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Abstract

The authors study a heteroscedastic partially linear regression model and develop an inferential procedure
for it. This includes a test of heteroscedasticity, a two-step estimator of the heteroscedastic variance function,
semiparametric generalized least-squares estimators of the parametric and nonparametric components of the
model, and a bootstrap goodness of fit test to see whether the nonparametric component can be parametrized.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In regression modeling, when the mean response has a known relationship to some variables
and an unknown relationship to additional variables, a semiparametric approach can be called in
to reduce the high risk of model misspecification relative to a fully parametric model and avoid
some serious drawbacks of a fully nonparametric model. One such a semiparametric model is the
partially linear regression model introduced by Engle et al. [3] to study the effect of weather on
electricity demand. Formally, a partially linear regression model can be defined as

yi = x�
i � + g(ti) + �i , i = 1, . . . , n, (1.1)
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where yi are responses, xi = (xi1, . . . , xip)� are design points, � = (�1, . . . , �p)� is a p-vector
of unknown parameters, ti ∈ [0, 1] are additional design points for an unknown nonlinear rela-
tionship g(·) defined on [0, 1], �i are unobservable random errors and the prime � denotes the
transpose of a vector or matrix.

Model (1.1) has been studied extensively by many researchers; see, for example, the book by
Härdle et al. [6] and the references therein. Usually, the errors are assumed to be i.i.d. to start.
However, heteroscedasticity is often found in residuals from both cross-sectional and time series
modeling in applications; see Baltagi [1]. It is well known that if the errors are heteroscedastic, the
least-squares estimator of � is inefficient and the conventional estimator of the covariance matrix is
usually inconsistent. When g(·) ≡ 0 in model (1.1), namely, the standard linear regression model,
many authors have addressed the related problems such as how to detect heteroscedasticity, how
to construct efficient estimators of �, how to construct consistent estimators of the corresponding
covariance matrices and so on. However, for model (1.1) little has been discussed on how to detect
heteroscedasticity, and, when heteroscedasticity does exist, on how to estimate it and conduct
inference subsequently.

In this paper we consider the following heteroscedastic partially linear regression model:

yi = x�
i � + g(ti) + �(ti)�i , i = 1, . . . , n, (1.2)

where �i are i.i.d. with E�1 = 0 and E�2
1 = 1, �(·) is an unknown function defined on [0, 1] and

the rest are defined similarly to model (1.1).
To fix idea, we assume that both xi and ti are fixed, and {ti}ni=1 forms an asymptotically regular

sequence [11] in the sense that∫ ti

0
p(t) dt = i − 1

n − 1
, (1.3)

where p(·) is a positive density function on [0, 1]. This setup is more for preference and ease of
presentation than necessary. For example, Robinson [8] allowed both xi and ti to be random, and
allowed dependence of �(·) on both xi and ti . In principle, the results we shall establish in this
paper can be translated to the setup of Robinson [8].

The plan of this paper is as below. In Section 2 we develop a test of heteroscedasticity under
model (1.2), and a two-step estimator of �(·) when it is not constant. In Section 3, we construct
semiparametric generalized least-squares estimators (SGLSEs) of � and g(·), respectively. In
Section 4 we develop a bootstrap goodness of fit test to see whether g(·) can be parametrized. In
Section 5 we study the finite sample behaviors of our proposed tests and estimators, and illustrate
their use with a real data set. In Section 6, we offer some discussions. The technical details are
given in the Appendix.

2. A test of heteroscedasticity

We adopt the test in Dette [2] to test

H0: �(·) = � versus H1: �(·) �= � (2.1)

for model (1.2), where � > 0 is an unknown constant. Dette’s test was constructed for model
(1.2) with � = 0. In order to adopt Dette’s test, we proceed as below. From (1.3), the spacing
ti+1 − ti is of order O(1/n), so g(ti+1) − g(ti) = O(1/n) holds for i = 1, . . . , n − 1 under
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Assumption 2 in the Appendix. Then, we have

yi+1 − yi = g(ti+1) − g(ti) + (x1i+1 − x1i )�1 + · · · + (xpi+1 − xpi)�p

+�(ti+1)�i+1 − �(ti)�i
≈ (x1i+1 − x1i )�1 + · · · + (xpi+1 − xpi)�p + ��i , (2.2)

where ��i = �(ti+1)�i+1 − �(ti)�i . Expression (2.2) allows us to estimate � with

�̃n =
(

n−1∑
i=1

(xi+1 − xi)(xi+1 − xi)
�

)−1 n−1∑
i=1

(xi+1 − xi)(yi+1 − yi).

Now we define y�
i = yi −x�

i �̃n, i = 1, . . . , n, and construct our test statistic by applying Dette’s
procedure to {y�

i }. Specifically, for a fixed positive integer � < n, using a �th order difference

sequence {�(1)
j : j = 1, . . . , �} that satisfies

∑�
j=0 �(1)

j = 0 and
∑�

j=0(�
(1)
j )2 = 1, such as

(1, −1)/
√

2 for � = 1 and (1, −2, 1)/
√

6 for � = 2 (see [2] for more details), we define our test
statistic T �

n by

T �
n = 1

(n − �)(n − � − 1)h1

∑
|i−j |��+1

K

(
ti − tj

h1

)
(R�2

n,� − R̄�2
i,�)(R

�2
j,� − R̄�2

j,�),

where K(·) is a kernel defined on [−1, 1], h1 is the bandwidth,

R�2
i,� =

⎛⎝ �∑
j=0

�(1)
j y�

i−j

⎞⎠2

, i = � + 1, . . . , n, R̄�2
n,� = 1

n − �

n∑
i=�+1

R�2
i,�.

Let

∇(·) = �2(·) −
∫ 1

0
�2(t)p(t) dt, ∇p =

∫ 1

0
∇(t)p(t) dt.

We have the following theorem to support our test.

Theorem 2.1. If Assumptions 1–4 in the Appendix hold, then we have:

(i) Under the null hypothesis H0,

n
√

hT �
n →D N(0, �2

0(�)) as n → ∞,

where

�2
0(�) = 2�8

∫ 1

−1
K2(t) dt

∫ 1

0
(�4(t)E�4

1 − 1 + 4	�)
2p2(t) dt,

	� =
�∑

k=1

⎛⎝�−k∑
j=0

�(1)
j �(1)

j+k

⎞⎠2

.

(ii) Under the alternative hypothesis H1,

√
n

{
T �

n − 1

h

∫ 1

0

∫ 1

0
K

(
t − t∗

h

)
∇(t)∇(t∗)p(t)p(t∗) dtdt∗

}
→D N(0, �2

1(�)) as n → ∞,
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where the asymptotic variance is given by

�2
1(�) = 4

∫ 1

0
(�4(t)E�4

1 − 1 + 4	�)�
4(t)((∇p)(t) − ∇p)2p(t) dt.

According to Dette [2], we have a consistent test if we reject the null hypothesis H0 when
n
√

hT �
n > u1−
̂�0(�), where u1−
 denotes the (1−
) quantile of the standard normal distribution

and �̂2
0(�) is a consistent estimator of �2

0(�). As in Dette [2], one such �̂2
0(�) is

�̂2
0(�)=2

{
2

n − 3

n−2∑
i=2

R�4
i,�R

�4
i+2,�−

12

n − 5

n−4∑
i=2

R�4
i,�R

�2
i+2,�R

�2
i+4,�+9(R̄�2

n,�)
4

} ∫ 1

−1
K2(t) dt.

If heteroscedasticity is present, in principle we can construct a consistent estimator of �2(·)
from the residuals after fitting model (1.2) to the data. However, we here choose to apply the
two-step method of Müller and Stadtmüller [7] to estimate �2(·) based on {y�

i = yi − x�
i �̃n}ni=1

to avoid estimating the nonparametric component g(·). The first step is to construct some initial
estimators �̃2(·) and the second step is to improve these initial estimators through nonparametric
smoothing.

Let t�0 be an interior point of [0, 1]. We follow Müller and Stadtmüller [7] to construct a local
variance estimator at t�0 to be

�̃2(t�0) =
⎛⎝ j2∑

j=j1

�(2)
j (yj+�0 − x�

j+�0
�̃n)

⎞⎠2

,

where m�2 is a fixed integer, j1 = −[m/2], j2 = [m/2 − 1
4 ], [a] denotes the largest integer �a

and the �(2)
j satisfy

j2∑
j=j1

�(2)
j = 0 and

j2∑
j=j1

(�(2)
j )2 = 1.

Two popular choices for �(2)
j are again (1, −1)/

√
2 for m = 2 and (1, −2, 1)/

√
6 for m = 3.

Of the many nonparametric smoothing methods available, we choose to use the local linear
smoother of Chiou and Müller [12], which has the form

�̂2
n(t) =

n∑
i=1

Wh2i (t)�̃
2(ti), (2.3)

where the weight functions Wh2i (·) have the following explicit form (Fan [13]; Fan and Gijbels
[14]):

Wh2i (·; t1, . . . , tn) = (nh2)
−1K(h−1

2 (ti − ·)){An,2(·) − (ti − ·)An,1(·)}
An,0(·)An,2(·) − A2

n,1(·)
,

with

An,j (·) = 1

nh2

n∑
i=1

K

(
ti − ·
h2

)
(ti − ·)j , j = 0, 1, 2,

and h2 as the bandwidth.
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Theorem 2.2. If Assumptions 1–3 and 5 in the Appendix hold, then we have

sup
0� t �1

|̂�2
n(t) − �2(t)| = Op

[
h2

2 + (log n/(nh2))
1/2

]
.

The bandwidth h2 can be chosen by cross-validation suitably modified for leave-out (m − 1)

data points. See Müller and Stadtmüller [7] for details.

3. Semiparametric generalized least-squares estimation

Without considering heteroscedasticity, a semiparametric least-squares estimator (SLSE) of
� can be constructed as below. Assume that {x�

i , ti , yi; i = 1, . . . , n} satisfy model (1.2). If � is
known to be the true parameter, then by E�i = 0 we have g(ti) = E(yi − x�

i �) for i = 1, . . . , n.

Hence, a natural nonparametric estimator of g(·) given � is

g̃(t, �) =
n∑

i=1

Wh3i (t)(yi − x�
i �),

where the weight functions Wh3i (·) have the same form as Wh2i (·) in Section 2 except that the
bandwidth h2 is replaced by h3. To estimate �, we seek to minimize

SS(�) =
n∑

i=1

[
yi − x�

i � − g̃(ti , �)
]2

. (3.1)

The minimizer to (3.1) is found as

�̂n = (X̂�X̂)−1X̂�̂y,

where ŷ = (ŷ1, . . . , ŷn)
�, X̂ = (̂x1, . . . , x̂n)

�, ŷi = yi − ∑n
j=1 Wh3j (ti)yj and x̂i = xi −∑n

j=1 Wh3j (ti)xj for i = 1, . . . , n.

To improve upon �̂n, we construct an SGLSE of � by taking the heteroscedasticity of model
(1.2) into consideration. Let �̂ = diag(̂�2(t1), . . . , �̂2(tn)). Our SGLSE of � is defined as

�̂w
n = (X̂��̂−1X̂)−1X̂��̂−1̂y.

With � estimated, our SGLSE estimator of the nonparametric component g(·) is

ĝw
n (t) =

n∑
i=1

Wh3i (t)(yi − x�
i �̂

w
n ).

Theorem 3.1. Suppose that Assumptions 1–3, 5 and 6 in the Appendix hold. Then we have
√

n(̂�w
n − �) →D N(0, V −1) as n → ∞,

where V = limn→∞ 1
n

U ��U with � = diag(�2(t1), . . . , �2(tn)) and U = (u1, . . . , un)
� is

defined in Assumption 1.

Similar to Theorem 2.2.1 of You [10] the asymptotic covariance matrix of
√

n(̂�n − �) is

V −1
0 =

(
lim

n→∞ n−1U �U
)−1 (

lim
n→∞ n−1U ��U

) (
lim

n→∞ n−1U �U
)−1

.
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Since �−1/2U
(
U ��−1U

)−1
U ��−1/2 is an idempotent matrix with rank p, we have

V −1
0 − V −1 = lim

n→∞ n

{
(U �U)−1U ��1/2

(
I − �−1/2U

(
U ��−1U

)−1
U ��−1/2

)
× �1/2U(U �U)−1

}
�0.

This implies that �̂w
n is asymptotically more efficient than �̂n in terms of asymptotic covariance

matrix.
To make statistical inference based on �̂w

n , a consistent estimator of the asymptotic covariance
matrix V −1 is needed. Define

V̂n = 1

n
X̂�diag(̂�2

n(t1), . . . , �̂
2
n(tn))

−1X̂.

Theorem 3.2. Suppose that Assumptions 1–3, 5 and 6 in the Appendix hold. Then V̂n is a con-
sistent estimator of V, namely, V̂n − V →p 0 as n → ∞.

Theorems 3.1 and 3.2 can be used to construct tests and confidence intervals for the parametric
component �. For the SGLSE estimator ĝw

n (·) of the nonparametric component g(·), we have the
following result.

Theorem 3.3. Suppose that Assumptions 1–3, 5 and 6 in the Appendix hold. Then we have

√
nh3

[
ĝw

n (t0) − g(t0) − h2
3

2

�2
2 − �1�3

�2 − �2
1

g′′(t0)
]

→D N(0, �(t0)) as n → ∞

provided that p(t0) �= 0, where

�j =
∫ 1

−1
tjK(t) dt, �j =

∫ 1

−1
tjK2(t) dt

and

�(t0) = �2(t0)(
2
0�0 +2
0
1�1 + 
2

1�2)

p(t0)
with 
0 = �2/(�2 − �2

1), 
1 = −�1/(�2 − �2
1).

Bandwidth selection is important to estimate g(·) and much less so to estimate �. From the
difference estimate �̃ of �, we can rewrite model (1.2) approximately as

Yi − x�
i �̃ = g(ti) + ��i .

Therefore, we can get a good starting value for h3 by applying the usual bandwidth selection
methods, such as the pre-asymptotic substitution method, the cross-validation method or the plug
in bandwidth selector.

4. Bootstrap goodness of fit test

The nonparametric component g(·) in model (1.2) is meant for capturing any unknown relation-
ship between yi and ti . When evidence suggests that such a relationship exists in initial modeling,
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it is worth the effort to identify this relationship so that model (1.2) can be improved. Here, we
extend the generalized likelihood technique in Fan et al. [5] to model (1.2).

Consider the null hypothesis

H0: g(t) = 
(t, �), (4.1)

where 
(·, �) is a given family of functions indexed by an unknown parameter vector �. Let �̂n be
an estimator of �. The weighted residual sum of squares under the null hypothesis is

RSS0 = 1

n

n∑
i=1

(yi − x�
i �̂n − 
(ti , �̂n))

2w(ti),

where w(t) is a weight function. Analogously, the weighted residual sum of squares corresponding
to model (1.2) is

RSS1 = 1

n

n∑
i=1

(yi − x�
i �̂n − ĝn(ti))

2w(ti),

where ĝn(ti) = ∑n
j=1 Wh3j (ti)(yj − x�

i �̂n). Our test statistic is a quasi-likelihood ratio statistic
that is defined as

Qn = n

2

(
RSS0 − RSS1

RSS1

)
= n

2

(
RSS0

RSS1
− 1

)
≈ n

2
log

RSS0

RSS1
(4.2)

and we reject the null hypothesis (4.1) for large values of Qn. If the weight function w(t) is
continuous with a compact support contained in [0, 1], then it is easy to show by similar argument
to that used in Fan et al. [5] that the distribution of aKQn can be approximated by �2

bn
, where rK

and bn are defined by

aK = rK

∫ 1

0
�2(t)p(t) dt

∫ 1

0
�2(t)w(t) dt

[∫ 1

0
�4(t)w(t) dt

]−1

,

bn = rKcKh−1
∫ 1

0
�2(t)w(t) dt

[∫ 1

0
�4(t)w(t) dt

]−1

and

rK = K(0) − 2−1
∫ 1
−1 K2(t) dt∫ 1

−1[K(t) − 2−1K ∗ K(t)]2 dt
, cK = K(0) − 2−1‖K‖2

2,

where K ∗ K denotes the convolution of K. This implies that

(2bn)
−1/2(akQn − bn) →D N(0, 1).

An important consequence of the above result is that one does not have to derive the theoretical
constants bn and aK to be able to use the generalized likelihood ratio test. As long as the above
Wilk’s type of result holds, one can simply simulate the null distribution of the test statistic by
bootstrap sampling.
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Because of the heteroscedasticity in model (1.2), we apply the wild bootstrap method of Wu
[9] to compute the p-value of our test as shown below:

Step 1: Fitting model (1.2) to compute Qn and estimate the residuals {�(ti)�i}ni=1 by {̂ei}ni=1
where

êi = yi − x�
i �̂n − 
(ti , 
̂), i = 1, . . . , n.

Step 2: Let � be a random variable with distribution function F(·) such that E� = 0, E�2 = 1
and E|�|3 < ∞. We stress that F(·) is chosen independently of model (1.2). Generate a random
sample {�i}ni=1 from F(·).

Step 3: Define y∗
i = x�

i �̂n + 
(ti , 
̂) + êi�i for i = 1, . . . , n, and compute the bootstrap test
statistic Q∗

n according to (4.2) based on the sample {ti , xi , y
∗
i }.

Step 4: Repeat Steps 2 and 3 a large number M of times and approximate the p-value of our
test with the percentage of times the event {Q∗

n �Qn} occurs. Reject H0 in (4.1) at level 
 if this
p-value is less than 
.

5. Simulation and application

We carry out a Monte Carlo study in this section to investigate the performance of our proposed
test and estimators for finite samples.

Test of heteroscedasticity: Observations are generated from

yi = x1i�1 + x2i�2 + g(ti) + �(ti)�i , i = 1, . . . , n, (5.1)

where �1 = 1.5, �2 = 2.0, ti = (i − 0.5)/n, x1i are i.i.d N(0, 1), x2i are i.i.d �2 with 1 degree
of freedom, g(t) = sin(2�t) or 1.5t2/(t2 + 1), �i are i.i.d N(0, 1) and �(t) follows two models:
(I) �(t) = 1 + c cos(2�t) and (II) �(t) = 1 + c sin(4�t), with c taking values from {0, 0.5, 0.8}.
We generate 5000 samples from each setup (the x1i and x2i values are generated once for each n,
c and model combination) and calculate the empirical size and power of our test at 0.025, 0.05
and 0.10 levels. The kernel is K(t) = 3

4 (1 − t2)I {|t |�1}, both �(1)
j and �(2)

j use (1, −1)/
√

2
and bandwidth h1 is the one in equation (4.4) of Dette [2]. The results are in Table 1.

Table 1
Empirical sizes and powers of our test for heteroscedasticity

c n = 50 n = 100 n = 200

0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

g(t) = sin(2�t) I 0.0 0.031 0.051 0.090 0.035 0.055 0.099 0.038 0.060 0.102
0.5 0.167 0.217 0.298 0.322 0.389 0.481 0.534 0.609 0.689
0.8 0.333 0.398 0.486 0.626 0.695 0.765 0.873 0.905 0.937

II 0.0 0.028 0.047 0.090 0.033 0.053 0.096 0.037 0.060 0.104
0.5 0.204 0.259 0.350 0.382 0.456 0.549 0.581 0.654 0.739
0.8 0.417 0.496 0.595 0.672 0.738 0.810 0.890 0.927 0.956

g(t) = (1.5t2)/(t2 + 1) I 0.0 0.031 0.054 0.092 0.033 0.053 0.098 0.034 0.058 0.100
0.5 0.185 0.236 0.312 0.324 0.392 0.487 0.533 0.617 0.701
1.0 0.350 0.421 0.520 0.625 0.691 0.766 0.870 0.902 0.932

II 0.0 0.034 0.052 0.089 0.034 0.057 0.097 0.042 0.063 0.110
0.5 0.221 0.280 0.369 0.382 0.454 0.545 0.588 0.669 0.749
1.0 0.419 0.501 0.598 0.695 0.760 0.822 0.902 0.929 0.954
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Table 2
Sample means, sample standard deviations (SDs) and sample relative efficiencies (REs) of �̂n, �̂w

n and �̄w
n

g(t) = sin(2�t) g(t) = (1.5t2)/(t2 + 1)

I II I II

c = 0 c = 0.5 c = 0.8 c = 0.5 c = 0.8 c = 0 c = 0.5 c = 0.8 c = 0.5 c = 0.8

�̂1n Mean 1.500 1.496 1.496 1.499 1.498 1.498 1.501 1.502 1.498 1.499
SD 0.074 0.075 0.080 0.077 0.089 0.073 0.077 0.084 0.076 0.081
RE 1.000 1.731 5.125 1.671 6.539 1.000 1.719 6.071 1.658 5.266

�̂2n Mean 2.000 2.003 2.000 2.003 2.000 2.001 1.999 2.001 1.998 1.998
SD 0.053 0.059 0.060 0.058 0.061 0.054 0.056 0.061 0.056 0.062
RE 1.000 1.567 5.435 1.713 5.722 1.000 1.742 5.559 1.683 5.486

�̂w
1n Mean 1.503 1.498 1.497 1.498 1.497 1.498 1.501 1.500 1.500 1.499

SD 0.075 0.060 0.037 0.062 0.047 0.073 0.062 0.038 0.062 0.041
RE 1.021 1.086 1.113 1.089 1.810 1.015 1.113 1.224 1.103 1.376

�̂w
2n Mean 2.001 2.002 2.000 2.002 1.999 2.001 2.004 2.000 1.999 2.000

SD 0.054 0.048 0.027 0.046 0.032 0.055 0.045 0.029 0.047 0.029
RE 1.021 1.030 1.113 1.095 1.571 1.032 1.118 1.297 1.164 1.246

�̄w
1n Mean 1.500 1.498 1.497 1.499 1.498 1.498 1.500 1.499 1.500 1.499

SD 0.074 0.057 0.035 0.060 0.035 0.073 0.059 0.034 0.059 0.035

�̄w
2n Mean 2.000 2.002 2.000 2.002 2.000 2.001 2.000 2.000 2.000 2.000

SD 0.0537 0.047 0.025 0.044 0.025 0.054 0.042 0.026 0.043 0.026

We see from Table 1 that even for n = 50, the normal approximation to the finite sample
distribution of our test statistic is very good, and the power of our test is decent.

Estimation of �: Observations are generated from (5.1) as above and, during model fitting, the
bandwidth h2 for the estimation of �(t) = 1 + c cos(2�t) or 1 + c sin(4�t) and the bandwidth h3
for the estimation of g(t) = sin(2�t) or 1.5t2/(t2 + 1) are selected by grid search, aided by the
idea discussed in Section 3.

We compare the performance of the SLSE �̂n = (̂�1n, �̂2n)
� with that of the SGLSE �̂

w

n =
(̂�

w

1n, �̂
w
2n)

� in terms of sample mean, sample standard deviation (SD) and sample relative efficiency
(RE), where the sample RE of an estimator is the ratio of the mean square error of the estimator to
the mean square error of the benchmark estimator �̄w

n = (�̄w
1n, �̄

w
2n)

�, where �̄w
n has the same form

as that of �̂w
n except that the true error variances are used in the weighting. The results for n = 200

are given in Table 2. We see from Table 2 that both �̂n and �̂w
n are asymptotically unbiased, but

�̂w
n generally has smaller SDs than �̂n as expected. Also the improvement of �̂w

n over �̂n increases
as the level of heteroscedasticity becomes high.

The power of the bootstrap goodness of fit test: To demonstrate the power of our bootstrap
goodness of fit test, we consider the null hypothesis

H0: g(ti) = 
ti for all i = 1, . . . , n,

namely a linear trend, against the alternative

H1: g(ti) �= 
ti for at least one i.
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Fig. 1. Power curves of our bootstrap goodness of fit test with sample size n = 200. Solid curve is under
�(t) = 1 + 0.5 cos(2�t); dash-dotted curve is under �(t) = 1 + 0.8 cos(2�t).

At 5% significance level, the power function is evaluated under a sequence of alternative models
indexed by c, namely, H1: g(ti) = 
ti + sin(c�ti ), i = 1, . . . , n.

The distribution F(·) we use is a two-point distribution that assigns �i = −(
√

5 − 1)/2 with
probability (

√
5 + 1)/(2

√
5) and �i = (

√
5 + 1)/2 with probability 1 − (

√
5 + 1)/(2

√
5). We

simulate data from (5.1) and for each setup we conduct our bootstrap goodness of fit test with
weight function w(x) = 1 and M = 500 bootstrap samples. Fig. 1 contains some representative
results. We see from Fig. 1 that when the null hypothesis holds (c = 0) the powers are very close
to the significant level 5%. This demonstrates that the bootstrap estimate of the null distribution
of the test is approximately correct. When we move away from the null hypothesis (c > 0), the
power of our test increases to 1 quickly.

An application: We illustrate the use of our proposed tests and estimators by analyzing a data
set from the National Survey of Youth (NLSY). NLSY is a widely used panel survey containing a
wealth of demographic and labor market information on young males and females in the USA. We
here analyze 151 white males from NLSY by the courtesy of Professor Gary Koop of University
of Strathclyde, UK. Our dependent variable yi is the log of hourly wage, our parametric explana-
tory variables are tenure (weeks on current job) (xi1), ability based on standardized AFQT test
score (xi2), father’s education (years of schooling) (xi3), indicate variable for urban versus rural
residence (xi4) and our nonparametric explanatory variable ti is education (years of schooling)
scaled into [0, 1].

We first check for heteroscedasticity. The p-value of our test is 0.032 and Fig. 2 shows our esti-
mate of �2(·). It is clear that we need to assume heteroscedasticity. Our SGLSE of (�1, �2, �3, �4)

is (0.069, −0.010, 0.216, −0.072)with standard errors (0.028, 0.057, 0.085, 0.227), respectively.
Therefore, only tenure and urban versus rural residence are significantly related to log of hourly
wage. Fig. 3 plots our SGLSE of g(·), which suggests a quadratic function of t. As a possibility to
simplify the model, we conduct our bootstrap goodness of fit test of H0: g(t) = 
0 + 
1t + 
2t

2.
The p-value from M = 1000 bootstrap samples is 0.378, confirming the reasonableness of H0
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Fig. 3. Estimate ĝw
151(t) of the nonparametric function g(t).

and leading to the simplified linear model (standard errors are in parentheses)

ŷi = 0.073xi1 + 0.221xi4 + 1.382 + 1.802t − 1.060t2

(0.028) (0.085) (0.208) (0.762) (0.474).

6. Discussions

In this paper we have developed a procedure to conduct statistical inference on a partially
linear regression model with independent but heteroscedastic errors. The large sample test of
heteroscedasticity is shown to perform well, the SGLSE of � significantly improves the usual
SLSE and the bootstrap goodness of fit test to identify potential relationships captured by the
nonparametric component of the model turns out to be powerful.

The procedure we have developed consists of adaptations and/or extensions of the existing
methodologies. Our goal is to offer the practitioners a user-friendly procedure. For this, we avoid
estimating the nonparametric component of the model whenever we can, and we bootstrap when
the normal approximation is complicated.
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In times series or cross-sectional studies, heteroscedasticity and autocorrelation may stem from
a common cause and thus occur simultaneously. For example, the effects of omitted variables may
give rise to both occurrences. When this is the case, the procedure developed in this paper may
need modifications to be valid. We shall address this issue in a future study.

Appendix A. Assumptions and proofs of the main results

The following assumptions are needed in this paper.

Assumption 1. There exist some bounded functions hj (·), j = 1, . . . , p, over [0, 1] such that

xij = hj (ti) + uij , i = 1, . . . , n, j = 1, . . . , p, (a)

where ui = (ui1, . . . , uip)� are real sequences satisfying

lim
n→∞

1

n

n∑
i=1

uiu�
i = B (b)

and

max
1� j �n

∥∥∥∥∥
n∑

i=1

Wh3i (tj )ui

∥∥∥∥∥ = o(	n), (c)

where B is a p × p positive definite matrix, ‖ · ‖ denotes the Euclidean norm and 	n satisfies
O(	n) · O[h2

3 + (log n/(nh3))
1/2] = o(n−1/2).

Assumption 2. The functions g(·), �(·) and hj (·), j = 1, . . . , p, have the continuous second
derivatives on [0, 1].

Assumption 3. The kernel K(·) is a density function defined on [−1, 1] with zero mean and
finite variance, and is Lipschitz continuous of order �0.5.

Assumption 4. The bandwidth h1 satisfies n1/2h8
1 → 0 and nh2

1/(log n)2 → ∞ as n → ∞.

Assumption 5. The bandwidth h2 satisfies n1/2h8
2 → 0 and nh2

2/(log n)2 → ∞ as n → ∞.

Assumption 6. The bandwidth h3 satisfies n1/2h8
3 → 0 and nh2

3/(log n)2 → ∞ as n → ∞.
Moreover,

O[h2
2 + (log n/(nh2))

1/2] · O[h2
3 + (log n/(nh3))

1/2] = o(n−1/2).

In order to prove the main results in the paper, we first present several lemmas. Lemma A.1 is
a standard result in nonparametric regression estimation.

Lemma A.1. Suppose that Assumptions 2, 3, 5 and 6 hold. Then we have

sup
0� t �1

∣∣∣∣∣�2(t) −
n∑

i=1

Wh2i (t)�
2(t)

∣∣∣∣∣ = O
[
h2

2 + (log n/(nh2))
1/2

]
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and

sup
0� t �1

∣∣∣∣∣g(t) −
n∑

i=1

Wh3i (t)g(t)

∣∣∣∣∣ = O
[
h2

3 + (log n/(nh3))
1/2

]
.

The following lemma is from Shi and Lau [15].

Lemma A.2. Let {�i}ni=1 be an independent random variable sequence with mean zero and
max1� i �n E|�i |s < c < ∞ for some s > 1, where c is a constant. Let {anij , 1� i, j �n}
be a series of real numbers such that max1� j �n

∑n
i=1 |anij |�c0 < ∞ where c0 is a constant.

Then we have

max
1� i �n

∣∣∣∣ n∑
j=1

anij �j

∣∣∣∣ = Op (pn log n) ,

where pn = min(n1/sdn, d
1/2
n ) and dn = max1� i,j �n | anij |.

Lemma A.3. Suppose that Assumptions 1–3, 5 and 6 hold. Then we have
√

n
(
�̄w

n − �
) →D N(0, V −1) as n → ∞,

where �̄w
n = (X̂��−1X̂)X̂��−1̂y.

A proof of Lemma A.3 can be found in You [10].

Lemma A.4. Suppose that Assumptions 1–3, 5 and 6 hold. Then, with probability tending to 1,
for any given ��

1 satisfying ‖��
1 − �10‖ = Op(n−1/2) and any constant c,

L{(���
1 , 0)�} = min

‖�2|�cn−1/2
L{(���

1 , ��
2)

�}.

A proof of Lemma A.4 follows the arguments in proving Lemma 4.4 of Fan and Li [4]. We
here omit the detail.

Proof of Theorem 2.1. For simplicity, we prove the theorem when � = 1. The case where
� > 1 can be proved similarly. Let Ri,2 = (yi − x�

i � − yi−1 + x�
i−1�) for i = 2, . . . , n and

R̄2
2 = ∑n

i=2 R2
i,2/(n − 1). Then we have

R�
i,2 = R2

i,2 + 1

2

[
(xi − xi−1)

�(� − �̃n)
]2

+(g(ti) − g(ti−1) + �i − �i−1)
[
(xi − xi−1)

�(� − �̃n)
]

and

R̄�
2 = R̄2

2 + 1

2(n − 1)

n∑
i=2

[
(xi − xi−1)

�(� − �̃n)
]2

+ 1

(n − 1)

n∑
i=2

(g(ti) − g(ti−1) + �i − �i−1)
[
(xi − xi−1)

�(� − �̃n)
]
.
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Define

Si = 1
2

[
(xi − xi−1)

�(� − �̃n)
]2

,

Qi = (g(ti) − g(ti−1) + �i − �i−1)
[
(xi − xi−1)

�(� − �̃n)
]
,

S̄ = 1

2(n − 1)

n∑
i=2

[
(xi − xi−1)

�(� − �̃n)
]2

and

Q̄ = 1

(n − 1)

n∑
i=2

(g(ti) − g(ti−1) + �i − �i−1)(xi − xi−1)
�(� − �̃n).

Then

T �
n = 1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
(R2

i,2 − R̄2
2 + Si + Qi − S̄i − Q̄i)

· (R2
j,2 − R̄2

2 + Sj + Qj − S̄j − Q̄j )

= Tn+ 1

(n−1)(n−2)h1

∑
|i−j |�2

K

(
ti−tj

h1

)
(Si+Qi−S̄i−Q̄i)(Sj+Qj−S̄j−Q̄j )

+ 1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
(R2

i,2 − R̄2
2)(Sj + Qj − S̄j − Q̄j )

+ 1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
(Si + Qi − S̄i − Q̄i)(R

2
j,2 − R̄2

2)

= Tn + J1 + J2 + J3 say.

From Theorem 3.4 in Dette [2] we just need to show that Ji = o(n−1h
−1/2
1 ). By the root-n

consistency of �̃n it is easy to see that

1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
SiSj = o(n−1h

−1/2
1 ).

Moreover,
1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
QiQj

=
p∑

s1=1

p∑
s2=1

(�s1
− �̃ns1

)(�s2
− �̃ns2

)
1

(n − 1)(n − 2)h1

·
∑

|i−j |�2

K

(
ti − tj

h1

)
(g(ti) − g(ti−1) + �i − �i−1)(xis1 − xi−1,s−1)

·(g(tj ) − g(tj−1) + �j − �j−1) · (xjs2 − xj−1,s−2)

=
p∑

s1=1

p∑
s2=1

(�s1
− �̃ns1

)(�s2
− �̃ns2

)
1

(n − 1)(n − 2)h1
× Ds1s2 .
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By the fact that g(ti) − g(ti−1) = O(n−1) and xjs2 − xj−1,s−2 = O(1), it holds that

ED2
s1s2

=
∑

|i1−j1|�2

∑
|i2−j2|�2

K

(
ti1 − tj1

h1

)
K

(
ti2 − tj2

h1

)
· O(1)

· E
{[(

O(n−1) + �i1 − �i1−1

) (
O(n−1) + �j1 − �j1−1

)]
·

[(
O(n−1) + �i2 − �i2−1

) (
O(n−1) + �j2 − �j2−1

)]}
= O(n2h2

1),

So the root-n consistency of �̂n leads to

1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
QiQj = o(n−1h

−1/2
1 ).

This implies that

1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
(Si + Qi)(Sj + Qj) = o(n−1h

−1/2
1 ).

Similarly, we can show that

1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
(Si + Qi)(S̄j + Q̄j ) = o(n−1h

−1/2
1 )

and

1

(n − 1)(n − 2)h1

∑
|i−j |�2

K

(
ti − tj

h1

)
(S̄i + Q̄i)(S̄j + Q̄j ) = o(n−1h

−1/2
1 ).

Therefore, J1 = o(n−1h
−1/2
1 ). By the same argument, we can show that

J2 = o(n−1h
−1/2
1 ) and J3 = o(n−1h

−1/2
1 ).

All together, the proof is complete. �

Proof of Theorem 2.2. From the definition of �̂2
n(·) it holds that

�̂2
n(ti)

=
n∑

j=1

Wh2j (ti)

⎡⎣ j2∑
k=j1

�(2)
k x�

k+j (�− �̃n)+
j2∑

k=j1

�(2)
k �(tk+j )�k+j +

j2∑
k=j1

�(2)
k g(tk+j )

⎤⎦2

=
n∑

j=1

Wh2j (ti)

⎡⎣ j2∑
k=j1

�(2)
k x�

k+j (� − �̃n)

⎤⎦2

+
n∑

j=1

Wh2j (ti)

⎛⎝ j2∑
k=j1

�(2)
k �(tk+j )�k+j

⎞⎠2

+
n∑

j=1

Wh2j (ti)

⎛⎝ j2∑
k=j1

�(2)
k g(tk+j )

⎞⎠2

+ 2
n∑

j=1

Wh2j (ti)

⎡⎣ j2∑
k=j1

�(2)
k x�

k+j (� − �̃n)

⎤⎦
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·
⎛⎝ j2∑

k=j1

�(2)
k �k+j

⎞⎠ + 2
n∑

j=1

Wh2j (ti)

⎡⎣ j2∑
k=j1

�(2)
k x�

k+j (� − �̃n)

⎤⎦ ⎛⎝ j2∑
k=j1

�(2)
k g(tk+j )

⎞⎠
+2

n∑
j=1

Wh2j (ti)

⎛⎝ j2∑
k=j1

�(2)
k �(tk+j )�k+j

⎞⎠ ⎛⎝ j2∑
k=j1

�(2)
k g(tk+j )

⎞⎠ = II1 + · · · + II6.

According to Lemma 8.3 of Chiou and Müller (1999), there is

Wh2j (ti) = 1

nh2
K

(
ti − tj

h2

)/
p(ti) + O

(
1

n

)
.

Thus we have max1� i,j �n Wh2j (ti) = O(n−1h−1
2 ). Therefore, by Assumption 1 it holds that

|II1|� max1� i,j �n Wh2j (ti) · O(n) · O
(
n−1

)
= O(h−1

2 n−1) a.s.

Moreover, II2 can be decomposed as

II2 =
n∑

j=1

Wh2j (ti)

j2∑
k1=j1

∑
k2 �=k−1

�(2)
k1

�(2)
k2

�(tk1+j )�(tk2+j )�k1+j �k2+j +
n∑

j=1

Wh2j (ti)

·
j2∑

k=j1

�(2)2
k �2(tk+j )(�

2
k+j − 1) +

n∑
j=1

Wh2j (ti)

j2∑
k=j1

�(2)2
k �2(tk+j )

= II21 + II22 + II23 say.

Similar to the proof of Lemma A.1 we have II21 = O[(log n/nh2)
1/2 + h2

2] a.s. and II22 =
O[(log n/nh2)

1/2 + h2
2] a.s. Further,

II23 =
n∑

j=1

Wh2j (ti)�
2(tj ) +

n∑
j=1

Wh2j (ti)

j2∑
k=j1

�(2)2
k (�2(tk+j ) − �2(tj ))

= �2(ti) + O(h2
2) + O(n−1).

By the same argument and using the smoothness of g(·) we can show II3 = O(n−1). Further,
combining Lemma A.1, the root-n consistency of �̃n and the smoothness of g(·) it holds that
II4 = Op[(log n/(n2h2))

1/2] and II6 = Op[(log n/(n3h2))
1/2]. By Cauchy–Schwarz inequality

we have II5 = Op(n−3/2). Therefore, the proof is complete. �

Proof of Theorem 3.1. By the definition of �̂w
n , we have

�̂w
n − � = �̄w

n − � + (X̂��̂−1X̂)−1
[
X̂��̂−1g̃ − X̂��−1g̃

]
+

[
(X̂��̂−1X̂)−1 − (X̂��−1X̂)−1

]
X̂��̂−1g̃

+(X̂��̂−1X̂)−1
[
X̂��̂−1(� − �̃) − X̂��−1(� − �̃)

]
+

[
(X̂��̂−1X̂)−1 − (X̂��−1X̂)−1

]
X̂��̂−1(� − �̃),

where g̃ = (g̃(t1), . . . , g̃(tn)) with g̃(ti) = g(ti) − ∑n
j=1 Wh3j (ti)g(tj ) and �̃ = (�̃1, . . . , �̃n)

with �̃i = ∑n
j=1 Wh3j (ti)�j . From Lemma A.3 and the following fact

(A + aB)−1 = A−1 − aA−1BA−1 + O(a2) as a → 0, (A.1)
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in order to prove the asymptotic normality for �̂w
n , we only need to show that

1

n

(
X̂��̂−1X̂ − X̂��−1X̂

)
= Op

[
(log n/(nh2))

1/2 + h2
2

]
, (A.2)

1

n
X̂��̂−1g̃ − 1

n
X̂��−1g̃ = op

(
n−1/2

)
, (A.3)

1

n
X̂��̂−1(� − �̃) − 1

n
X̂��−1(� − �̃) = op

(
n−1/2

)
, (A.4)

n(X̂��̂−1X̂)−1 = Op(1), n(X̂��−1X̂)−1 = Op(1) (A.5)

and

1

n
X̂��̂−1g̃ = op

(
n−1/2

)
,

1

n
X̂′�̂−1(� − �̃) = Op(n−1/2). (A.6)

The absolute value of the (s1, s2)th element of 1
n

X̂��̂−1X̂ − 1
n
X̂��−1X̂ is

1

n

∣∣∣∣∣
n∑

i=1

x̂is1 x̂is2 (̂�
−2
n (ti) − �−2(ti))

∣∣∣∣∣
� 1

n

n∑
i=1

(̂x2
is1

+ x̂2
is2

)̂�−2
n (ti) · �−2(ti) · max

1� i �n
|̂�2

n(ti) − �2(ti)|

= Op

[
(log n/(nh2))

1/2 + h2
2

]
by Assumption 1, Lemmas A.1, A.2 and Theorem 2.2. This implies that (A.2) holds. Moreover,
the absolute value of the sth element of 1

n
X̂��̂−1g̃ − 1

n
X̂��−1g̃ is

1

n

∣∣∣∣∣
n∑

i=1

x̂si g̃(ti)(̂�
−2
n (ti) − �−2(ti))

∣∣∣∣∣
�

⎧⎨⎩ max
1� i �n

max
1� s �p

|h̃s(ti)|+
⎡⎣2+ max

1� i �n

⎛⎝ n∑
j=1

Wh2j
(ti)−1

⎞⎠⎤⎦ max
1� s �p

√√√√1

n

n∑
i=1

u2
si

⎫⎬⎭
· max

1� i �n
|g̃(ti)| · max

1� i �n

∣∣∣̂�−2
n (ti) − �−2(ti)

∣∣∣
= Op

[
(log n/(nh2))

1/2 + h2
2

]
· Op

[
(log n/(nh3))

1/2 + h2
3

]
,

where h̃s(t) has the same definition as g̃(t). This implies that (A.3) holds. The sth element of
1
n
X̂��̂−1(� − �̃) − 1

n
X̂��−1(� − �̃) can be decomposed as

1

n

n∑
i=1

x̂si

⎛⎝�i −
n∑

j=1

Wh3j (ti)�j

⎞⎠ (̂�−2
n (ti) − �−2(ti))

= 1

n

n∑
i=1

x̂si

⎛⎝�i −
n∑

j=1

Wnj (ti)�j

⎞⎠
·(̂�2

n(ti) − �2(ti))�
−2(ti) + 1

n

n∑
i=1

x̂si

⎛⎝�i −
n∑

j=1

Wh3j (ti)�j

⎞⎠ (̂�2
n(ti) − �2(ti))

·(̂�−2
n (ti) − �−2(ti))�

−2(ti) = J1 + J2 say.



1556 J. You et al. / Journal of Multivariate Analysis 98 (2007) 1539–1557

Note that

|J2| � O(1) ·
(

max
1� i �n

|̂�2
n(ti) − �2(ti)|

)2

·
⎛⎝�i +

n∑
j=1

Wh3j (ti)�j

⎞⎠
· 1

n

n∑
i=1

⎛⎝h̃s(ti) +
n∑

j=1

Wh3j (ti)usi + usi

⎞⎠
= Op

[
(log n/(nh2))

1/2 + h2
2

]
· Op(	n).

On the other hand, J1 can be decomposed as

J1 = 1

n

n∑
i=1

x̂si�i (̂�
2
n(ti) − �2(ti))�

−2(ti)

−1

n

n∑
i=1

x̂si

⎛⎝ n∑
j=1

Wnj (ti)�j

⎞⎠ (̂�2
n(ti) − �2(ti))�

−2(ti) = J11 + J12.

By Lemmas A.1, A.2 and Theorem 2.2 it is easy to show that J12 = op(n−1/2). In addition,

J11 = 1

n

n∑
i=1

x̂is�i�
−4(ti)

⎧⎪⎨⎪⎩
n∑

j=1

Wh2j (ti)

⎡⎣ j2∑
k=j1

�(2)
k x�

k+j (� − �̃n)

⎤⎦2

+
⎡⎢⎣ n∑

j=1

Wh2j (ti)

⎛⎝ j2∑
k=j1

�(2)
k �(tk+j )�k+j

⎞⎠2

− �2(ti)

⎤⎥⎦
+

n∑
j=1

Wh2j (ti)

⎛⎝ p∑
s=1

j2∑
k=j1

�(2)
k g(tk+j )

⎞⎠2

+2
n∑

j=1

Wh2j (ti)

⎡⎣ j2∑
k=j1

�(2)
k x�

k+j (� − �̃n)

⎤⎦ ⎛⎝ j2∑
k=j1

�(2)
k �k+j

⎞⎠
+2

n∑
j=1

Wh2j (ti)

⎡⎣ j2∑
k=j1

�(2)
k x�

k+j (� − �̃n)

⎤⎦ ⎛⎝ j2∑
k=j1

�(2)
k g(tk+j )

⎞⎠
+2

n∑
j=1

Wh2j (ti)

⎛⎝ j2∑
k=j1

�(2)
k �(tk+j )�k+j

⎞⎠ ⎛⎝ j2∑
k=j1

�(2)
k g(tk+j )

⎞⎠
⎫⎪⎬⎪⎭

= J111 + . . . + J116 say.

Using the root-n consistency of �̃n, the smoothness of g(·), Lemmas A.1 and A.2 we can show
J11i = op(n−1/2) for i = 1, 3, . . . , 6. Therefore, in order to complete the proof we just need to
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show that J112 = op(n−1/2). J112 can be decomposed as

J112 = 1

n

n∑
i=1

x̂is�i�
−4(ti)

n∑
j=1

Wh2j (ti)

j2∑
k1=j1

∑
k2 �=k1

�(2)
k1

�(2)
k2

�(tk1+j )�(tk2+j )�k1+j �k2+j

+1

n

n∑
i=1

x̂is�i�
−4(ti)

n∑
j=1

Wh2j (ti)

j2∑
k=j1

�(2)2
k �2(tk+j )(�

2
k − 1)

+1

n

n∑
i=1

x̂is�i�
−4(ti)

⎛⎝ n∑
j=1

Wnj (ti)

j2∑
k=j1

�(2)2
k �2(tk+j ) − �2(tj )

⎞⎠
= J1121 + J1122 + J1123.

Similar to the proof of Lemma A.4 it can be seen that J1121 = op(n−1/2) and J1122 = op(n−1/2).
By the smoothness of �(·) it is easy to show J1123 = Op(n−1). In summary, the proof of (A.4)
is complete. Combining Theorem 2.2 and the proof of Lemma A.3 it is easy to show that (A.5)
holds. By the proofs of (A.3) and (A.4) it is easy to show that (A.6) holds. Thus the proof is
complete. �

Proof of Theorem 3.2. Applying Lemmas A.1 and A.2, and using the root-n consistency of �̂w
n ,

it is easy to show that Theorem 3.2 holds. �
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