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If G is an affine algebraic group over a field F, and M is a finite-dimensional F-
vector space, then M is a rational G-module if G acts on M via a morphism of
algebraic groups over F: G—iAutF(M). An nfinite-dimensional F-vector space
M is a rational G-module if it is the union U,.M,- of finite-dimensional G-stable
vector spaces M, such that the G-action on each of them is rational. In [8],
Hochschild developed the foundations of rational cohomology, i.e., cohomology
H (G, M) in the category of rational G-modules. The most recent applications of
rational cohomology (e.g. [4] and [6]) seem to be mainly restricted to groups defined
over fields of nonzero characteristic. In this paper we will utilize the rational
cohomology groups of algebraic solvable groups defined over the rational numbers
Q. Our goal is to prove, for algebraic solvable G and for trivial Q-coefficients, an
analog (Theorem 2.23) of the following theorem of Mostow [11,8.1] and Van Est
[11,3.6.1]:

If G is a connected simply connected real solvable Lie group and D is a discrete
cocompact subgroup such that Ad, (G) and Ad, (D) have the same algebraic
hulls, then the Lie algebra cohomology H*(gp,R) is isomorphic to the group
cohomology H*(D,R) (trivial R-coefficients in both cases).

In our situation, D will be an arithmetic subgroup that is contained and cocom-
pact in the identity component G"% of the real points of G; we put the requisite con-
ditions on G to make certain that G2 is contractible (see Section 1). Under our
assumptions, we will obtain an isomorphism of cohomology rings (Theorem 2.23)

/
H*(gg, Q)= H*(D, Q).

As will become clear in Section 2, even though /g is a ring map, it is perhaps un-
natural in that it involves choosing an ancillary isomorphism and so might depend
upon that choice.

The paper is organized as follows. In Section 1 we list our notational conventions.
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The beginning of Section 2 is a summary of results from the various cohomology
theories used, while the rest of the section is devoted to the construction of /; and
the proof of Theorem 2.23. An example is presented in Section 3; the concluding
Appendix contains the rather lengthy proof of a result used in proving Theorem
2.23.

We would like to thank Jim Stasheff and Gerry Dunn for help with some
technical questions, and Eric Friedlander and Stewart Priddy for their encourage-
ment during the early stages of this project.

1. Notation and conventions

We follow the notation of [2]. Throughout this paper, G will denote a solvable
affine algebraic group defined over the rational numbers Q. Since we do not need
to emphasize the more sophisticated functorial aspects of algebraic groups, we will
be content to think of G as the zero set of an ideal /; of regular functions defined
on GL,(C) for some n=1. We will assume that I is prime, so that G is an irreduci-
ble variety. Since we assume G to be defined over @, I; can be generated by func-
tions fy, ..., f, lying in the subring Q[xy;, ..., X, Det™!]. We define the Q-algebra
bg,, as follows:

_ QIxp1y e X Det ']
© T INQXy, eeey Xy Det ™1

(1.1) O

Similarly, we set

: RIX115 ... Xpy, Det 1]
O LGN RIX ey X Det ']

If ACC is a subring, we set G, =GNGL,(A). In particular Gy, is a Lie group;
we denote its identity component by GP2. It is well known that G=Nx T, when N
is the maximal connected unipotent normal subgroup of G (it is defined over @),
and T is a torus (also defined over QQ). Ny is connected, and G2 =Npx Tng.

G has associated to it a Lie algebra gg over Q (see [3]); the real Lie algebra
gr=0q®¢q R is isomorphic to the real Lie algebra of right-invariant vector fields
on Gp.

A (discrete) subgroup D C GNGL,(Z) is called arithmetic if it is commeasurable
with GNGL,(Z).

(1.2) We work with the following assumptions on G and D: (i) the torus factor T
in G=NXT is Q-anisotropic and R-split (see [3]). This condition implies
Tp=[R*x -+ x R*, and also that G is contractible.
(i) DcC Grg NGL,(Z) is arithmetic and cocompact in G2. D is then strongly poly-
cyclic (see [14]): D=DyX Dy where Dy=DNNg, Dy=DNTY and Dy=7Z7.
From [14, Theorem 2.3] and [1], D is then Adg-ample in G3 (since Ad,, is a
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rational representation of G defined over R); and so the pair (G2, D) satisfies the
conditions of Mostow’s theorem. If M is a finite-dimensional Q-vector space, it is
a rational G-module or a g,-comodule if it is equipped with a Q-linear map
Ay M->MQq HGQ satisfying the axioms for counit and coassociativity (see [9]).
If veM and Ay()=Y,w;®f;, then if deGy the action of d on v is
d-v=1Y, fi(d)w;. We note that if G=NXT and M is a rational N-module, then
the cohomology groups H, (N, M) and H *(ng, M) are rational 7-modules, and so
are semisimple 7-modules as well as semisimple tg-modules [8, pp. 510-511]. Finally
we note that the multiplication G x G— G induces a map 4 : 85, 05, R 05, this
map A defines the Hopf algebra structure on 6g,.

We summarize here some of the basic definitions of rational cohomology (see
[SD). If V is a Q-vector space with a GGo—comodule structure Ay : V= V&g GGQ,
we define the cochain complex

@1 C*(Bge> V)
as follows (unless noted otherwise, all tensoring is over Q):

(n)
C'O6 V)=V ®OF, n=0  (68:=05,® " ® 05,

n+l

=Y (-1,
i=0
where

BORS® - ®f)=A4yO)RS1Q - &y,
FORNR® R )=v®fI®-RAf,® & f, 1=i=n,
3 1 VRS1® - ®f)=0R/1® - ®f,&1.

The rational cohomology groups of G with coefficients in V are then the co-
homology groups of the complex C'(BGQ, V):

Hr':it(G’ V)=Hn(c.(gGQ’ V))a n=0.
H?.(G, V) is the subspace of all ve V such that 4,()=v®1, i.e.
HY(G,V)=VC.

The H.,(G, V) for i>0 are the derived functors of ¥ — ¥ in the category of 064"
comodules.
In particular, if V=@ with the trivial comodule structure, we have

C’bg,, V) =Q,
C' (00 Q) =05,
C"(0gq Q) =08:, ...
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We may use the complex C'(HGQ, Q) to define a cup product pairing

. . V] L
2.2) H;o (G, M) ® H/,(G, Q) — Hi (G, M).

The pairing is defined at the cochAain level as follows: if p=0®f1Q - R f; €
C’(HGQ,M) and l//=g1®"~®ngC/(GG®, @), then define

PUY=9Qu=0R/f® - Qf®Q  ®geC (b, M).
In the tensor product C*(fg,, M)® C*(6,, Q) we have the usual total differential

dp@y)=dp @y +(—1)PEV9 @ dy;

it is easily checked then that U defines a map of complexes

U
C* (0, MR C* (0, Q) — C* (O, M),
and so from the Kunneth theorem we then have cohomology pairings
H{2(G, M) ® H., (G, Q) ~ H{a (G, M).
There is a natural evaluation or restriction map from rational cohomology to
discrete group cohomology. If D C Gg, is a subgroup of the Q-valued points of G
(given the discrete topology), and M is a rational G-module, then we may consider

M as a D-module. If we denote by C*(D, M) the usual complex of nonhomogeneous
M-valued cochains on D, we define the restriction map

2.3) v C* (0, M)~ C*(D, M)

as follows: if ¢=u®f1®'-o®fpeC”(HGQ,M), then
ru(@)d,s ..., dp) =fi(d) - f(dp)v e M.

This makes sense since f(d)eQ for all fefg, and de D. It can be checked that
ry(dp) = d(rp(9)),

so we have

(2.4) Lemma. ry, is a map of complexes; thus for all n=0 we have a cohomology
map

.
H!\(G, M)—> H"(D, M).

The cup product H'(D, M)® H/(D, Q) ~> H'*/(D, M) is defined at the cochain
level as follows: if ¢ € C'(D, M) and w e C/(D, ), then

oV, ....didiy s di ) =wldiy 1,0 diy ) - 9d,, 0 d)).

The following lemma is immediate from the definitions.
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(2.5) Lemma. ry, preserves cup products, i.e., the following diagram commutes
(where Q-coefficients are trivial coefficients):

U

H\ (G, M)® H,(G, Q) H(G,M)
ry®@ ry Iy
H(D, M)® H/(D,Q) —>— H'"/(D, M)

The third type of cohomology we consider is the cohomology of gg-modules,
where g, is the Q-Lie algebra of the algebraic group G. In general, if g is a finite-
dimensional Lie algebra over a field F of characteristic 0, an F-vector space N is
a g-module if we are given a Lie algebra homomorphism g¢—End;(M). If M is a
rational G-module, we may consider M to be a g¢-module by taking the differen-
tial of the representation (see [9]). The only g,,-modules we consider will be derived
from rational representations.

For convenience we present the following definitions from [10]. If § is an ideal
in gg and if we denote by C#,(h, M) the p-linear alternating functions on § with
values in M, then we may put a gg-module structure on CJ, (h, M) as follows. For
p=0, th(b, M)=M is already a gg-module. For p>0, ¢ € C5(h, M), and xegg,
we define

p
(X' ¢)(y],...,yp):X‘ ¢(yla"'!yp)_ 'Zl ¢(y1’""yi—h[Xayi]syi+l)'~-,yp)‘

The differential in Cy(h, M) is a g,-module map:
d(x- ¢)=x- (d¢).

The gg-action on cochains induces a ggy-module structure on the cohomology
groups H'(h, M). It can be shown that § operates trivially on all Hiy, M).

If M, N, and P are three g;,-modules, a pairing from M and N to P is a ©-
bilinear map (m, n)—>mUn of M XN into P such that, for all xe g,

x-mUn)=x-myUn+mU(x- n).

If b is an ideal of g¢, we may then define a pairing of cochains

U
(2.6) Ch(6, MYR C (h, N)— CL (8, P).
If ¢ € CH(Hh, M) and w e C4,(h, N), then

¢UW(yl’---’yp+q): Z ) (*l)sgn(n)q)(.yn(l)’--~’yn(p))UW(yn(p+1)a"'syn(p+q))-
neE(Pq)-
sﬁurgﬂlels

(A permutation n € pr is called a (p, g)-shuffle if 7(1)<nR)<---<n(p) and

mp+ <~ <n(p+q).) We have
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@7 x-(Uy)=(x-¢)Uyp+oUx-yw), XxEgq,
' dpUw)=dpUy +(~1PEPpUdy.

The mechanics of checking the following lemma then follow just as for rational
and discrete group cohomology:

u
(2.8) Lemma. The pairing CH,(h, M)® C3.(9, N)— C59(, P) induces a co-
homology pairing

U
HP(h, M)Q H(h, N)— H”"(p, P).
From (2.7) we have an induced pairing on the gp-annihilated elements

u
(2.9) HP(h, M) ® H(h, NY*— HP*4(h, P)e.
. .. . . . )
If N=Q with trivial gg-action, and P=M with pairing M xQ— M given by
(v,)— a - v, we have the usual cup product
U
HP(h, M)® H(h, Q) — HP "9(9, M).

We are now in a position to use the following theorem of [10], which we state
without proof:

(2.10) Theorem [10, Theorem 13). Let g be a finite-dimensional Lie algebra over a
field F of characteristic 0, and let M be a finite-dimensional g-module. Suppose n
is an ideal g such that g/n=¢t is semisimple. Then for all n=0,

H'(@g M)= Y H'n,M)®QH (tF),

i+j=n
by an isomorphism which is multiplicative for paired modules.
This last phrase means the following (for more details see [10, §6]). A given pair-
ing of g-modules M X N2, P induces a cohomology pairing
. . v
H'(g, M\YQ H’(9, Ny— H'"/(g, P), i,j=0;
from (2.10) we then have

Hi@,M)= Y H'n,M)®H'(F),
k+1=i

H(@g,N)= Y H(n,NP*QHYF).

ptq=j
If we take u®ueHi(g,M) and u’®u’eHj(g,N), then
(2.11) HRVUW Rv)=(-1)uU, u)Q@WU,v)eH (g, P),
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where U
H*(t,F)® H*(t, F) —> H*(¥, F),

U
H*(n, MY*® H*(n, N)* —> H*(n, P)*

are the other pairings used.

In particular, this gives us a decomposition of the multiplicative structure
in H*(g,F), F the trivial g-module: if we consider aeHi(f,F) as a®le
H(t, FYQH (n,FY*=H'(t, ))QF, and S H/(n,F)* as 1®Be H(f, F)Q H(n, F)*,
then for the pairing F x F— F (multiplication in F') we have

(2.12) (@®DU(®P=a®BeH (g,F).

We are now prepared to consider solvable affine algebraic groups G as defined in
Section 1. We recall that G=N X T, where the torus T is presumed to be Q-
anisotropic and R-split. 7y is then a direct product of d copies of R*, and D= 7°
is contained in Tp.

Recall from (2.5) that the restriction map ry, : H5 (G, M)~ H*(D, M) preserves
the pairing M XQ—U—>M, (v,@)=av. Since T is a torus, its Lie algebra tg is
abelian, so tg is isomorphic to the Lie algebra of the d-dimensional vector group
A%. A% is a unipotent algebraic group; if we denote its Lie algebra by a(d)g, then
from [13] we know that we have an isomorphism of cohomology rings

&
H*@(d)g, Q)— H*(Z% Q)  (trivial Q-coeff.).
If we then choose an isomorphism of Q-vector spaces a(d)g =t and an isomor-
phism of groups Dy= 7, we have an induced isomorphism of cohomology rings
I,
(2.13) H*(tg, Q) = H*(Dr, Q).

Moreover, I, is then induced by a map at the cochain level since the same is true
of &. If we denote by n the projection D — Dy, then composition with Tg, induces
a ring map

n*of

0

H*(tg, Q)

. U .
Using the cup product H*(D, M)& H*(D,))— H*(D, M) we then consider the
composition (which we denote by /,,)

H*(D,Q).

®(n*o ]

Q.14)  HA(G,M)® H*(ty, Q) — Sl HM(D, MY ® H(D, Q) — H*(D, M)

Im

To interpret /,, we require the following two theorems from [8], which we state
without proof.
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(2.15) Theorem ([8, Theorem 5.1]). Let G be a unipotent algebraic group over a field
F of characteristic 0, and let A be a rational G-module. There is an isomorphism
@ of the rational cohomology group H (G, A) onto the Lie algebra cohomology
group H*(gy, A) with the following property: Given any rationality injective resolu-
tion X* of the rational G-module A and any U(gp)-injective resolution Y* of the
Ulgp)-module A, there is a map of X" regarded as an acyclic U(gg)-complex, into
Y*, and the cohomology map induced by any such map of complexes coincides with
the isomorphism .

(2.16) Theorem ([8, Theorem 5.2]). Let G be a linear algebraic group over a field
F of characteristic 0, let N be the maximum unipotent normal subgroup of G, and
let ng be the Lie algebra of N. Let A be a rational G-module. Then H}\(G, A) may
be identified with HY(N,A)°’N, and hence is isomorphic, via the canonical
isomorphism, with H*(np, A)G/ N_In the case at hand, G/N=T is irreducible, and
50 H*(ng, A)" = H*(ng, A)™.

We then denote by
@.17)  Hy: H*g, MYe= HA(G, M)

the isomorphism provided by (2.16). From [8, pp. 507-509], &, is compatible
with cup products, so the following diagram commutes:

H*(ngy, MY'*® H* (11, Q)¢ —— H*(11¢, M)

(2.18) ECE ES

H;:ll(Gs M) ®Hr>:t(Gs (D)

If we note that H*(ng, M)te= H*(ng, M)*® (since H*(ng, M)"®=H*(ng, M)), we
may replace (2.10) with the following theorem:

H (G, M)

(2.19) Theorem ([8, Theorem 5.3]). Let G be an irreducible algebraic linear group
over a field F of characteristic 0 and let A be a rational G-module. Then there is
a natural isomorphism for each n=0

H'(gp, A)= ¥ Hl(G, A)®p H (gp/np, F).

i+j=n
We now have the following.
/
(2.20) Theorem. Under the hypotheses on G and D listed in (1.2), we have for each
finite-dimensional rational G-module M a cohomology map (2.14)

{
H*(gg, M) —> H*(D, M).
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The map 1, preserves cup products, i.e., the following diagram commutes:

/M®/Q IM
H*(D,M)® H*(D, Q) H*(D, M)

U
where the pairing M x Q — M is scalar multiplication. In particular, I, is a ring
map H*(gq, Q)= H*(D, Q) for trivial Q-coefficients.

Proof. The only detail that remains to be checked is the commutativity of the
diagram. If f®aeH, (G Q)® H (tg,Q), vQueHYL(G M) H (1, D), we
have (bearing in mind that all U-products must be understood relative to the ap-
propriate pairing):

[, Q1
WU (BR ) > (1 (V) U (0 Io)w) @ rg(B)U (m*o Ip)(e))

s [ U (0 I @) U (B U (n* L))
= U I(*© 1)@ Urg(BYU (*© Io)(@)]
= (¥ 1)U (AU (10 L)) U (n*o Ip)(e)]
= (¥ @)U Irg(B U ((*o I U (*© L) @)
= (D¥ (0 Urg(BIU [(x*0 I)@) U (1 © I)(@)]
= (1) (U B ® (uUa))
(OO WUER)).

This completes the proof. We note here that /,, depends upon the choice of the
isomorphism Iy, (see 2.13).

Before proving anything about /;, we require several preliminary lemmas for
unipotent groups.

(2.21) Lemma. If G=N is unipotent and D C Ny, is cocompact in Ng, the restric-
tion map rg: H% (N, Q) H*(D, Q) is an isomorphism of rings.

Proof. As in [13], we do an induction on the length of the refined upper central
series for D. If D=7 and NzA(b, then C'(Oy, ©)=Q[x] and Z'(y, Q) is a one-
dimensional Q-vector space generated by x. r(D(x)eZ'(Z, Q) is the cocycle m—m,
me Z; rg(x) generates H'(Z,@Q). If D is generated by a minimum of k elements, we
may then assume the theorem proved for D* !, where Z<5 D—"» D* ! is the last
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central extension in the refined upper central series for D. Denoting the algebraic
hull over @ of D*~! by N*~!, we have a commutative diagram

a* B* _
HE (AL, Q) HY(N,Q) HY (N1 0)
rf{g ! r&' rc{;' 1
H*(Z,Q) H*(D,Q) H*D" ', Q)

From [13], the rings H*(D, Q) and H*(ng, Q) are isomorphic and satisfy Poincaré
duality. From Theorem 5.1 of [8], H}3,(N, Q) is isomorphic to H*(ng, Q) and so
satisfies Poincaré duality. Since rqIQH is an isomorphism by the induction hypothesis, a
generator @,,, for H,';fl(N"‘l, Q)=®0 maps to a generator di’eH"_l(Dk" LO)=0.
Further, from [13, 4.3] there is an element ¥Ye H'(D, Q) such that ¢ = Yun*(@’)
generates H*(D, Q), and i*¥ generates H'(Z, Q). Similar assertions are then true
for

H*(ag, Q)< H*(ng, Q) — H*ngy™ ', @),

and so from (2.15) and (2.18) there is an element weH,la[(N, Q) such that a*(w)
generates Hrlat(Aq]Q, Q) and wU B*(P/,,) generates H* (N, Q). Since all the maps are
multiplicative, we may assume then that ¥ =rqg[(w), so that

rQ@)Urg (BH(@))) = rg (wU B*(P,)) = & #0.

Thus, r(g is an isomorphism on H*. Since rqg is a ring map and both H},(N, Q) and
H*(D, Q) satisfy Poincaré duality, r(]lDI must be an injection; since everything is
finite-dimensional over @, r(g must be an isomorphism.

(2.22) Corollary. If G=NXT is algebraic solvable and Dy is cocompact in Np,
rQ:Hr".:n(G, Q)— H*(D, Q) is an injection.

Proof. From [8, Theorem 5.2] we have H (G, Q)=H% (N,©Q)”, and we may con-
sider the natural inclusion H % (G, Q) C H (N, @) to be induced by N> G. We then
have a commutative diagram

H}(G,Q)=HE% (N, Q) ©—— H% (N, D)

l'@ ! o

H*(D,Q) H*(Dy, Q)

Since the composite of the upper horizontal map with the restriction from N to Dy
is an injection, restriction from G to D must be an injection.

We are now prepared to prove our main theorem.
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(2.23) Theorem. If G and D satisfy the hypotheses of (1.2), then the map I, is a
ring isomorphism lg : H*(gq, Q)= H*(D, Q).

Proof. If we extend scalars to R, we see that the filtration of Cj,(gr, R) that pro-
duces the Hochschild-Serre spectral sequence for np— gp—tp is compatible with
the filtration of the DeRham complex QBR(G[g /D) that produces the C* Leray-
Serre spectral sequence for the bundle (NR/DN)*(G[g/D)‘»(T”g/DT) (see [7,
p. 52]). Considering C,;(ar,R) as a complex of right-invariant forms on GP, it
descends to a complex of global forms on G2/D, and so the inclusion C}, (g, R) C
Qix(GL/D) induces a map of spectral sequences. From Mostow’s theorem, the
map on abutments is an isomorphism, and at the E,-level we have

ED9=HP(tg, H(ng, R) ~ H” (D7, H(Dy, R)) = EX.

We may consider £77 to be induced from the action of Dy on BDy by conjugation
of (BDy),; from [13], then, the Dy-module HY(Dy, R) is isomorphic to the Dy-
module H?(ng, R) for all g=0. Thus, E¥?=H?(Dy, H(ng, R)). The Dr-module
structure on each H(ng, R) is induced from a f7,-comodule structure; since 7 is
R-split, the action on H%(np, R) diagonalizes over R [3, p. 204]. From the Appen-
dix, then,

Dimy H?(Dy, H(ng, R)) =Dimy H?(tp, H(ng,R)), all p,g=0.

Thus, Dimg EP? = Dimg, E¥? for all p,g=0. From [10, §7], E,=E;=--- = E,,. Since
the map on abutments is an isomorphism and all Ef" are finite-dimensional, we
must have each map E}?— EJ? an isomorphism and E,=FE;=---=E, in the C*

Leray-Serre spectral sequence. Comparing the usual Leray-Serre spectral sequence
(denoted by E) for singular R-cohomology to the C” Leray-Serre, we have

Dimg I:Ef:Dim,p EP, all p,g=0.

All E=§"’ are then finite-dimensional vector spaces, and we must have (since
Dimg H"(D,R)=%,, .., Dimg £47 for all n=0) E,=FE;=---=F,, in the singular
Leray-Serre spectral sequence. Thus we have a ring isomorphism

H*(D, R)= H*(Dy, R’ ®g H*(Dr, R).

We now consider the inclusion of the singular Q-cochains on G2/D into the
singular R-cochains: C*(G3/D,Q)C C*(G2/D,R). The usual filtration then in-
duces a map of spectral sequences (which on abutments is just extension of scalars):

E}'=H"(Dr, HY(Dy, Q)

H?(Dy, HY(Dy, R)) = EV

(%)

H*(D,Q) H*(D,R)

- @y R
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We know that [7, pp. 106-107]:
DlmQ Hq(DN, Q):Dlmﬂg Hq(DN, ’R), all qZO,

and that since a Q-basis for the Dy-module H*(Dy, Q) gives an R-basis for the D-
module H*(Dy, R)=H*(Dy, Q)®q R, we have

H*(Dy, R)P"= H¥(Dy, Q)""®g R.

Since the map on abutments in (x) is just extension of scalars (an injection) and
Dimg HY(D, Q) = Dimg HY(D, R) is finite for all g=0, we must have Dimg E57=
Dimgp E27 for all p,q=0 and E29—E%? must be an injection. Thus, all of
H*(Dy, @)P" must survive to E,,, i.e.,

E3*=Eg*=H*Dy,Q)"".

Since the following square commutes,

*

H*(D, 1) H*(Dr, Q)

H*D, R) H*(Dr, R)

where the vertical injections are extension of scalars and the injectivity of the lower
7* was established earlier, the upper n* must be an injection. Thus we have

E¥'=EX=H*D;, Q).

H*(Dy, ©)°" and H*(D, Q) are then subalgebras of gr H*(D, Q). Using the ring
structure of £, and £, and the fact that a map of cohomology spectral sequences
is multiplicative, we see that knowing

gr H*(D, R) = (H*(Dyn, Q)" ®q, R) ® (H*(Dr, Q) Q@ R)
implies
gr H5(D, Q)= HXDy, 0)”" ®q H*(D7, Q).

We already know that H*(D7, Q) is a subalgebra of H*(D,Q); we would like to
find an algebra map H*(Dy, Q)D’HH*(DN,(D) such that composition with the
natural pullback to H*(Dy, Q) is the identity.

From (2.22), r@:H;‘;[(G, Q)— H*(D,Q) is an injection, and the composition

I ) i*
H (G, Q)— H*(D,Q)— H*(Dy, Q)
is an isomorphism of H (G, Q) onto H*(DN,Q)D7':
H*Dy, Q)" = H¥(ng, Q)" = H*(ng, Q)" = H5(G, ).

The first isomorphism follows from (2.16) and the equality follows from the Zariski
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density of Dy in Ty ([1, p. 78]). Thus im(rp) is a subalgebra of H*(D, Q) which
maps isomorphically onto H*(DN,(D)D" via i*. From this we may deduce that
H*(D,Q) is isomorphic to H*(DN,(]Q)D”@@H*(DT,(D) and that / is a ring
isomorphism

£
H*(gg, Q) = H*(D,Q).

Remarks. (1) It seems feasible that the construction of /;; could be generalized to
irreducible solvable G whose torus factors 7 satisfy:

T is anisotropic over Q; if, over R, T'=Ty- T, with T, R-anisotropic and T [R-
split, require that DN (T,)p={id} (with D again arithmetic and cocompact in
GY).

(T)r will be compact (a product of copies of S'); since D+N(T,)y = {id}, Dy
will still be torsion-free and isomorphic to Z"’, where k=dim 7. From Theorem 12
of [10], we have the following surjections (tED is the Lie algebre of T})

H*(gq, @)~ H*(t, Q) H*(tg, Q).

From the same theorem, the relative conomology ring H*(gq, t{D; Q) is a subalgebra
of H*(gp,Q), and we suspect that the following composite might be an isomor-
phism of rings

I
H*gg» to; Q) H*(gg, Q) — H*(D, Q).

(2) Since we may think of G2/D as the total space of a smooth bundle over
TDQ/DT with fibre Np /Dy, Theorem 2.23 provides a decomposition of H *(G@ /D, Q)
that resembles the Kunneth decomposition for a product space H*(FxB, Q)=
H*(F,Q)®q H*(B,Q). The action of nl(T,S/DT) on H*(Np/Dy,Q) is far from
trivial, however, but G2/D resembles a product space to the extent that its Q-
cohomology is the product of the base cohomology with the invariant cohomology
of the fibre.

3. An example

(Throughout this section we drop the Q-subscript and write g rather than gg, etc.)
Let G be the following subgroup of GL,:

x 3y u 3v
Yy X v u . x2—3y2—1,
0 0 z 3w with {zz* Iwle ]
0O 0 w z
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D is the following discrete subgroup in Gg:
2 3 m p 3q
1 2 qg D
0 0 2 3\"|”
0 0 1 2
GQ is contractible, and D is cocompact in G”g. (This example, suggested by E.
Friedlander and S. Priddy, was constructed by taking the fundamental unit 2 +V3

in the number field Q(V3) and considering the matrix representation of its operation
by multiplication on Z@ Z(vV3).) D is isomorphic to the semidirect product

VAGYAR P VACYAR

2 3 Hti—n
Q(m,n)—<1 2> .

g has as a @¥-basis the following matrices:

mn,p,qer.

where

(03 0\ (0 0 )
X=[10 L Y=| 03,
.0 0 ) L 10
s N a N
2= 9 01|, w=|0 0o
L0 0 L0 0 )

n has {Z, W} as a Q-basis, and is abelian; if we denote their duals by {Z* W*},
we have

(X-Z5W)=-3, (Y-Z¥W)=3,
(X-WZ)=~1, (Y-W*NZ)=1;

thus X - Z*=-3W* Y. Z*=3W* X - W*=-7Z* Y. W*=/7* Since n is abelian,
Hl(n, Q) =Homg(n, Q); the latter has Q-basis {Z* W*}, and it is easily shown that

H'(n,Q)' =0.
H*(n,Q)=Q is spanned by Z*AW*; a simple calculation shows that

X (Z*AW*)=Y - (Z*AW*) =0,
thus,
H*(n,Q)'=Q.

So we have (in the only possible non-trivial dimensions):
H'(n, @) = (G, Q) =0,
H'(n,Q)' = H (G, Q) =0,
H*(n,Q)' = H3(G,Q)=Q.
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Since t is two-dimensional abelian, H°(, Q)=®, H'(¢, Q)=Q @ ® and is spann-
ed by {X* Y*}, H*(t,®)=Q and is spanned by X*AY*. From (2.23) we then have
H'(g,@)=Q,
Hl(g, Q)=Q®Q, spanned by {X* Y*},
H*(g, Q)=Q0®Q, spanned by {X*AY* Z*AW*},
H3(g,Q)=Q@®Q, spanned by {Z*AW*AX* Z*AW*AY*},

H,Q)=Q, spanned by {X*AY*AZ*AW*},
We now consider H*(D, Q)), using the Hochschild-Serre spectral sequence for
Z®Z“——D YAV
Dy Dy

We have E;°=H'(D7,Q)=H'(Z®Z,®Q), so EX=Q, EX=Q®Q, EX=0q.
Considering Dy =Z® Z, we know again that H*(Dy, Q) =@, and we may take as
a generator for the cocycle e CYH(Dy, Q), where I(p,q),( P q")=pq’. It can be
shown directly that D operates trivially on the cohomology class of I, so we have

Ef=Q, E’=00®0Q, E’=0Q
In CY(Dy, Q) we have the following cocycles @, and ®,:
D1(p.q@)=p,  PpD=q.
Dy acts on the &; as follows: if (s,#)e Dy,
o5, @)1 @) = 2, D).

{®,, P,} is a basis for H'(D,Q); since (?3) has eigenvalues 2+v3 no nonzero
ad,+ pP,, a and Fin Q, is fixed by (1,0) € Dr. This implies

HDr, H (D, Q)= E5' =0.
Thus E, looks like

q (all other terms are 0)
ARICOIN; Q
Q . .
? ?
QLBQ Q
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Using the arguments of Section 2, the E,-term for R-coefficients is

q
R®R R
R . .
ROR R
R i )l P
Thus the E -term for Q-coefficients must be
q
Q®Q Q
(D [ ] ° [}
QBQ Q
Q ) ; p

It is easy to see then that we must have E;}! = E?' =0 in the Q-coefficient spectral
sequence. Thus, as a Q-algebra, H*(D, Q) is generated by two elements in dimension
1 (pullbacks of a basis for H I(DT, @)) and one element in dimension 2 (the restric-
tion of a generator for H,zat(G, Q)).

Appendix
We prove the following theorem.

Theorem. If TCGL, (C) is an irreducible Q-torus of dimension n that is Q-
anisotropic and R-split, and if D=2" is an arithmetic subgroup (contained and
cocompact in Tn?) and M=R® is a finite-dimensional 0 -comodule, then for all
i=0

H'(tp, M)=H'(D, M).
Proof. (We consider T as an algebraic group over R.) M is a semisimple T-module,
and so has a decomposition M=MT@® W, where WT=0. T irreducible implies that
MT=M'" and so M=MT®W=M*"® W, with WT=W®=0. We know, since M
is tp-semisimple,

H'(tg, M) = H'(tp, M™®), i=0,

where H'(tp, M'®) is a sum of copies of H'(tp, R) (R has the trivial tp-module
structure). As a D-module, M=M T@ W; from [1], D is Zariski-dense in T, and
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so WP =0 and the D-action on M7 is trivial. Since tp is an n-dimensional abelian
Lie algebra, and D=Z7", from [12] we know

H(tp, M®)=H'(D,MT), i=0.
We will now show that
H(D,W)=0, i=0;

the theorem will then follow by additivity. Since M is a rational T-module and T
is R-split, we can find a basis {e;}{ for M such that the action of T is diagonalized
with respect this basis [3, p. 204]. We may think of the points in T,@ as R" and D
as the integer lattice Z"; since the action on M diagonalizes we have

ol 0
(0,...,0,)(1-,0,...,0)’—’ 0 , i=1,...,n;all C(U>0
ay
ic.
So if (xy,...,x,) € T, we have
B}ZL. V1iXi) 0
(xla--"xn)H O . s all ﬂj>0
5(27:1 YeiXi)
If e; e M7 we must have ,B‘Ef %) =1, i.e., either Bi=1ory,=--=y;,=0. M7

then spanned by the e; satlsfymg ,B(E l}’f')")—l Splitting M7 off, we have left a
basis for W. Since W' =0, if ¢, € W then we have

(1) By#1, and

(2) at least one of the yg,..., i, is not 0.
W is then a direct sum of one-dimensional representations (xi, ..., X,)~ /)’j(. Eis1 2k
with 8;# 1 and some y; #0. If, e.g., y;; #0, then we consider the ith factor of Z in
D=7"; this is a normal subgroup of D. It is easy to show by direct calculation that
if Zactson R via p— BP with $>0 and f#1, then H(Z, R)=0 for all i =0 (we can
calculate H° = H' =0 by hand; H'=0 for i =2 follows since we may compute using
the DeRham complex Q¢ on S' with a twisted differential and Q%=0 for i=2).
From the Hochschild-Serre spectral sequence, then, all cohomology groups of D
with coefficients in any of these one-dimensional representations vanish. By induc-
tion on Dimp W we then have H'(D, W)=0, i=0. The theorem now follows.
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