizable pairs of the form {G, S}, where G = Z or G is a torsion abelian
group. These characterizations are as follows: (i) {Z,S! is realizable if and only if
S generates Z and S contains both positive and negative elements of Z and, (ii) if G is
a torsion abelian group, then {G,S} is realizable if and only if S generates G. The
concept of a realizable pair extends naturally to a Krull domain D, where in this case
the set S would represent the nonzero divisor classes of D which contain height-one
prime ideals. Notice the following relationship between two Krull domains with
similar realizable pairs. Let G be an abelian group and R, and R, be Krull domains
with realizable pairs {G,S;} and {G.S,} respectively. If S, = S,, then p(R,) < p(R,).

Let G be an abelian group, S a subset of the nonzero elements of G, and . (G) be the
multiplicative free abelian monoid with basis G. The elements of # (G) can be viewed
as products of the form

F = n gt'g(l")’

geG

where vy (F)eZ" and v(F) = 0 for almost all g€ G. Set

B(G) = {BEF (G)| Y. v,(B)g = 0}.

geG

2(G) is known as the block semigroup over G. More generally, set
AB(S) = {Be B(G)|v(B) = 0 for ge G\S}.

Block semigroups have been studied in great detail in {10, 11, 14]. An element
Be %(S) is called irreducible if it cannot be written in the form B = B,B,, where B;
and B, are nonzero blocks of #(S).

While our interest in factorization problems is rooted in the study of ring theory,
results about the lengths of faciorizations in a Krull domain D with realizable pair
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{G, S} are combinatorial results about the block semigroup #(S). To see this, let H and H'
be (multiplicative) atomic monoids and y a nonunit of H. Set £(y) = {neZ*| there are
irreducibles y,, ..., y,€ H such that y = y, --- y,,|. A surjective homomorphism f: H - H'
is called length-preserving if Z(y) = £ (f(y)) for each nonunit y of H. In the obvious
manner, one can define p(H) and ®(H) for an atomic monoid H (see [3]). If /: H - H' is
a length-preserving homomorphism, then clearly p(H) = p(H') and ®(H) = ®(H'). Let
D be a Krull domain with realizable pair {G,S} and xe D*. Define n: D* — 2(S) by

n(x) = [Pi]-- [Py,

where (x) = (P, --- P), for P, ..., P, height-one primes of D and [P;] denotes the
divisor class of the ideal P;. By [ 10, Proposition 1],  is length-preserving. Notice that
irreducible elements x e D* correspond to irreducible blocks n(x) in %(S). Hence, the
factorization properties of D are identical to those of #(S). In particular,
p(D) = p(D*) = p(H(S)).

In Section 3, we will generalize the following concept, which is central to the study
of factorization problems in Dedckind domains with torsion divisor class group.
Suppose that D is such a domain and that x is a nonzero of D. Then

n(x) = [Pl]m' o [P ]™,
where each P; is a nonprincipal prime ideal of D. If i; is the order of [P;], then set

) m; my m,
Foy="2p 224 D
ny ny Ry

In [7] the authors define 2 (%) to be the Zaks-Skula constant of o. Notice that if z and
p are nonzero nonunits of D, then & (xf) = Z(x) + Z(p). If D has torsion divisor class
group, then D is an HFD if and orly if Z/(a) = 1 for all irreducibles « in D (see [15],
[18] or [1, Corollary 2.6] for a proof).

Let D be an atomic integral domain. The study of functions f: D* — Z* has proven to
be valuable in examining factorization problems in Krull domains. Two of these func-
tions, studied extensively in [5], are defined as follows: if xeD* then set
l(x) = inf{n{x = x; --- x,,, x;€ D and irreducible} and L{x) = sup{n|x = x;--- x,, ;€D
and irreducible} (if u is a unit of D, then set I(u) = L(u) = 0). Note that py(x) = L(x)/l(x).
The Zaks-Skula constant is an example of what is known more generally as a semi-length
function. A function f: D* > R* is a semi-length function on an integral domain D if (i)
Jxy)=f(x) + f(y) for all x,yeD* and (i) f(x) = 0 if and only if x is a unit of D. If
a semi-length function f has inf {f(x)|x is irreducible in D} >0 and sup{f(x)|x is
irreducible in D} < o«c, then f'is called a bounded semi-length function on D. If D is an
atomic domain with bounded semi-length function f, then Theorem 2.1 of [ 1] shows that

(D) < sup{ f(x)|x is irreducible, but not prime, in D}‘
~ inf{ f(x)|x is irreducible, but not prime, in D}
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In working with abelian groups, we will later need what is known as the Davenport
constant of a finite abelian group G. The Davenport constant of G (denoted D(G)) is
defined as the smallest positive integer d such that for each sequence 7 < G with
| 7| = d, some nonempty subsequence of 7 has sum 0. Notice that for an abelian group
G, D(G) < |G|. The paper [12] outlines many of the known results concerning the
Davenport constant of a finite abelian group G. f G = Z, ® --- ®Z,,_is such a group
written with n;|n; ., for I <i <k — 1, then it is known that D(G) > 1 + Y 5., (n; — 1).
Equality holds for a large class of groups (including cyclic groups, groups of rank < 2,
and p-groups), but not in generzal {sce Theorem 2 in [12]). The problem of computing
the Davenport constant for a general finite abelian group is still open.

Finally, for any positive integer n, set

¥ (n) = {m|there are irreducibles f,, ..., fp. %, ..., %, of D

Wlth Otl e aan = B] e /}m}
and let

@) = [V (n)].

&(n) is known as the @-function and has been studied extensively in [6-9]. If D is
a Dedekind domain with finite divisor class group G such that each nonprincipal ideal
class of D contains a prime ideal, then the main result of [8] indicates that in D

®(n) _D(G)* — 4
n 2D(G)

lim

n—uw

1. &@-Finite Domains

Call an atomic domain D a @-finite domain if ¢(n) < o« for each positive integer
n (we shall refer to a @-finite domain D as simply being @-finite). Not all Krull
domains are @-finite (see Example 5 in [6] or Theorem 2.1 below). We immediately
deduce the following relationship between domains which are RBFDs and those
which are @-finite.

Lemma 1.1. Let D be an RBFD. Then

2
d(n) < [ﬂ(%)(%]-wr 1.

Hence, if D is an RBFD, then D is ®-finite.

Proof. The proof is similar to the proof of Corollary 1 in [8] and Theorem 2.1 in [9].
Suppose that ay,...,a, fBy,....0 are irreducible elements of D such that
%y %, = Py fi. Then 1/p(D) < t/n < p(D), and hence [1/p'D)]-n <t < p(D)-n.
Thus

&(n) < [p(D)-n] — [1/p(D)]*n + 1,
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and the irequality in the lemma follows. The second statement clzarly follows from the
first. ]

Hence, by the main result of [3], Krull {and thus Dedekind. domains with finite
divisor class group are @-finite. Let D be an atomic domain and suppose that x is
a nonzero nonunit of D with irreducible factorization of the forry x = %, --- %,. If D s
¢-finite, then there is a bound on the length of a factorization © = f8, --- f,, into the
product of irreducibles (namely, m < max 77(n)). We can thus deduce the following
theorem.

Theorem 1.2. Let D be an atomic integral domain. The following implications, and no
others, hold:

Disan RBFD = D s ®-finite = Disa BFD.

Proof. We have already shown that the implications listed above are valid. Since
a Krull domain is a BFD, Theorem 2.1 will later provide us with an example of a BFD
which is not @-finite (see Example 5 in [6] for an alternate example). A @-finite
domain need not be an RBFD, as Example 1.3 will show. Thus none of the above
implications are reversible. [

Example 1.3. Let G =7, ®Z,@ Z,® Zs®Zs®Zs® --- =Y., (Y., Z,).

( ), Us g =(0,],0,...), 172.2 :(0,0.1,0....), Uz Z(O,O,O, 1.0,...).
nz—(03 30 ) w3 =1(0,0,0,7.7.7.0....),

be elements of G, and

— I . . . N . }
S = Wi 21022, 03,4500, Wo, Wy, Lo 5

Then |G, S} is a realizable pair by [12]. Let D be a Dedekind domain associated with
this pair and let {{P; ;}5-,}/~, and {Q;} /-, be prime ideals of D such that the prime
ideal P; j comes from the ideal class v; ; and the prime ideal ¢; comes from the ideal
class w;. The irreducible blocks of #(S), along with irreducible elements from D which
correspond to them, and their Zaks-Skula constants are

(1) [P;.% = n(x.;) with Z;)=1lforj=11<i<j

(2) [0,1*" = n(B;) with Z(B;) = 1 for j > 2, and

() [Qi1LP;.1ILP; 2] -+~ [P;. ;] = n(y)) with Z(;)) = (j + 1)/2/ for j = 2.
For a given irreducible { of D, we will refer to the value of j which appears in its
irreducible block, as listed above, as the index of . Since Z(; =0 asj- x, by
Corollary 1.7 in [9] we have that p(D) = =. Thus D is not an RBFD. We next argue
that @(n) < =« foreachneZ'. Let 0 = (), -+ 0, be the product of u irreducibles in D.
Notice that lf any of the irreducibles 4, ..., d, are of index > n, then the same
number of irreducibles with this irreducible block appear in any factorization of 0. So
without loss of generality, assume that all the irreducibles d,. ... . d, are of index < n.
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Then 1> Z(5)=>n/2"""' for each i, and hence Z(5, --- 0,)) = Z(3,)+ - +
FOoy<n S if &, --9,=4, - 4, for irreducibles 2,,....7, of D, then
Z(4y -+ 24y < n. Hence
kn ) ; r )
TEa S F)+ o A+ Pl = F(ay - A) < n,
which implies that k < 2" '. Thus, with the above assumption @(n) < 2"~ !, and hence
D is &-finite.

The last exumple suggests the following question.

Question. Let D be a Krull domain such that the elements of the divisor class group of
D have bounded order. Does D a ®-finite domain imply that D is an RBFD?

2. On Krull domains with divisor class group Z

We now consider Krull (and hence Dedekind) domains with divisor class group Z.
If {Z, S} is a realizable pair, then call S bounded above if there exists an s € S withs' < s
for ail 5" € S. Similarly, call S bounded below if there exists a r € S with t < ¢’ for all
t' € S.If S is neither bounded above nor bounded below, then we will say that S is not
bounded. We first have the following theorem.

Theorem 2.1. Let D be a Krull domain with irreducible pair {Z.S} such that S is not
bounded. Then D is not ®-finite, and hence D is a BFD which is not an RBFD.

Proof. We again note that by “prime ideal” we mean “height-one prime ideal”. Let n,
be the smallest positive element in S and — m, be the largest negative element in S.
Let g, and v, be the positive integers such that LCM(n;,m;}) =qn;, = vym;. T P is
a prime ideal of class n, znd Q a prime ideal of class — m,, then [P]" [Q]" = =(;) for
some irreducible y of D. Now let k > 2 be any positive integer. Choose n,,—ny, € S so
that for LCM(n,, m) = g,n,; and LCM(m,, n;) = v, we have that g, > kg, and
v, > kv, (this is possible since S is not bounded). If LCM(n,,:m;) = wm,
LCM(m,, n,) = xn,, R is a prime ideal of class — m,, and T is a prime ideal of class 1,
we have that

[P1"[R]* =n(x) and [Q]*[T] = n(f)

for irreducibles x and f of D. Hence

([PI=[RI"-([Q12[T]Y) = ([P1"[Q]")-B,

where B is some block of Z(S). Thus 2 irreducibles factor as at least k irreducibies. Let
B = n(d). Then k + L{d) € ¥(2), and since this argument can be repeated for any

integer greater than k + (), we have that #(2) = «. U
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Corollary 2.2. Let I be a Krull domain with realizable pair {Z, S}. If D is an HFD, then
S is either bounded above or bounded below. ]

Making the assumption that the set S is bounded leads us to the following theorem.

‘Theorem 2.3. Let D be a Krull domain with realizable pair {Z. S}. If S is either bounded
above or bounded below, then D is ®-finite.

Proof. We prove the case where S is bounded below. The case where S is bounded
above follows by using an automorphisn argument (see Lemma 1.9 in [7]). Assume
that S = { —my, —my, ..., — my, ny, ny, ...; with the elements listed in ascending
order so that each m; and n; is positive. Set m = m,. If m = 1, then Theorem 4.9 of [7]
implies that D is an HFD. Further, if S is also bounded above. then p(D) is rational (see
Theorem 10 in [3]) and the theorem follows from Lemma 1.1. So suppose that S is not
bounded above and m - 1. The proof proceeds in three steps.

Claim 1: Let 7 be an irreducibie of D and R a prime ideal of D contained in class
t >0 such that a(y) = [I][R]*, where R does not v-divide I. Then there exists
a positive constant ¢ (which depends only on m) such that x < c.

Proof of Claim 1: Set ¢ = m(m + 1)/2. Notice that ¢ > m; for each 1 <j < k. Sup-
pose that

;) = Lr_l [P,-]"f]-[Q] -[RT" @1

where

(1) the prime ideals P; come from class — m;,

(2} @ is a product of prime ideals taken from positive ideal classes,

(3) R does not v-divide @, and

4) w>c
We first show that each x; < t. For suppose that some x; >t. Then (P}, |(y) and
(R™).|(7) implies that [ P;J[R]™ = n(p) for some 8 € D*, contradicting the irreduci-
bility of . Thus x; < t for each j.

Now, (2.1) implies that

M~

Injxj' > wt.
1

j

By the observation that each x; < r, we have

k K
wt< Y myx; < [Z mj]-t,
j= i

j=1 =1

and hence
k

m
w< Z m; < Z i=
j i=1

mim + 1)
i=1 2 .
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Claim 2: For any irreducible y of D, let

R, = {z]z >0, () has a prime v-divisor from class z}.

Then there exists a positive constant d (which depends only on m) such that [#.| < d
for each irreducible y in D.
Proof of Claim 2. Suppose that 7y is an irreducible in D with

k i
) = [H [P.-]-"-][ (1 [Rj]x’][Ru.]“" (R, - [R,J™ 22)
i=1 i=1
where
(1) each P;is a piime ideal taken from class — m;,
(2) [T15-1 R/™] is a preduct of prime ideals taken from classes between 1 and
m— 1,
(3) each u; is distinct and greater than or equal to m, and
(4) each w; > 0.
Notice that (2.2) implies that

t

k
Y myi = Y uw; (2.3)
i=1

i=1

We first show that t < m(m + 1)/2. Suppose that t > m(m + 1)/2. Let
G = {Uy, Usy ... Up)s

—_ 1
(gmz - {um+1’ Uty -en ’um+mz]s

= f }
(gmk_ thm +my + L +m _ + 1 s Umemy v +my §e

Hence |6, | = m, for 1 <r < k. Consider €,,.. Recall that the Davenport constant of
Z,, (denoted D(Z,,)) is m. Hence there is a subsum of the terms u,, ..., u,, which sums to
zero modulo m. So suppose that u; + --- 4+ u; =uvm for t > L. Now y, <, for
otherwise

[P.J[R, ] [R,]=m(p)

for some 8 € D*, contradicting the irreducibility of ; (note that (f) = () implies that
m = 1, a contradiction). Hence y, -m <Y u;. Repeating the argument mod m; on
%m, We obtain

m+m;

Vaehix < Z Uu;.

i=m+1
Repeating this argument k — 2 times, we obtain

mtmat -ty 1

yim; < Y u; < ) uw,

i=1 ji=1 ji=1

which contradicts (2.3). So |#.,| < im — 1) + m(m + 1)/2.

M=

it
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Claim 3: Foreachne Z,, ®(n) < .

Proof of Claim 3: Let a; --- 2, be a product of s irreducibles in D. Each principal
id al(x;) is v-divisible by ai mosi dc positive primc ideals. Thus (z; --- %,) is v-divisible
b: at most ndc positive prime idecals. If %, --- %, = /I, --- 8, with each f; irreducible,
tk nt < ndc. The proof of the theorem is complete. I

-"ombining Theorems 2.1 and 2.3, we obtain the following theorem.

Th orem 24. Let D be « Krull domain with realizable pair {Z, S}. Then the following
stat >ments are equivalent.

(1) D is an RBFD.

(2: D is @-finite.

(3) S is either bounded above or bounded below {or both).

Proof. (1) implies (2) by Theorem 1.2, and (2) implies (3) by contradiction using
Theorem 2.1. We use Claims 1 and 2 in the proof of the previous theorem to show that
(3) implies (i). We will again assume that S is bounded below, the proof o1 the
assertion if S is bounded above is similar. Suppose that S = {—m;, —m,, ..., —m,,
ny, Hy, ...}, where the integers m; and n; are positive. If 7 is a nonzero nonunit of D,
then

17) = [0, 1¥' [Qmy 12 -+~ [Qm ¥ [Pn - [P, P (2.4)

where the prime ideal Q,, comes from class — m; and the prime ideal P,, comes from
class n;. Set o(y) = sz:] y;. Itis easy to see that ¢(;,72) = ¢(;1) + ¢(;2). Claims 1 and
2 imply that ¢ is a bounded semi-length function on D (set ¢(u) = 0 if u is a unit of D),
and hence p(D) < oc by Theorem 2.1 of [1]. Thus D is an RBFD. O

Using Theorem 2.1 in [1], we can derive the following upper bound for p(D) for
a Krull domain with divisor class group Z when D is an RBFD.

Corollary 2.5. Let D be a Krull domain with realizable pair {Z, S}, where S < { — m,
—m+ 1, ... }orSc{..., m— 1, m} for m a positive integer. Then

m(m + 1)(m? + 3m — 2)

pD) < )

Proof. The theorem cited in [1] shows that if ¢ is a bounded semi-length function on
D, then

max { ¢(y)|y is irreducible, but not prime, in D}
~ min {¢(y)|y is irreducible, but not prime, in D}

The result follows by applying the bounds ¢ and d derived in Claims 1 and 2 of
Theorem 2.3. [
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Ve end this section with an example which demonstrates how the elasticity of
a K rull domain may behave when its divisor class group is a direct sum of copies of Z.

Example 2.6. Let G =Z@Z and S = {{ — 1. 0L (1.0).(2.0). (3.0). ... 1 U {0, — 1),
(0. 1).(0,.2).{0.3). ... |. The pair |G, S} is realizable by [13]. Let D be a Dedekind
domain associated to this pair.Now. let P be a prime ideal of class ( — 1.0) and 7T be
a prime ideal of class (0, — 1). For each positive integer n, let 4, be a prime ideal of
class (0. n) and B, a prime ideal of class (n. 0). The only irreducible blocks of .%(S) are
[T} 4,] = n(2,) and [P]"[B,] = n(f,) for some irreducibles x, and f8, of D (for cach
n=7Z"). A simple counting argument shows that D is a HFD, and hence p(D) = 1.

LetS'=Su{(— 1, — 1)}. Again. {G, §'} is realizable; let D' be a Dedekind domain
associated to this realizable pair. Let @ be a prime ideal taken from class ( — 1. — 1).
Using the same notation as above, we obtain that the blocks [Q][B,]1"[A4,].
LO1'[B.1[A1.[Q1[B1[A,]. and [Q]"[ A,1[ B,] are all irreducible (foreachn € Z 7).
Let {7721, {007y, {7:}7-1. and v be irreducibies of D such that 0"B% A4, = (7).
Q"B A% =1(3,). OB,A, =(v), and Q"A,B, = (+,,). Hence 7,0, = v"/, in D', and thus
p(D’) = (n + 1)/2. Letting n —» «. we see that p(D') = . Thus. by adding one addi-
tional element to the set S associated to an HF D, we obtain a new realizable pair and
an associated Dedekind domain with infinite elasticity. Notice that by Theorem 2.4
this cannot happen when the divisor class group of D is Z.

3. On Kruil domains where S is an infinite bounded set

Let D be a Krull domain with realizable pair {Z. S|. Theorem 10 in [3] indicates
that if S is a finite set, then p(D) is rational and there exists some nonzero nonunit
x € D such that py(x) = p(D). Earlier in Section 2. we showed that if D is either an
HFD, an RBFD, or ®-finite, then S is either bounded above or bounded below.
Because of these results, we shall center our attention in this section on the case where
S is an infinite bounded set (i.e., S is either bounded above or bounded below). We will
consider the following problems:

(I) If S is an infinite bounded set and D is a Krull domain with realizable pair

{Z, S}. then is p(D) rational?
(I Moreover, if p(D) is rational, then does p(D) = py(x) for some nonzero nonunit
x of D?
While we do not completely settle question I, we construct an example which gives
a negative answer to question II.

For problems I and 11, we can use an automorphism argument and consider only

sets § which are bounded below. Thus. let

=4 =y, — My ..., — ML (3.1

with each m;, n; positive. In Theorem 4.1 of [7], the authors determine for the case
where S is finite and 1 = 1 when D is an HFD. The same proof easily extends to the
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case where S is infinite. In this case, let « € D*, v; = order of n; modulo m,, and set

Qfml(a) . :‘l + - 4+ L
Uy l/k
where
o) = [QT [P P - [P ] (3.2)

for Q a prime ideal of class — m; and P; a prime ideal of class n. Then D with
realizable pair {Z, S} is an HFD if and only if Z,, (x) = 1 for all irreducibles « € D.
One consequence of this characterization is the following: If D is a Krull domain with
realizable pair {Z, S} and S < { — 1,1,2,3, ... }, then D is an HFD (this also follows
directly from Corollary 2.5).

In the case where t = 1, we now answer question II in the affirmative. In this case,
we will construct another Dedekind domain D’ with finite divisor class group such
that p(D) = p(D’). The following simple observation will be necessary.

Lemma 3.1. Let D and D’ be atomic integral domains with the property that for any
set of irreducibles oy, ... ,0,, B, ..., Bm of D such that oy --- o, = f; --- B, there exist
irreducibles ay,..., 0, B1,....fm of D' such that oy - o, =py - B Then
pD)y < pD’). O

Theorem 3.2. Let D be a Krull domain with realizable pair {Z, S}, where S = { — m, ny,
My, ...}. Then D is an RBFD, p(D) is rational, and there exists a nonzero nonunit x of
D such that p p(x) = p(D).

Proof Let #:Z— Z,, be the natural map with yn)=n for all ne Z. Let
=n(S) — {0} = {c;} = ,. Itis easy to argue that since the set S generates the group Z,
the set S’ generates Z,,,. Let D’ be a Dedekind domain associated to the realizable pair
{Z,,S'}. Throughout this discussion, let @, Py, P,,... be prime ideals of D as in (3.2)
and Ry, ..., R,, be prime ideals of D', where the ideal R; is taken from the class c;.
Let y be an irreducible from D’ with irreducible block #(y) = [R;]"* --- [R, ]
hence ", yic; =0in Z,,. Letn;,, ..., n;_be a fixed sequence of positive integers taken
from S such that ¢;=#;. Then Y, ymn; =0 (modm). Let é € D* with
n(0) = [Q1 [1~, [P, ]" Where x is the positive integer such that xm = ¥ | yn;. If
& were not irreducible in D, then there would exist nonnegative integers x’, yi, ... ,y,
(which are not all zero) such that x' < x, y;<y; for each 1 <i<w with strict
inequality for at least one of the y;, and '}~ ; y;'n; = 0 (mod m). This would contradict
the irreducibility of y in D’. Using the construction above, notice that if
. % Bys ..., B, are irreducibles in D" and vy, ..., 5,04, ..., 9, are the correspond-
ing irreducible elements in D, then oy ---a,=pf, -, implies that
Y1t Yo =0 --- 0,. By Lemma 3.1, p(D’) < p(D).
We are able to reverse the above construction with some modifications. For D, the
irreducible blocks of 2(5) arc either of the form [@1* [1¥_, [P, ] with n; #£0 (mod m)
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for each i, or of the form [QT*[ P, ] with n; = 0 (mod m). Since in any factorization in
D into irreducibles of the form x =7, .- 7, the number of irreducible blocks of the
second type s uniquely determined by simply counuing the number of prime ideals in
the v-ideal factorization of (x) in classes which are congruent to 0 modulo m, we can
associate to such irreducibles some fixed irreducible of D’. Hence, if we have irredu-
ciblesyy, ..., 7m0y, ..., 0, in Dwithy; --- 7, = &, --- J,, then we are able to construct
irreducibles x4, ..., %, By, ..., f, of D' with %, --- 2, = f8; --- B,. Again, by Lemma 3.1,
p(D) < p(D'). We now conclude p(D} = p(D’) and the existence of an x in D for which
pplx) = p(D). 0TI

We can deduce the following special cases from the last theorem.

Corollary 3.3. Let D be a Krull domain with realizable pair {Z, S}.
(1) If S=1{ -2, ny,ny, ...}, then D is an HFD.
) Ifm =22and S={—m, ny, ny, ...}, then p(Dy < m/2. If ny, ny, ... forms
a complete set of residues modulo m, then p(D) = m/2.
(3) If p=2is prime and S ={ — p, ny, n,, ...}, then D is an HFD if and only if
there is a fixed integer k with 1 < k < p such that each n; is congruent to 0 or k
modulo p.

Proof. If D’ is a Dedekind domain (which is not a PID) with finite divisor class group
G, then p(D’) < D(G)/2, with equality occurring when each nonprincipal ideals class of
D’ contains a prime ideal (a form of this result appears in [16], [17], and as Corollary
2.3(b)in [1]). By the proof of Theorem 3.2, p(D) = p(D’) for some Dedekind domain D’
with finite divisor class group. For (1), the divisor class group of D’ is Z,, and thus
p(D) = 1. For (2), D' has divisor class group Z,,. Since D(Z,,) = m, the result follows.
Part (3) follows from Corollary 3.3 of [7]. O

We next present an example which helps contrast elasticity problems in Krull
domains with finite divisor class group with those of Krull domains with infinite
divisor class group. We have shown in Theorem 2.1 that a Krull domain with divisor
class group Z may have infinite elasticity. Our next example shows that if p(D) < «
for such a domain, then there may not exist an x € D* such that p(D) = pp(x). This
shows that the t = 2 case is very different from the 1 = 1 case.

Example 34. Let D be a Dedekind domain with realizable pair {Z, S} such that
S={—-m, —1,sy,s,, ...}, where the elements m, s,, s,, ... are positive integers and
infinitely many of the elements {s;}%, are congruent to 1 modulo m. We claim that
p(D) = m, but pp(x) < m for every nonzero nonunit x € D.

To see this, suppose that 7 is an irreducible element of D whose irreducible block
has representation as in (2.4) of the form

2(7) = (Ol [C1 I[P T - [P T
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We first show that y; + --- + y, < m. Suppose that y; + v, + --- + y, >m. Let
s, ..., s, be integers such that 0 < s; < m and s; = s; mod m. Notice that the set

! i L’ ’ ! [
7. =S, ...u 81,80 .. 82, 0ey Ska oen 2 S
[ )~ J 4 )

v, times ¥, times ¥, times

contains more than m elements, and since the Davenport constant of Z,, is m, some
subset of T, sums to zero modulo ». Hence, there exists nonnegative integers ¢,
Vis---s ¥ with O < yi < v; such that

Visityasa+ o H S =mm < pSs; o 4 WS

Thus x;m + x, > yis; + -+ + s = tm. I x; > ¢, then there exists a proper divisor
o of 7, where

(z) = [Qu' [P, - [Py, T,

contradicting the fact that ; is irreducible. If x; < t, then set x5 = tm — x,;m. Notice
that x, < x, and again there exists a proper divisor f§ of 7, where

a(B) = [Qn]™ [Q:1 12 [P,, ] - [P, T,
another contradiction. Hence y, + --- + y; < m. Again, as in the proof of Corollary
2.5, p(D) < m. To see that p(D) = m, let s; be an element of S which is congruent to
I modulo m. Write s; =mk + 1 for k € Z,. Then

mk + 1

[[Qm]'nk+l[Pn1k+l:Im] [[Ql]nlk+] [Pmk+ l]] = l:[Qm]kEPmk+1] [Ql]:]

Hence, there exist irreducibles «, f, and ; of D with 2*f = ™ *1_ Thus tke product of
k + 1 irreducibles factors as mk + 1 irreducibles. and hence (mk + 1)/(k + 1) < p(D).
Since there are infinitely many s; which are congruent to 1 modulo m,

o omk+ 1
p(D) > hm = m.

= k+1

k— >
Consequently, p(D) = m.

To prove the second assertiocn of the claim we will need the following lemma.

Lemma 3.5. If x is irreducible in D with

(x) = Qy' Qi Py} --- P
andyy + -+ + y, = m, then x, = 0. Furthermore, for such an %, s; #0(mod m) for any
V<i<k
o 3

Proof. We first show that

ViSi + yasz + o0+ NSk = i (3.3)



D.F. Anderson et al./Journal of Pure and Applied Aigebra 96 (1994 $7-112 111

for some ¢ > 0. Suppose that y;s; + --- + w8 # tm for any 1 € Z,. Again, some
subsum of the elements in 7, sums to zero modulo m. As before, suppose that

yi'si+ - + V'S =gm

for gqe Z,. If x,>gq, then there exists a proper divisor f of x with
m(B) = [Qn][P,,T*" --- [Ps 1", acontradiction. Thus x; < gand x;m + x, > gm. Let
x5 = gm — xm. Then there exists a proper divisor 7 of x with

;) = [Qm]™ [Q: T2 [P, 1 - [Py T'x,

another contradiction. Thus (3.3) holds. Now suppose that

m(2) = [Qu] [Q 1P, T -+ [Py I

is irreducible with y; + -+ +y,=m and x, #0. If v;s; + --- + ys, = tm, then
notice that x;m + x, = tmimplies that x, = m(t — x,) and hence x, > m. Now, T, has
exactly m elements; suppose T, = {t;m + r;} -, where each 0 < r; < m. Then

xym4+ x;={tm+r}+ -+ (t, B+ 1)

Since x, > m, each t; > x; for if not, then for some x’ < x; and x’ < x, we would
have

Xym+ x;=t;m+r;.

Hence, there exists a divisor i of x with #(f) = [Qm]"":[Ql}"Z[PSj] (for some
I < j < m) which contradicts the irreducibility of x. Now, choose any i with 1 <i < m.
For x, = (t;m + r;) — xym we have that x,m + x5 = t;m + r; and there exists another
divisor ¢ of o with 7(8) = [ Q,,1'[Q, ]*2[ P,, ], again contradicting the irreducibility of
o. Thus x, = 0.

Mow, suppose that n(x) = [Q, '[P, " --- [P, J** is irreducible with s; =
(mod m) for some 1 <j<k and y, + --- 4+ y, =m. If 5; = wm, then notice that
xym = wim. Hence, [Q,]"[P,,] is an irreducible block in Z(S) and there exists an
irreducible f of D with n(f)=[Q,]"[P,,] which divides « This contradicts the
irreducibility of «. Thus s; £0 (mod m) for each j, and the proof of the lemma is
complete. [

We now show that pp(x) # m for any x in D. Suppose that py(x) = m for some x,
where the prime ideal factorization of x is given by (x) = Q' Q2 P! --- P} Using
the semi-length function discussed earlier, we have

1
E(y‘ + <)< L)<y + o+ W
Therefore, pp(x) = L(x)/l(x) = m implies for this x that I(x) = L(y; + --- + y) and

Lix)=y,+ -+ + y.. However, [(x)=m:(v;+ -~ +y) occurs only when
X = oy --- %y, Where each of the a;’s is of the form discribed in the preceding lemma.
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On the other hand, L(x) =y, + --- + y, occurs only when x = f; --- B, Where
each of the f8;’s is of the form @, /P, . In the first case, Lemma 3.5 implies that s; #0
(mod m) for all j. In the second case, we have s; = 0 (mod m) for all j. Therefore, such an
X cannot exist.
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