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If G is an affine algebraic group over a field F, and M is a finite-dimensional F- 
vector space, then M is a rational G-module if G acts on A4 via a morphism of 

algebraic groups over F: G -%Aut,(M). An infinite-dimensional F-vector space 

M is a rational G-module if it is the union U,M, of finite-dimensional G-stable 

vector spaces M, such that the G-action on each of them is rational. In [S], 

Hochschild developed the foundations of rational cohomology, i.e., cohomology 

H$(G, M) in the category of rational G-modules. The most recent applications of 

rational cohomology (e.g. [4] and [6]) seem to be mainly restricted to groups defined 

over fields of nonzero characteristic. In this paper we will utilize the rational 

cohomology groups of algebraic solvable groups defined over the rational numbers 

Q. Our goal is to prove, for algebraic solvable G and for trivial Q-coefficients, an 

analog (Theorem 2.23) of the following theorem of Mostow [11,8.1] and Van Est 

[11,3.6.1]: 

If G is a connected simply connected real solvable Lie group and D is a discrete 
cocompact subgroup such that Ad,_,(G) and Ad,,K(D) have the same algebraic 
hulls, then the Lie algebra cohomology H*(g,, k?) is isomorphic to the group 
cohomology H*(L), R) (trivial R-coefficients in both cases). 

In our situation, D will be an arithmetic subgroup that is contained and cocom- 

pact in the identity component Gg of the real points of G; we put the requisite con- 

ditions on G to make certain that Gi is contractible (see Section 1). Under our 

assumptions, we will obtain an isomorphism of cohomology rings (Theorem 2.23) 

H*(gQ, Q) ++H*(D, Q). 

As will become clear in Section 2, even though fQ is a ring map, it is perhaps un- 

natural in that it involves choosing an ancillary isomorphism and so might depend 

upon that choice. 

The paper is organized as follows. In Section 1 we list our notational conventions. 
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The beginning of Section 2 is a summary of results from the various cohomology 
theories used, while the rest of the section is devoted to the construction of I, and 
the proof of Theorem 2.23. An example is presented in Section 3; the concluding 
Appendix contains the rather lengthy proof of a result used in proving Theorem 
2.23. 

We would like to thank Jim Stasheff and Gerry Dunn for help with some 
technical questions, and Eric Friedlander and Stewart Priddy for their encourage- 
ment during the early stages of this project. 

1. Notation and conventions 

We follow the notation of [2]. Throughout this paper, G will denote a solvable 
affine algebraic group defined over the rational numbers Q. Since we do not need 
to emphasize the more sophisticated functorial aspects of algebraic groups, we will 
be content to think of G as the zero set of an ideal I, of regular functions defined 
on GL,(C) for some n I 1. We will assume that IG is prime, so that G is an irreduci- 
ble variety. Since we assume G to be defined over Q, IG can be generated by func- 
tions f,, . . . , fp lying in the subring Q[xii, . . . ,x,,, Det-‘I. We define the Q-algebra 
OoQ as follows: 

(1.1) 
*GQ= Qtx11,...,x,,,Det-‘I 

ZGnQ[xl,, . . . . xnn,Det-‘1 . 

Similarly, we set 

eGR = 
R[xll, . . ..x.,,Det-‘1 

ZofllR[x,,,...,x,,,Det-‘1 . 

If A CC is a subring, we set GA = G fl GL,(A). In particular CR is a Lie group; 
we denote its identity component by Gi. It is well known that G=N>a T, when N 
is the maximal connected unipotent normal subgroup of G (it is defined over Q), 
and T is a torus (also defined over Q). NE is connected, and Gi = NR >a Ti. 

G has associated to it a Lie algebra gQ over Q (see [3]); the real Lie algebra 
gR = gQ OQ lR is isomorphic to the real Lie algebra of right-invariant vector fields 
on GR. 

A (discrete) subgroup D c G 13 GL,(Z) is called arithmetic if it is commeasurable 
with G (7 GL,(Q. 

(1.2) We work with the following assumptions on G and D: (i) the torus factor T 
in G= N >a T is Q-anisotropic and R-split (see [3]). This condition implies 
T,=R*x... x IR*, and also that Gg is contractible. 

(ii) D c Gi tl GL,(Z) is arithmetic and cocompact in Gi. D is then strongly poly- 
cyclic (see [14]): D=D,M&- where D,,,=DnN,, D,=DnTi and D,=Zp. 

From [14, Theorem 2.31 and [l], D is then AdgR-ample in Gi (since AdsR is a 
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rational representation of G defined over fR); and so the pair (G&D) satisfies the 
conditions of Mostow’s theorem. If A4 is a finite-dimensional Q-vector space, it is 
a rational G-module or a ,9 GQ-comodule if it is equipped with a Q-linear map 
A,: M+M@, BGQ satisfying the axioms for counit and coassociativity (see [9]). 
If o EM and AM(o) = Ci wj 05, then if dE G, the action of d on u is 
d. u = C;~(d)Wi. We note that if G=N>a T and A4 is a rational N-module, then 
the cohomology groups H;F,,(N, M) and H*(nQ, M) are rational T-modules, and so 
are semisimple T-modules as well as semisimple tQ-modules [8, pp. 510-5111. Finally 
we note that the multiplication G x G -+ G induces a map A : 8,,-+ BGQ OQ BGQ; this 
map A defines the Hopf algebra structure on BGQ. 

2. 

We summarize here some of the basic definitions of rational cohomology (see 
[5]). If V is a Q-vector space with a BG,-comodule structure A “: V-t V&Q 19c,, 
we define the cochain complex 

(2.1) C’(&,V V) 

as follows (unless noted otherwise, all tensoring is over Q): 

where 

a;f(OOfiO...Ofn)=dy(D)OfiO...Ofn, 

ay(vOf,O...Of,>=vOf,O...OA~~...Of,, l<irn, 

a::+,(VOfiO...Ofn)=uOfiO,..OfnOi. 

The rational cohomofogy groups of G with coefficients in V are then the co- 
homology groups of the complex C’(Bo,, V): 

H:,,(G, V) =N”(C’(BGQ, I’)), n ~0. 

H,$(G, V) is the subspace of all u E V such that A V(u) = u@ 1, i.e. 

Hp,,(G, V) = I/‘. 

The E&,(G, V) for i>O are the derived functors of I/-+ I/’ in the category of BG,- 
comodules. 

In particular, if I/= Q with the trivial comodule structure, we have 

co(~G,, Q) = Q, 

C’(~G,~Q)=~G,, 
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We may use the complex C’(Bo,, Q) to define a cup product pairing 

(2.2) &,,(G, M) 0 &,,(G, Q) S #;‘(G, M). 

The pairing is defined at the cochain level as follows: if @ = o@f, @ ... @A.E 

C’(Oo,, M) and v/ =gl @ ... @gj E Cj(9,,, Q), then define 

~UI//=~Ow=VOfiO”.Of,OglO”‘OgjECi+j(BG~,M). 

In the tensor product C*(OGQ,, M)@ C’(Oo,, Q) we have the usual total differential 

d(@ @ I,V) = d@ 0 I,U + (- l)DegU)@ @ dy; 

it is easily checked then that U defines a map of complexes 

c*(eo,, M) 0 c*(eGQ, Q) J+ c*(eo,, M), 

and so from the Kunneth theorem we then have cohomology pairings 

#AC, M) 0 H/&G, Q) -+ #;j(G, M). 

There is a natural evaluation or restriction map from rational cohomology to 

discrete group cohomology. If D c Go is a subgroup of the Q-valued points of G 

(given the discrete topology), and A4 is a rational G-module, then we may consider 

A4 as a D-module. If we denote by C’(D, M) the usual complex of nonhomogeneous 

M-valued cochains on D, we define the restriction map 

(2.3) r,: C*(&,,M)+C’(D,M) 

as follows: if @=u@fi @...@~,ECY(&,,M), then 

r,+.&)(di 9 . . . 9 d,) =fi(d,) . ..f.(d,)u EM. 

This makes sense since f(d) E Q for all f E BGc and d E D. It can be checked that 

r&d@) = d(r,&@)), 

so we have 

(2.4) Lemma. r,$, is a map of complexes; thus for all n20 we have a cohomology 

map 

H:,,(G, M) z H”(D, M). 

The cup product H’(D, M) 0 Hj(D, Q) -% H”j (D,M) is defined at the cochain 

level as follows: if @E C’(D, M) and I,V E d(D, Q), then 

~Uly(dl,...,d;,d;+1,...,d,+j)=W(d;+I,...,d;+j).~(dl,...,d;). 

The following lemma is immediate from the definitions. 
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(2.5) Lemma. r, preserves cup products, i.e., the following diagram commutes 

(where Q-coefficients are trivial coefficients): 

H’(D, M)@ H@, Q) ” -Hi+'@, M) 

The third type of cohomology we consider is the cohomology of gQ-modules, 

where gQ is the Q-Lie algebra of the algebraic group G. In general, if g is a finite- 

dimensional Lie algebra over a field F of characteristic 0, an F-vector space N is 

a g-module if we are given a Lie algebra homomorphism g-End,(M). If M is a 

rational G-module, we may consider A4 to be a g,-module by taking the differen- 

tial of the representation (see [9]). The only gQ-modules we consider will be derived 

from rational representations. 

For convenience we present the following definitions from [lo]. If h is an ideal 

in gQ and if we denote by C’&(l), M) the p-linear alternating functions on h with 

values in M, then we may put a g,-module structure on C’&(l), M) as follows. For 

p=O, C&(&M)=M is already a gQ-module. For p>O, @EC.$,(~,M), and x~g~,, 

we define 

(X.@)(Yl ,...T YJ=x.@(Y, ,...1 YJ-,&#dYl t..., Yi-,,kYil,Yl+, 9...? Y&J. 

The differential in C’.&(l), M) is a g,,-module map: 

d(x . @) = x . (d@). 

The gQ-action on cochains induces a gQ- module structure on the cohomology 

groups H’(& M). It can be shown that I) operates trivially on all H’(b, M). 
If M, N, and P are three g,-modules, a pairing from M and N to P is a Q- 

bilinear map (m, n)+ m U n of M x N into P such that, for all XE gQ, 

x~(mUn)=(x~m)Un+mU(x~n). 

If h is an ideal of gQ, we may then define a pairing of cochains 

U 
(2.6) G’I, (b, Ml 0 C:, (6, NJ - G,, p+4(b, PI. 

If @ E C’,4,(b, M) and w E C’&(b, N), then 

@UW(Yl7...,Yp+q )=nE~ii,_(-1)s”“‘“‘$(Y,,l,....~Y,,,,)Vlu(Y,~,+I)7....Yn(p+q)). 

shuffles 

(A permutation ZE CP+4 is called a (p, q)-shuffle if ~(1) < n(2) < ... < z(p) and 

7r(p+ l)<**. <rr(p+q).) We have 
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(2.7) 
x.(~Uw)=(~.~,)Uy/+~U(~.w), XEt3QY 

d(@ U I+V) = &I U I,V + (- l)DegU)@ U dy/. 

The mechanics of checking the following lemma then follow just 

and discrete group cohomology: 

(2.8) Lemma. The pairing C$,(b, M) @ C&(b, N) -% C$“(fi, P) 
homology pairing 

U 
HP(b,M)OHq(b,N)-HP+q(6,p). 

as for rational 

induces a co- 

From (2.7) we have an induced pairing on the go-annihilated elements 

(2.9) EP(h 9 M)s”@Hq(h, N)gQ J+ EP+q(f), P)gQ. 

If N=Q with trivial gQ-action, and P=M with pairing MxQzM given by 

(u, (Y)+cx. u, we have the usual cup product 

U 
HP(?,M)OHq(b,~$)-HP+q(6,M). 

We are now in a position to use the following theorem of [lo], which we state 

without proof: 

(2.10) Theorem [lo, Theorem 131. Let g be a finite-dimensional Lie algebra over a 
field F of characteristic 0, and let M be a finite-dimensional g-module. Suppose n 

is an ideal g such that g/n = I is semisimple. Then for all n 2 0, 

H”(g, M) = C H’(n, Mg OF H(f, 0, 
i+j=n 

by an isomorphism which is multiplicative for paired modules. 

This last phrase means the following (for more details see [lo, Q6]). A given pair- 

ing of g-modules MX IV-% P induces a cohomology pairing 

H’(g, M) @Hj(g, N) 2 H’+qg, P), i,jrO; 

from (2.10) we then have 

If we take 

(2.11) 

H’(g,M)= c W$WW~OH’(I,F), 
k+l=I 

H'(g,N)= c HP(n,N)g@Hq(f, F). 
p+q=j 

u@uEH’(g,M) and u’@o’EHJ(g,N), then 

(u@u)U(u’~u’)=(-l)‘P(zq u’)@(uUz o’)EH’+qg,P), 
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where 

H*(n, M)g @ H*(n, N)g 2 H*(n, P)a 

are the other pairings used. 

In particular, this gives us a decomposition of the multiplicative structure 

in H*(Q,F), F the trivial g-module: if we consider a~H’(l!, F) as a@ 1 E 

Hi(E,F)@Ho(n,F)a=Hi(t,F)@F, and/3EHj(n,F)gas 1@/3~H’(f,F)@Hj(n,F)~, 
then for the pairing F x Fs F (multiplication in F) we have 

(2.12) (a@ l)U(l @P)=a@PEHi+j(g,F). 

We are now prepared to consider solvable affine algebraic groups G as defined in 

Section 1. We recall that G= N >a T, where the torus T is presumed to be Q- 

anisotropic and R-split. TR is then a direct product of d copies of IR*, and D,=Zd 

is contained in T$. 
Recall from (2.5) that the restriction map rM: H;C,,(G, M) -+ H*(D, M) preserves 

the pairing MxQxA4, (u,a)*au. Since T is a torus, its Lie algebra tQ is 

abelian, so tQ is isomorphic to the Lie algebra of the d-dimensional vector group 

A:. A6 is a unipotent algebraic group; if we denote its Lie algebra by a(d),, then 

from [13] we know that we have an isomorphism of cohomology rings 

H*(a(d),, Q) z H*(@, Q) (trivial Q-coeff.). 

If we then choose an isomorphism of Q-vector spaces a(d)Q ;t t, and an isomor- 

phism of groups D*tiZ’, we have an induced isomorphism of cohomology rings 

(2.13) H*(tQ, Q) *H*(DT, Q). 

Moreover, IQ is then induced by a map at the cochain level since the same is true 

of 9’. If we denote by 7~ the projection D +DT, then composition with TQ induces 

a ring map 

Using the cup product H*(D, M) @ H*(D, Q) xH*(D, M) we then consider the 

composition (which we denote by /,+,) 

(2.14) H;,(G, M) r”@(n*o’Q) p H*(D, M)@ H* 

lM 

To interpret /,+, we require the following two theorems from [8], which we state 

without proof. 
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(2.15) Theorem ([8, Theorem 5.11). Let G be a unipotent algebraic group over a field 
F of characteristic 0, and let A be a rational G-module. There is an isomorphism 
C$ of the rational cohomology group Hz,,(G, A) onto the Lie algebra cohomology 
group H*(g,, A) with the following property: Given any rationality injective resolu- 
tion X’ of the rational G-module A and any U(g,)-injective resolution Y’ of the 
U(g,)-module A, there is a map of X’ regarded as an acyclic U(gr)-complex, into 
Y’, and the cohomology map induced by any such map of complexes coincides with 
the isomorphism 0. 

(2.16) Theorem ([8, Theorem 5.21). Let G be a linear algebraic group over a field 
F of characteristic 0, let N be the maximum unipotent normal subgroup of G, and 
let n,&? be the Lie algebra of N. Let A be a rational G-module. Then H$(G, A) may 
be identified with Hz,,(N, A)G’N, and hence is isomorphic, via the canonical 
isomorphism, with H*(nF, A)G’N. In the case at hand, G/N= T is irreducible, and 

so H*(no, A)r= H*(nQ, A)‘Q. 

We then denote by 

(2.17) X, : H*(no, M)‘” 2 H$(G, M) 

the isomorphism provided by (2.16). From [S, pp. 507-5091, tiM is compatible 

with cup products, so the following diagram commutes: 

H*(nQ, k@ 0 H*(nQ, Q)‘” 2 H*(nQ, A4@ 

(2.18) 1 ‘~&f@re, 

i 

1 .re, 

i 

H,tXG, Ml 0 H:,,(G Q) u H;, (G Ml 

If we note that H*(no, k@ = H*(no, A4)gQ (since H*(no, M)“” = H*(nQ, M)), we 

may replace (2.10) with the following theorem: 

(2.19) Theorem ([8, Theorem 5.31). Let G be an irreducible algebraic linear group 
over a field F of characteristic 0 and let A be a rational G-module. Then there is 

a natural isomorphism for each nr0 

H”(g,, A) = c &,(G, A) OFHJ(gdnF, F). 
i+j=n 

We now have the following. 

(2.20) Theorem. Under the hypotheses on G and D listed in (1.2), we have for each 
finite-dimensional rational G-module M a cohomology map (2.14) 

H*(gO, M) k H*(D, M). 
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The map I,,,, preserves cup products, i.e., the following diagram commutes: 

H*(D,M)@H*(D,Q) 2 H*(D, M) 

where the pairing Mx Q %A4 is scalar multiplication. In particular, IQ is a ring 

map H*(gQ, Q) + H*(D, Q) for trivial Q-coefficients. 

Proof. The only detail that remains to be checked is the commutativity of the 

diagram. If PO~EH:,,(G,~)OH’(~~,~), uO~EH,~,(G,M)OH~(~~,~), we 

have (bearing in mind that all U-products must be understood relative to the ap- 

propriate pairing): 

~~01, 
(uOU)O(POa) F--+(rM(u)U(7r*oZ Q )(u))O(r Q (P)U(rr*oZ Q )(a)> 

+--+ PM(u) U (n * 0 k&41 U [r&O U (n * 0 h#N 

= rdu) U Kh * 0 AQW U r&W U (n * 0 4#)1 

=(-l>ikrm(~)U [(r~(P)u(n*ol~)(u>)U(n*oZ~)(a)l 

= (- lYr,(u)U [~~(P)U((~*~J~)(U)U(~~*O ~&4)1 

=(-l)‘k[~~(~)Ur~(PN U [(n*OZ~)(u)U(n*oI~)(a)l 

= I)&(- l>‘k(u u p> 0 (u u a)) 

= Z,((u 0 u) U (PO a)). 

This completes the proof. We note here that lM depends upon the choice of the 

isomorphism ZQ (see 2.13). 

Before proving anything about IQ, we require several preliminary lemmas for 

unipotent groups. 

(2.21) Lemma. Zf G= N is unipotent and DcN, is cocompact in N,, the restric- 
tion map rO : H$(N, Q) +H*(D, Q) is an isomorphism of rings. 

Proof. As in [13], we do an induction on the length of the refined upper central 

series for D. If D=Z and N=A&, then C’(6,,Q)=Q[x] and Z’(O,,Q) is a one- 

dimensional Q-vector space generated by x. rQ(x) EZ’(&Q) is the cocycle m-m, 
m E z; rQ(x) generates H’(Z, Q). If D is generated by a minimum of k elements, we 

may then assume the theorem proved for Dkp’, where ZC-f+DADkp’ is the last 
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central extension in the refined upper central series for D. Denoting the algebraic 

hull over Q of Dk-’ by Nk-r, we have a commutative diagram 

4I’ ;* 41 
H*(aQ) - H*(D,Q) z H*(Dk- ‘, Q) 

From [13], the rings H*(D, Q) and H*(nQ, Q) are isomorphic and satisfy Poincare 

duality. From Theorem 5.1 of [8], H,*,,(N,Q) is isomorphic to H*(nQ,Q) and so 

satisfies Poincare duality. Since r& is an isomorphism by the induction hypothesis, a 

generator @:at for H,k,; ’ (Nkml, Q) 2: Q maps to a generator @‘E Hk-’ (Dk- ‘, Q) = Q. 
Further, from [13, 4.31 there is an element YE H’(D,Q) such that @= YUn*(@‘) 
generates Hk(D,Q), and i*Y generates H’(Z, Q). Similar assertions are then true 

for 

and so from (2.15) and (2.18) there is an element o E H:JN, Q) such that a*(o) 

generates H&(A&, Q) and o Up*(@&) generates H,k,,(N, Q). Since all the maps are 

multiplicative, we may assume then that Y=r&!(a), so that 

r&!(w)Ur~(/3*(@~at))=r{(oU/?*(@~at))=@#0. 

Thus, r: is an isomorphism on Hk. Since ri is a ring map and both H,*,,(N, Q) and 

H*(D,Q) satisfy Poincare duality, r{ must be an injection; since everything is 

finite-dimensional over Q, ri must be an isomorphism. 

(2.22) Corollary. If G-NM T is algebraic solvable and DN is cocompact in N,, 
r, : H,*,,(G, Q) -+ H*(D, Q) is an injection. 

Proof. From [8, Theorem 5.21 we have H~,,(G,Q)=H~,,(N,Q)r, and we may con- 

sider the natural inclusion H$(G, Q)C H,*,,(N, Q) to be induced by N&G. We then 

have a commutative diagram 

H*(D, 0) -ff*(D,v, 0) 

Since the composite of the upper horizontal map with the restriction from N to D, 
is an injection, restriction from G to D must be an injection. 

We are now prepared to prove our main theorem. 
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(2.23) Theorem. If G and D satisfy the hypotheses of (1.2), then the map IQ is a 
ring isomorphism IQ : H*(gQ, Q)* H*(D, Q). 

Proof. If we extend scalars to IR, we see that the filtration of C&(g,, IR) that pro- 

duces the Hochschild-Serre spectral sequence for nlR+ gR+ tR is compatible with 

the filtration of the DeRham complex L&(Gg/D) that produces the C” Leray- 

Serre spectral sequence for the bundle (N,/D,)-+ (Gi/D)-u (Ti/Dr) (see [7, 

p. 521). Considering C&(glR, I?) as a complex of right-invariant forms on Gi, it 

descends to a complex of global forms on Gg/D, and so the inclusion C,tl,(gR, R)C 

Q&(Gi/D) induces a map of spectral sequences. From Mostow’s theorem, the 

map on abutments is an isomorphism, and at the &-level we have 

E2pq = HP(tR, Hq(nR, IR)) + HP(D,, Hq(DN, IR)) = l?;q. 

We may consider E:q to be induced from the action of D, on BD, by conjugation 

of (BDN)I ; from [13], then, the D,-module Hq(DN, R) is isomorphic to the D,- 

module Hq(nR, IR) for all qz 0. Thus, I?2pq= HP(DT, Hq(nR, R)). The D,-module 

structure on each Hq(nR, R) is induced from a t9-r,-comodule structure; since T is 

IR-split, the action on Hq(nR, fR) diagonalizes over IR [3, p. 2041. From the Appen- 

dix, then, 

DimlR Hp(DT, Hq(nR, R)) = Dim, HP(tR, Hq(nlR, IR)), all p, q 2 0. 

Thus, Dim, E2pq = Dim, I!?;” for all p, 4 2 0. From [ 10, $71, E2 = E3 = ... = E, . Since 

the map on abutments is an isomorphism and all E.fq are finite-dimensional, we 

must have each map E2pq +,!?fq an isomorphism and & =I?~ = ... =E, in the C” 

Leray-Serre spectral sequence. Comparing the usual Leray-Serre spectral sequence 

(denoted by 8) for singular R-cohomology to the C” Leray-Serre, we have 

= . 
DlmR E2p = Dim, I?;, all p,qLO. 

All ,!?2pq are then finite-dimensional vector spaces, and we must have (since 

Dim,H”(D, W = CP+q=n Dim, l?fq for all n 2 0) I?Z =& = e.. =l?, in the singular 

Leray-Serre spectral sequence. Thus we have a ring isomorphism 

H*(D, R) = H*(D,, @@a H*(DT, IR). 

We now consider the inclusion of the singular Q-cochains on Gg/D into the 

singular I?-cochains: C’(Gi /D, Q) c C’(Gg /D, R). The usual filtration then in- 

duces a map of spectral sequences (which on abutments is just extension of scalars): 

E2pq = HP@,, H’(&, Q)) u HP(D,, Hq(DN, R)) = @” 

(*) 

ff*(Q 0) -0,R * H*(D, R 
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We know that [7, pp. 106-1071: 

Dim, H4(D,,,, Q) = Dim, Hq(D,,,, I?), all qz 0, 

and that since a Q-basis for the &-module H*(D,, Q) gives an R-basis for the D,- 

module H*(D,,,, R) 2: H*(DN, Q) @IQ R, we have 

H*(D,, lRf’= H*(D,, QD’ oQ I?. 

Since the map on abutments in (*) is just extension of scalars (an injection) and 

Dim, Hq(D, Q) = DimR Hq(D, R) is finite for all q? 0, we must have Dim, Eiq = 

Dim, EEq for all p, q r0 and Egq+Egq must be an injection. Thus, all of 

H*(D,,Qf7 must survive to E,, i.e., 

E’*&‘*zH*(D QD’ 2 co NP * 

Since the following square commutes, 

H*(D,Q)L H*(Dn Q) 

1 I 
H*(D, R) L H*(D,, W 

where the vertical injections are extension of scalars and the injectivity of the lower 

z* was established earlier, the upper n* must be an injection. Thus we have 

ET0 = E;‘= H*(DT, Q). 

H*(DN, Qf’ and H*(DT, Q) are then subalgebras of gr H*(D, Q). Using the ring 

structure of E, and I?, and the fact that a map of cohomology spectral sequences 

is multiplicative, we see that knowing 

gr H*(D, R) = (H*(&, QY”’ 0~ R) Om (H*(Dr, Q)OQ R) 
implies 

gr H*(D, Q) = H*(&, Q)“’ 0~ H*(&, Q). 

We already know that H*(D,,Q) is a subalgebra of H*(D,Q); we would like to 

find an algebra map H*(DN,$)D’ +H*(DN, Q) such that composition with the 

natural pullback to H*(D,,CQ) is the identity. 

From (2.22), r,: : H,*,,(G, Q) +H*(D, Q) is an injection, and the composition 

~~~,(G,~)~H~(D,~)~H*(DN,~) 

is an isomorphism of Hrt,(G,Q) onto H*(DN,Qf’: 

H*(D,v, Q)D’ = H*(nQ, QjD’ = ff*(n~, C?jT~ H,*,,(G, Q$). 

The first isomorphism follows from (2.16) and the equality follows from the Zariski 
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density of DT in TR ([I, p. 781). Thus im(rQ) is a subalgebra of H*(D, Q) which 

maps isomorphically onto H*(D,,Qf’ via i*. From this we may deduce that 

H*(L), Q) is isomorphic to H*(D,, QD’ Oo, H*(D,, Q) and that I, is a ring 

isomorphism 

H*(s~, Q) ++ H*(D, Q). 

Remarks. (1) It seems feasible that the construction of lQ could be generalized to 

irreducible solvable G whose torus factors T satisfy: 

T is anisotropic over Q; if, over R, T= T,. T, with T, R-anisotropic and T, R- 

split, require that D,n(T,),= {id} (with D again arithmetic and cocompact in 

G;). 
(Ed), will be compact (a product of copies of S’); since D,n(T,), = (id}, D, 

will still be torsion-free and isomorphic to Z”, where k = dim Td. From Theorem 12 

of [lo], we have the following surjections (tb is the Lie algebre of T,) 

From the same theorem, the relative cohomology ring H*(gQ, t6; Q) is a subalgebra 

of H*(Q~,Q), and we suspect that the following composite might be an isomor- 

phism of rings 

(2) Since we may think of Gi/D as the total space of a smooth bundle over 

Ti/DT with fibre N,/D,, Theorem 2.23 provides a decomposition of H*(Gi/D, Q) 

that resembles the Kunneth decomposition for a product space H*(F x B, Q)= 

H*(F, Q) OQ H*(B, Q). The action of nl(Ti/D,) on H*(NR/D,, Q) is far from 

trivial, however, but Gg/D resembles a product space to the extent that its Q- 

cohomology is the product of the base cohomology with the invariant cohomology 

of the fibre. 

3. An example 

(Throughout this section we drop the Q-subscript and write Q rather than Q~, etc.) 

Let G be the following subgroup of GL,: 

x 3y u 30 

y x v u r 1 with 
x2-3y*=1, 

0 0 2 3w 2*-3w2= 1. 
0 0 w Z 
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D is the following discrete subgroup in GR: 

Gi is contractible, and D is cocompact in GO R. (This example, suggested by E. 

Friedlander and S. Priddy, was constructed by taking the fundamental unit 2+v? 

in the number field Q(v’?) and considering the matrix representation of its operation 

by multiplication on J! 0 a(6).) D is isomorphic to the semidirect product 

(ZOZ) N, (zoz), 
where 

Q has as a Q-basis the following matrices: 

n has (2, W} as a Q-basis, and is abelian; if we denote their duals by {.Z*, W*}, 

we have 

(Xez*)(w)=-3, (Y.z*)(W)=3, 

(X. w*)(z)= -1, (Y. w*)(z)= 1; 

thus X.Z*=-3W*, Y.Z*=3Wy, _X. W*=-Z*, Y. W*=Z*. Since n is abelian, 

H’(n, Q) = Hom,(n, Q); the latter has Q-basis {Z*, W*>, and it is easily shown that 

H’(n,Q)‘=O. 

H’(n, Q) = Q is spanned by Z*A W*; a simple calculation shows that 

X.(Z”AW”)= Y. (z*Aw*)=o, 

thus, 

H2(n, Q)‘= Q. 

So we have (in the only possible non-trivial dimensions): 

@(n,Q)‘=&(G,Q)=Q, 

ff’(n, Q)‘=f&(G Q)= 0, 

ff2(n, Q)’ = ff,$ (G, Q) = Q. 
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Since t is two-dimensional abelian, @Q, Q) = Q, H’(t, Q) = Q @ Q and is spann- 
ed by {X*, Y*>, N2(t, Q)-Q and is spanned by X*r\Y*. From (2.23) we then have 

ffO(Q, (9) = (4, 

H’(g, (9) = U2 0 Q, spanned by lx*, Y*>, 

H2(g, UJ)-UJ@lJ, spanned by {X*r\Y*, Z*/\W*}, 

H3(g,Q)=Q@Q, spanned by (Z*AW*AX*,Z*AW*AY*}, 

ff4wQ$)=Q9 spanned by {X*AY*AZ*AW*}. 

We now consider H*(D,Q), using the Hochschild-Serre spectral sequence for 

Z@Z---D- H@L 

We have Ei”=H’(Dn~)=H’(~IOZ,~), so Ey=Q$, E,“=Q$Q, Ei’=Q. 
Considering D, = Z @ Z, we know again that H’(D,, Q) = Q, and we may take as 
a generator for the cocycle ZE C*(D,, Q), where Z((p, q), (p’,q’)) =pq’. It can be 
shown directly that D, operates trivially on the cohomology class of I, so we have 

E;*=Q$, -@*=a3W?, E+Q. 

In C’(D,,Q) we have the following cocycles Q1 and ~5,: 

@,(PI4)‘P3 @2(P, 4) = 4. 

DT acts on the Qj as follows: if (s, t) E DT, 

23 0 f) P 
@(s9t)(@i)(P9q)=@i((l 2) _ (,)I- 

{CD,, @2) is a basis for H’(D,Q); since (: 32) has eigenvalues 2-t& no nonzero 
CUD, +fi@*, a and j3 in Q, is fixed by (1,O) EDT. This implies 

HO(DT, H’(D NY 0)) = E,O’ = 0. 

Thus E2 looks like 

4 

Q ” 

Q* 

QSOQ 
. 

? 
. 

QSOQ 

(all other terms are 0) 

Q 
. 

? 
. 

(9 , 
P 
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Using the arguments of Section 2, the Em-term for fR-coefficients is 

4 

m ” 
R@lR R 

. . 

rn@lR m 
IF?+ , 

P 

Thus the E,-term for Q-coefficients must be 

It is easy to see then that we must have Ei’ = Ei’ = 0 in the Q-coefficient spectral 

sequence. Thus, as a Q-algebra, H*(D, Q) is generated by two elements in dimension 

1 (pullbacks of a basis for H’(D,, Q)) and one element in dimension 2 (the restric- 

tion of a generator for H$(G, Q)). 

Appendix 

We prove the following theorem. 

Theorem. If TCGL,(Q is an irreducible Q-torus of dimension n that is Q- 
anisotropic and R-split, and if D=Z” is an arithmetic subgroup (contained and 
cocompact in Ti) and M= P is a finite-dimensional OTR-comodule, then for all 
i20 

Hi(tR,M)=Hi(D,M). 

Proof. (We consider T as an algebraic group over R.) M is a semisimple T-module, 

and so has a decomposition M=MT@ W, where WT=O. T irreducible implies that 

MT=MfR, and so M=MT@ W=MtR@ W, with WT= WtR=O. We know, since M 
is tR-semisimple, 

Wi(tR,M)=Hi(ta,MtR), iz0, 

where H’(ta,MtR) is a sum of copies of Hi(tR, R) (R has the trivial tR-module 

structure). As a D-module, M=MT@ W; from [l], D is Zariski-dense in T,, and 
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so WD=O and the D-action on MT is trivial. Since tm is an n-dimensional abelian 

Lie algebra, and D = Z”, from [12] we know 

Hi(tR,MtR)=Hi(D,MT), iz0. 

We will now show that 

H’(D, W)=O, iz0; 

the theorem will then follow by additivity. Since A4 is a rational T-module and T 

is [R-split, we can find a basis {ei}; for M such that the action of T is diagonalized 

with respect this basis [3, p. 2041. We may think of the points in Ti as E?’ and D 

as the integer lattice Z”; since the action on M diagonalizes we have 

XI 
ail 

(0, * * * 9 0, Xi, 0, . . . 3 0) c 
0 

i I o . . . , i= l,..., n; all aC>O. 

a; 

So if (x1,..., x,) E Ti, we have 

I 
pi c:=, YlA) 

6 1,...,x,)- 
0 

0 --. I ’ pa:=, YCJ,) 
all pj > 0. 

c 

If ejEMT we must have P!c:=~Y~fXi)=l, i.e., either /?j= 1 or Y~,=...=~~,,=O. MT is 

then spanned by the e. saiisfying p- (c:=lY~Jo= 1. Splitting MT off, we have left a 

basis for W. Since W’=O, if ek E h, then we have 

(1) &#l, and 

(2) at least one of the Ykl, . . . , ykn is not 0. 

W is then a direct sum of one-dimensional representations (x1, . . . , x,) - /3jz:=l y~~x,) 

with pj # 1 and some rj, ~0. If, e.g., ~~i#Oo, then we consider the ith factor of Z in 

Dz. Z”; this is a normal subgroup of D. It is easy to show by direct calculation that 

ifZactsonIRviap~~Pwith~>Oand~#l,thenHi(Z,[R)=Oforalli~O(wecan 

calculate Ho = H’ = 0 by hand; Hi = 0 for i 12 follows since we may compute using 

the DeRham complex fig1 on S’ with a twisted differential and Oil =0 for i ~2). 

From the Hochschild-Serre spectral sequence, then, all cohomology groups of D 

with coefficients in any of these one-dimensional representations vanish. By induc- 

tion on Dim, W we then have H’(D, W) =O, iz0. The theorem now follows. 
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