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Abstract

Following the work of Schur and Coleman, we prove the generalized Laguerre polynomial

L
ð�3�nÞ
n ðxÞ ¼

Pn
j¼0

1
j!
ðn�jþ1Þðn�jþ2Þ

2
x j is irreducible over the rationals for all nX1 and has Galois

group An if n þ 1 is an odd square, and Sn otherwise. We also show that for certain negative

integer values of a and certain congruence classes of n modulo 8, the splitting field of L
ðaÞ
n ðxÞ

can be embedded in a double cover.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The nth degree generalized Laguerre polynomial in a variable x and a parameter a
is defined as follows:

LðaÞ
n ðxÞ ¼ ð�1Þn

Xn

j¼0

n þ a

n � j

� �
ð�xÞ j

j!
:

These polynomials were first studied by Pólya and Szego+ [14, p. 274]. Various
mathematicians have studied their algebraic properties for certain rational values of

a: Schur [15, No. 67, 70] proved the irreducibility of L
ðaÞ
n ðxÞ over Q and computed its

Galois group for a ¼ 0; a ¼ 1; and a ¼ �1� n: Hajir [8] did the same for a ¼
�2� n; and Gow [7] computed the Galois group for a ¼ n; assuming L

ðnÞ
n ðxÞ is
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irreducible. More broadly, Filaseta and Lam [6] proved that if a is a rational number

which is not a negative integer, L
ðaÞ
n ðxÞ is irreducible for all but finitely many n: In [2],

Coleman calculated the Newton polygon at an arbitrary prime p of the truncated
exponential polynomial,

enðxÞ ¼ Lð�1�nÞ
n ðxÞ ¼

Xn

j¼0

x j

j!
:

We begin by observing that Coleman’s method gives a general criterion which

establishes the irreducibility of a large number of L
ðaÞ
n ðxÞ (see Corollary 9). For the

family a ¼ �3� n; this method, when combined with an additional criterion of
Filaseta [5] (also based on Newton Polygons), yields irreducibility for all n: We then
apply Coleman’s technique to compute the Galois group for a ¼ �3� n:
In the remainder of this work, we study the problem of embedding the splitting

field of L
ðaÞ
n ðxÞ for various rational a in a double cover. The solution of this problem

is achieved by a theorem of Serre [17] which reduces the problem to the calculation of
the Hasse–Witt invariant of a certain trace form associated to our polynomial, for
which we have available certain complicated but explicit formulas due to Feit [4].

Notation. For any non-zero integer n; and prime p; ordpðnÞ is the p-adic valuation of

n; so that

n ¼
Y

p

pordpðnÞ:

We set ordpð0Þ ¼ N:

1.1. Newton polygons

Given a polynomial f with coefficients in Qp; we can attach to it, for each prime p;

a geometric object known as the Newton polygon. This object will then specify the p-
adic valuations of each root of f : As we will see below, this data can sometimes lead
us to information about the factorization of f over Q; assuming f has rational
coefficients. The reader can find an introduction to this topic in [12] or [18].

Definition 1. Let f ðxÞ ¼ a0 þ a1x þ a2x
2 þ?þ anxn be a polynomial in Qp½x�; with

a0ana0: The Newton polygon of f at p; denoted NPð f ; pÞ; is defined to be the lower
convex hull in the Cartesian plane of the points

ð0; ordpða0ÞÞ; ð1; ordpða1ÞÞ;y; ðn; ordpðanÞÞ
� �

:

To construct the lower convex hull, follow this procedure: Plot all the points in the
list above. Rotate the vertical line through ðx0; y0Þ :¼ ð0; ordpða0ÞÞ counterclockwise
until it reaches one of the other points; let ðx1; y1Þ be the furthest point of type
ði; ordpðaiÞÞ that lies on this line. Draw the straight line between ðx0; y0Þ and ðx1; y1Þ:
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Now rotate the vertical line through ðx1; y1Þ counterclockwise until it reaches
another point, and call the furthest point along this line ðx2; y2Þ: Continue this
procedure until you reach ðan; ordpðanÞÞ: It is clear that the slopes of the line

segments should increase from left to right, and by construction, no two edges have
the same slope. The union of the line segments is the lower convex hull.
The main theorem about the Newton Polygon is

Theorem 2. Let ðx0; y0Þ; ðx1; y1Þ;y; ðxr; yrÞ denote the successive vertices of NPð f ; pÞ:
Then there exist polynomials f1;y; fr in Qp½x� such that

(i) f ðxÞ ¼ f1ðxÞf2ðxÞ?frðxÞ;
(ii) the degree of fi is xi � xi�1;
(iii) all the roots of fi in Qp have p-adic valuation �ðyi�yi�1

xi�xi�1
Þ:

Corollary 3 (Coleman). Let d be a positive integer. Suppose d divides the denominator

of each slope, in lowest terms, of NPð f ; pÞ: Then d divides the degree of each factor of f

over Qp:

Proof. Let h be an irreducible factor of f over Qp; and let a be a root of h: Recall

that ordpðaÞ is in 1
e
Z; where e is the index of ramification of the extension QpðaÞ=Qp:

Thus, since d divides the denominator of the p-adic valuation of a; d must divide e:
But e divides n ¼ ½QpðaÞ :Qp�; which is precisely the degree of h: &

1.2. The Coleman criterion

Here we formulate a criterion restricting the degrees of factors of a polynomial in
Q½x�: This criterion was developed by Coleman [2] and then applied to prove the
irreducibility of

enðxÞ ¼ Lð�1�nÞ
n ðxÞ ¼

Xn

j¼0

x j

j!
:

Write n in base p; labelling only the non-zero digits:

n ¼ b1p
n1 þ b2p

n2 þ?þ bsp
ns ; ð1Þ

where 0obiop; and n14n24?4ns: Now let k0 ¼ 0; and define

ki ¼ b1p
n1 þ b2p

n2 þ?þ bip
ni ; 1pips: ð2Þ

Proposition 4 (Coleman). The vertices of NPðen; pÞ are ðki;�ordpðki!ÞÞ; for 0pips:

Its slopes are

mi ¼
�ðpni � 1Þ
pniðp � 1Þ ; 1pips: ð3Þ
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The proof is straightforward, using Legendre’s formula: If k ¼ a0 þ a1p þ?þ
asp

s is the p-adic expansion of a positive integer k; then

ordpðk!Þ ¼
k � ða0 þ a1 þ?þ asÞ

p � 1
:

A polynomial of the form f ðxÞ ¼
Pn

j¼0 aj
x j

j! in Q½x� is called Hurwitz-integral

at p if ordpðajÞX0 for 0pjpn: It is called Hurwitz-integral if ajAZ for 0pjpn: We

say that f satisfies the Coleman criterion at p if f is Hurwitz-integral at p; and
ordpðajÞ ¼ 0 for j ¼ ki; 0pips; where ki is as defined in (2). Furthermore, we say f

satisfies the Coleman criterion if f satisfies the Coleman criterion at p for all p

dividing n:

Remark 5. Note that if f satisfies the Coleman criterion at p; then NPð f ; pÞ ¼
NPðen; pÞ: Since f is Hurwitz-integral at p; the vertices of NPð f ; pÞ lie on or above
those of NPðen; pÞ; and ordpðajÞ ¼ 0 for j ¼ ki; 0pips; implies that the vertices are

in fact the same.

Proposition 6 (Coleman). Suppose f satisfies the Coleman criterion at p and pm

divides n: Then pm divides the degree of each factor of f over Qp:

Proof. Write n as in (1). Since pm divides n; mpns: From (3), pm divides the
denominator of each mi: Then by Corollary 3, pm divides the degree of each factor of
f over Qp: &

Theorem 7. If f ðxÞ ¼
Pn

j¼0 aj
x j

j! in Q½x� satisfies the Coleman criterion, then f is

irreducible over Q:

Proof. Write n ¼
Q

pnp ; the prime factorization of n: As noted in Remark 5,
NPð f ; pÞ ¼ NPðen; pÞ for all p such that np40: In particular, their slopes are the

same. By Proposition 6, pnp divides the degree of each factor of f over Qp; and hence

divides the degree of each factor over Q: Since this is true for all p dividing n; n

divides the degree of each factor of f over Q: &

2. The Irreducibility of L
ð�3�nÞ
n ðxÞ

Since for our purposes we are concerned with L
ðaÞ
n ðxÞ when a ¼ �r � 1� n

for various non-negative integers r; we introduce a more convenient para-
meterization.
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Notation. For r a non-negative integer, let LðrÞ
n ðxÞ ¼ L

ð�r�1�nÞ
n ðxÞ: One can check

that

LðrÞ
n ðxÞ ¼

Xn

j¼0

ðn � j þ 1Þðn � j þ 2Þ?ðn � j þ rÞ
r!

x j

j!
:

Proposition 8. If p is a prime divisor of n and p does not divide r!; then LðrÞ
n ðxÞ satisfies

the Coleman criterion at p:

Proof. Clearly,LðrÞ
n ðxÞ is Hurwitz-integral at p; since p does not divide r!: Let j ¼ ki;

as defined in (2). We have

ordpðaki
Þ ¼ ordpðn � ki þ 1Þ þ ordpðn � ki þ 2Þ þ?þ ordpðn � ki þ rÞ:

For i ¼ 0; 1;y; s � 1; p divides n � ki ¼ biþ1p
niþ1 þ?þ bsp

ns : Since p does not
divide r!; p is certainly not less than r; and thus p does not divide n � ki þ l for
1plpr: Since aks

¼ 1; we have ordpðaki
Þ ¼ 0 for 0pips: &

Combining this with Theorem 7, we have

Corollary 9. If ðn; r!Þ ¼ 1; then LðrÞ
n ðxÞ is irreducible over Q:

The main result of this section is a strengthening of the above for r ¼ 2; namely

Theorem 10. Lð2Þ
n ðxÞ is irreducible for all nX1:

For n odd, Lð2Þ
n ðxÞ is irreducible by Corollary 9. For n � 0 mod 4; we claim that

Lð2Þ
n ðxÞ satisfies the Coleman criterion at p ¼ 2; and thus is irreducible by

Proposition 8 and Theorem 7. We have aj ¼ ðn�jþ1Þðn�jþ2Þ
2

; and we wish to show

that ord2ðajÞ ¼ 0 for j ¼ ki; as in (2).

By assumption, n � ki � 0 mod 4; for 0pips: Hence, ðn � ki þ 1Þðn � ki þ 2Þ �
ð1Þð2Þmod 4; which implies that ðn�kiþ1Þðn�kiþ2Þ

2
� 1 mod 2:

We are left with n � 2 mod 4: This case requires some additional lemmas.

Notation. For the remainder of the proof, we write n ¼ 2k; where k is odd.

Lemma 11. If Lð2Þ
n ðxÞ does not have a factor of degree k over Q; then it is irreducible

over Q:

Proof. Let gðxÞ be any factor of Lð2Þ
n ðxÞ over Q: For any prime p that divides k; by

Proposition 8, NPðLð2Þ
n ; pÞ ¼ NPðen; pÞ: As in the proof of Theorem 7, we can
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conclude that k must divide the degree of g: Hence the only possible degrees for g are
k and 2k: &

To eliminate the possibility of a degree k ¼ n
2
factor, we apply the following

Lemma due to Filaseta.

Lemma 12 (Filaseta). Suppose a0; a1;y; an are integers with ja0j ¼ 1: Let

f ðxÞ ¼
Xn

j¼0
aj

x j

j!
:

Let m be a positive integer pn
2
: If there exists a prime pXm þ 1 and a positive integer r

such that

pr j nðn � 1Þ?ðn � m þ 1Þ;

and pr does not divide an; then f cannot have a factor of degree m over Q:

The proof relies on a theorem of Dumas [3], to the effect that the Newton Polygon
of the product of two polynomials is the Minkowski sum of their respective Newton
Polygons. See [5] for details.

Lemma 13. For nX14; there exists a prime p such that nþ2
2
opon � 2:

Proof. Schur [15, p. 143] proved that for any real number rX29; there exists a prime

p such that ropp5
4
r: Let r ¼ 4ðn�3Þ

5
: Then for n439; there exists p such that

nþ2
2
o4

5
ðn � 3Þoppn � 3on � 2: The reader can easily check the lemma for

14pnp39: &

Assume nX14: We now show that Lð2Þ
n ðxÞ has no factor of degree k: Let

A ¼ ðn þ 1Þðn þ 2Þ
2

:

Then we consider

f ðxÞ ¼ 1

A
Lð2Þ

n ðAxÞ ¼
Xn

j¼0
bj

x j

j!
;

where bj ¼ A j�1ðn�jþ1Þðn�jþ2Þ
2

for 1pjpn; and b0 ¼ 1:Note that the bj are all integers.

By Lemma 13, there exists a prime p in the set

n þ 2

2
þ 1;

n þ 2

2
þ 2;y; n � 3

	 

Cfn � k þ 1; n � k þ 2;y; ng:
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We have

bn ¼ ðn þ 1Þðn þ 2Þ
2

� �n�1
:

Since 2p is greater than n þ 2; p does not divide n þ 1 or n þ 2; hence does not divide
bn: Then by Lemma 12, f ðxÞ has no factor of degree k: It is clear that f ðxÞ has no
factor of degree k if and only if Lð2Þ

n ðxÞ has no factor of degree k:

We have now shown that Lð2Þ
n ðxÞ is irreducible for all n except for 2, 6, and 10

(recall that n � 2 mod 4). In these cases, Lð2Þ
n ðxÞ is irreducible modulo the primes 5,

13, and 109, respectively. This completes the proof of Theorem 10.

3. Galois group calculations

We denote the Galois group of LðrÞ
n ðxÞ by GnðrÞ: In this section, we describe

Coleman’s calculation of Gnð0Þ; and apply his techniques to prove

Theorem 14. For nX1;

Gnð2Þ ¼
An if n ¼ 4kðk þ 1Þ; for k a positive integer:

Sn otherwise:

	

We will make use of the following three facts:

Theorem 15 (Jordan). If G is a transitive subgroup of Sn which contains a p-cycle for

some prime p strictly between n
2

and n � 2; then AnDG:

See [9, Note C] and [10, Theorem 1] for a proof.

Theorem 16 (Chebyshev [1]). For each integer nX8; there exists a prime number p

strictly between n
2

and n � 2:

Lemma 17. The Galois group of a separable polynomial of degree n is contained in An

if and only if its discriminant is a square.

In addition, the following formula was computed by Schur [15, p. 229].

Theorem 18. Let DðaÞ denote the discriminant of L
ðaÞ
n ðxÞ; for aAQ: Then

DðaÞ ¼ n!
Yn

j¼1
ðjcjÞ j�1; where cj ¼ aþ j:

ARTICLE IN PRESS
E.A. Sell / Journal of Number Theory 107 (2004) 266–281272



3.1. The Galois group of the exponential Taylor polynomials

The following proposition can be obtained as a corollary to Coleman’s calculation
of the Newton polygon of enðxÞ at an arbitrary prime p: Again, we write n ¼
b1p

n1 þ b2p
n2 þ?þ bsp

ns ; as in (1).

Proposition 19 (Coleman). Suppose pkpn: Then pk divides the degree of the splitting

field of enðxÞ over Qp:

Proof. If pkpn; we must have kpn1: So pk divides the denominator of the first slope

m1 ¼ �ðpn1�1Þ
pn1 ðp�1Þ ; as calculated in (3). Let a be a root of enðxÞ such that ordpðaÞ ¼ �m1:

By the proof of Corollary 3, pk divides the degree of the extension QpðaÞ=Qp; and

hence pk divides the degree of the splitting field of enðxÞ over Qp: &

Corollary 20. Suppose n
2
oppn is a prime number. Then Gnð0Þ contains a p-cycle.

Proof. By the previous proposition, p divides the degree of the splitting field of enðxÞ
over Qp; which in turn divides the degree of the splitting field of enðxÞ over Q: Thus p

divides the order of Gnð0Þ: Cauchy’s theorem implies that Gnð0Þ contains an element
of order p: Since p4n

2
; the only elements of order p in Sn are p-cycles. &

Combining the facts above, we have that for nX8; Gnð0Þ ¼ An if the discriminant
of enðxÞ is a square, and Gnð0Þ ¼ Sn otherwise. This allowed Coleman to prove the
following theorem, which Schur [15, No. 67] had previously obtained using other
techniques.

Theorem 21 (Schur, Coleman). For nX8;

Gnð0Þ ¼
An if n � 0 mod 4;

Sn otherwise:

	

The following was obtained by Schur’s method, and will be useful to us later.

Theorem 22 (Hajir [8]). For nX14;

Gnð1Þ ¼
An if n � 1 mod 4;

Sn otherwise:

	

3.2. Proof of Theorem 14

Essentially the same argument as above applies in our case. First, suppose nX14

and p is a prime satisfying nþ2
2
opon � 2; which exists by Lemma 13.
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Proposition 23. The Galois group of Lð2Þ
n ðxÞ contains a p-cycle.

Proof. It suffices to show that Lð2Þ
n ðxÞ satisfies the Coleman criterion at p: Indeed,

we would then know that the Newton polygon at p of Lð2Þ
n ðxÞ is the same as that of

enðxÞ (see Remark 5). The proofs of Proposition 19 and Corollary 20 clearly apply to
any polynomial whose Newton polygon at p coincides with that of enðxÞ; giving us
that Gnð2Þ contains a p-cycle.

To show that Lð2Þ
n ðxÞ satisfies the Coleman criterion at p; we note that the

p-adic expansion of n is p1 þ ðn � pÞp0; since no2pop2: In this case, we have
k0 ¼ 0; k1 ¼ p; and k2 ¼ n: We must show that ordpðaki

Þ ¼ 0 for i ¼ 0; 1; and 2,

where aj ¼ ðn�jþ1Þðn�jþ2Þ
2

: Since 2p4n þ 2; it is clear that ordpða0Þ ¼ 0: Now consider

ap ¼ ðn�pþ1Þðn�pþ2Þ
2

: Since n � p þ 1 and n � p þ 2 are both less than n; ordpðapÞ40

implies that p ¼ n � p þ 1 or p ¼ n � p þ 2; i.e., p ¼ nþ1
2

or p ¼ nþ2
2
; which is not

possible. Finally, an ¼ 1; and the proof is complete. &

Hence, for nX14; we have that Gnð2Þ is An if the discriminant is a square, and Sn

otherwise.

Notation. For a; b in Q; we write aBb if a ¼ bc2 for some c in Q:

Using Theorem 18, we calculate:

Dð�3� nÞ ¼ n!
Yn

j¼1
j j�1ð�3� n þ jÞ j�1

¼ n! � 2 � 32?nn�1 � ð�1� nÞð�nÞ2?ð�4Þn�2ð�3Þn�1

¼ 22 � 33?nn � ð�1Þ
nðn�1Þ

2 ðn þ 1ÞðnÞ2ðn � 1Þ3?4n�2 � 3n�1:

If n is odd,

Dð�3� nÞBð�1Þ
nðn�1Þ

2
ðn þ 1Þ!

2
:

Regardless of sign, Dð�3� nÞ cannot be a square for n odd, since for nX14 there is a

prime p such that p divides ðn þ 1Þ!; but p2 does not.
If n is even,

Dð�3� nÞB ð�1Þ
nðn�1Þ

2 ðn þ 1Þ

B
ðn þ 1Þ if n � 0 mod 4;

�ðn þ 1Þ if n � 2 mod 4:

	

ARTICLE IN PRESS
E.A. Sell / Journal of Number Theory 107 (2004) 266–281274



Obviously, Dð�3� nÞ is not a square for n � 2 mod 4: For n � 0 mod 4; it is easy to
check that n þ 1 is a square if and only if n ¼ 4kðk þ 1Þ for some positive integer k:
To complete the proof of Theorem 14, we must only check the cases 1pnp13: The

argument above holds for n ¼ 10 and 11, since for these values of n there is a prime p

in the desired range. For np9; the statement can be verified using the PARI routine
polgalois. Finally, for n ¼ 12 and n ¼ 13; it suffices to check that in both cases,

NP7ðLð2Þ
n ðxÞÞ has one slope whose denominator is divisible by 7. From the proof of

Corollary 3, we deduce that p ¼ 7 divides the order of Gnð2Þ; and hence An is
contained in Gnð2Þ by Theorem 15.

4. The embedding problem

In this section, we describe Feit’s application of a theorem of Serre to certain
generalized Laguerre polynomials, which allowed him to construct explicitly fields
with Galois group isomorphic to the double cover of An for certain values of n: Refer
to [4] for details.

4.1. Feit’s Formula

To describe the setup, we follow Section 2 of [4] closely. Let f ðxÞAQ½x� be a
monic, irreducible polynomial of degree n: Then we have a field E :¼
Q½x�=ð f ðxÞÞCQðyÞ; where y is a root of f : On the other hand, if E is a finite
separable extension of Q; then E ¼ QðyÞ for some y in E: Thus ECQ½x�=ð f ðxÞÞ;
where f ðxÞ is the minimal polynomial of y over Q; so E can be viewed as an n-
dimensional vector space over Q:
Given any a in such a field E; let TrE=QðaÞ be the trace of the ‘‘multiplication by a’’

map. The function a/TrE=Qða2Þ is a non-degenerate quadratic form on E with

values in Q; which we will denote Qð f Þ: This is the quadratic form that appears in
Serre’s Theorem.

Definition 24. Write f ðxÞ ¼
Qn

j¼1ðx � yjÞ; where y1 ¼ y: For all t such that 1ptpn;

define the t  n matrix

At ¼ Atð f Þ ¼ ðaijÞ ¼ ðyi�1
j Þ; 1pipt; 1pjpn:

The matrix An is known as the Vandermonde matrix for f ; and

detðAnÞ ¼
Y
ioj

ðyi � yjÞ:

Furthermore, define

Dt ¼ Dtð f Þ ¼ AtA
T
t
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and

Dt ¼ Dtð f Þ ¼ detðDtÞ:

One checks immediately that

Proposition 25. The matrix for Qð f Þ with respect to the basis f1; y;y; yn�1g is

precisely Dn:

Furthermore, we have the following:

Theorem 26. Suppose Dta0 for 1ptpn: Then Qð f Þ is equivalent over Q to

a1x
2
1 þ?þ anx2

n; where a1 ¼ D1 ¼ n; and at ¼ Dt

Dt�1
; for 2ptpn:

Let ðKn;QÞ be a non-degenerate quadratic module over the field K ; where K

is either Qp for a prime p; or R; which corresponds to p ¼ N: If Q is equivalent

to b1x
2
1 þ b2x

2
2 þ?þ bnx2

n over K ; then the Hasse–Witt Invariant of Q is

defined by

epðQÞ ¼
Y
ioj

ðbi; bjÞp ¼ 71;

where ð�; �Þp denotes the Hilbert symbol at p: It can be shown that the Hasse-Witt

invariant does not depend on choice of orthogonal basis. For details, see [16]. For p a
prime or p ¼ N; let epð f Þ denote the Hasse–Witt invariant of Qð f Þ considered as a

quadratic form over Qp:

Theorem 27. Define D0 ¼ 1 and suppose that Dta0 for 1ptpn: Then

epð f Þ ¼ �1;
Yn�1
j¼1

Dj

 !
p

Yn

j¼1
ðDj�1;DjÞp

( )

for all primes p and p ¼ N:

Feit studied generalized Laguerre polynomials in particular, and was able to
derive an explicit formula that enables us to calculate their Hasse–Witt invariants.
The result is

Theorem 28 (Feit). Let DtðaÞ be Dtð f Þ for f ðxÞ ¼ L
ðaÞ
n ðxÞ; as defined above. Then for

1ptpn;

DtðaÞ ¼
Yn

j¼n�tþ1
jðjcjÞ j�ðn�tþ1Þ; where cj ¼ aþ j:
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4.2. Serre’s Theorem

For nX5; *An will denote the double cover of An; i.e., the group for which there
exists a non-split exact sequence

1-Z=2Z- *An-An-1:

The group *An is unique up to isomorphism. See [11] for details. On the other hand,

Sn has two non-isomorphic double covers, which we denote by *Sn
þ and *Sn

�: In both
cases, we have a non-split exact sequence

1-Z=2Z- *Sn
7-Sn-1:

The distinction between the two groups has to do with transpositions in Sn:

Transpositions lift to elements of order 2 in *Sn
þ; i.e., the preimages of transpositions

in *Sn
þ have order 2. In *Sn

�; transpositions lift to elements of order 4. More details
can be found in [13].

Theorem 29 (Serre [17]). Let L be the splitting field of fAQ½x�; and let G be the Galois

group of L over Q: Fix GDSn; where n is the degree of f ; and let G̃7 be the inverse

image of G in *Sn
7: Then the following are equivalent:

(i) There exists a quadratic extension field M of L which is a Galois extension of Q

with GalðM=QÞCG̃7:
(ii) epð f Þð72;DnÞp ¼ 1 for all primes p and p ¼ N:

An alternate proof can be found in Ledet [13]. For simplicity of notation, we
define

Sþ
p ð f Þ ¼ epð f Þð2;DnÞp;

and

S�
p ð f Þ ¼ epð f Þð�2;DnÞp:

Remark 30. If GDAn; then G̃þ is isomorphic to G̃�; and we need only consider G̃;

the inverse image of G in *An: Note that in this case, Dnð f Þ is a square, so Sþ
p ð f Þ ¼

S�
p ð f Þ ¼ epð f Þ:

Feit applied Serre’s Theorem to L
ðaÞ
n ðxÞ for a ¼ 1 via Theorem 28, and Hajir [8] did

the same for LðrÞ
n ðxÞ with r ¼ 0 and 1. Continuing along this line, we will prove the

following:

Theorem 31. The splitting field of Lð2Þ
n ðxÞ can be embedded in a field M with Galois

group isomorphic to *An if and only if n ¼ 4kðk þ 1Þ; for k a positive integer.
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In light of Serre’s Theorem and Theorem 14, this follows from the proposition
below, coupled with the following observation: If n ¼ 4kðk þ 1Þ for a positive integer
k; then n þ 1 is an odd square, and n is congruent to 0 modulo 8.
In proving this proposition, we will often make use of the standard properties of

the Hilbert symbol, as listed in [4, p. 235]. Some elementary steps will be left to the
reader.

Proposition 32. Suppose n � 0 mod 4: If for all primes q � 3 mod 4 such that q divides

n þ 1; ordqðn þ 1Þ � 0 mod 2; then

Sþ
p ðLð2Þ

n ðxÞÞ ¼
1 if n � 0 mod 8;

ð�1;�1Þp if n � 4 mod 8:

(

Proof. Set Dt :¼ Dtð�3� nÞ: By Theorem 28,

Dt ¼ ntðn � 1Þt�1?ðn þ 1� tÞ � ð�3Þt�1ð�4Þt�2?ð�ðt þ 1ÞÞ: ð4Þ

Write

Yn�1
t¼1

Dt ¼
Y
odd t

Dt

( ) Y
even t

Dt

( )

B fð�1Þ
n
4nðn � 2Þ?4 � 2gfð�1Þ

n
4g

B nðn � 2Þ?4 � 2:

Due to the multiplicative properties of the Hilbert Symbol, we may write

Yn

t¼1
ðDt�1;DtÞp ¼

Yn
2

k¼1
ðD2k�1;D2k�2D2kÞp:

Define z0 ¼ ð�1;
Qn�1

t¼1 DtÞp; and zk ¼ ðD2k�1;D2k�2D2kÞp; for 1pkpn
2
: So, by

Theorem 27,

Sþ
p ðLð2Þ

n ðxÞÞ ¼ ð2;DnÞp

Yn
2

k¼0
zk:

We calculate:

D2k�1Bð�1Þk�1
nðn � 2Þ?ðn þ 2� 2kÞ � 4 � 6?2k;

D2kBð�1Þkðn � 1Þðn � 3Þ?ðn þ 1� 2kÞ � 3 � 5?ð2k þ 1Þ;

D2k�2Bð�1Þk�1ðn � 1Þðn � 3Þ?ðn þ 3� 2kÞ � 3 � 5?ð2k � 1Þ;

ARTICLE IN PRESS
E.A. Sell / Journal of Number Theory 107 (2004) 266–281278



so that for 1pkpn
2
;

zk ¼ ðð�1Þk�1
nðn � 2Þ?ðn þ 2� 2kÞ � 4 � 6?2k;�ð2k þ 1Þðn þ 1� 2kÞÞp: ð5Þ

The involution k2n�2k
2

has the unique fixed point n
4
on the set f1;y; n�2

2
g: Write

Sþ
p ðLð2Þ

n ðxÞÞ ¼ z0zn
4
zn
2
ð2;DnÞp

Yn�44
k¼1

zkzn�2k
2

:

One can check that zkzn�2k
2

¼ 1 for 1pkpn�4
4
: Using (4), (5), and the fact that

ð�1; 2Þp ¼ 1 for all primes p and p ¼ N;we calculate:

z0 � zn
4
¼ð�1; nðn � 2Þ?4 � 2Þp � ð�1; ð�1Þ

n�4
4 nðn � 2Þ?6 � 4Þp

¼ð�1;�1
n�4
4 Þp;

zn
2
� ð2;DnÞp ¼ð�2;�ðn þ 1ÞÞp � ð2; n þ 1Þp

¼ð�1;�ðn þ 1ÞÞp � ð2;�ðn þ 1ÞÞp � ð2; n þ 1Þp

¼ð�1;�ðn þ 1ÞÞp:

Thus,

Sþ
p ðLð2Þ

n ðxÞÞ ¼
ð�1; n þ 1Þp if n � 0 mod 8;

ð�1;�ðn þ 1ÞÞp if n � 4 mod 8:

(

Now we need the following lemma, the proof of which is left to the reader.

Lemma 33. For m a positive integer, ð�1;mÞp ¼ 1 for all p if and only if for every

prime q � 3 mod 4; ordqðmÞ � 0 mod 2:

Observing that ð�1;�ðn þ 1ÞÞp ¼ ð�1;�1Þp � ð�1; n þ 1Þp; the argument is com-

plete. &

4.3. Summary of known results

The following tables provide a summary of calculations of the Hasse–Witt

invariants for LðrÞ
n ðxÞ known to the author. The entries in bold indicate results

concerning *An; as opposed to *Sn
7 (see Section 3). Unless otherwise indicated,

calculations can be found in [19]. Note that the entries in Table 2 are easily obtained
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from those in Table 1, since

S�
p ð f Þ ¼ Sþ

p ð f Þð�1;DnÞp:
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