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Abstract

For a general class of unipolar, rotationally symmetric distributions on the multi-dimensional unit spherical
surface, a characterization of locally best rotation-invariant test statistics is exploited in the construction of
locally best rotation-invariant rank tests for modal location. Allied statistical distributional problems are
appraised, and in the light of these assessments, asymptotic relative efficiency of a class of rotation-invariant
rank tests (with respect to some of their parametric counterparts) is studied. Finite sample permutational
distributional perspectives are also appraised.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For conventional univariate as well as multivariate distributions, locally most powerful (rank)
tests for location have been extensively studied in the literature (Hájek et al. [5]). The situation with
directional data models is far more complex and much less extensively studied, and yet such models
crop up in many (often, interdisciplinary) fields of application and cater for appropriate statistical
resolutions. While there is considerable interest on uniformity of distributions on spherical surfaces
lacking any modal location, in real applications, one encounters more complex models where such
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modal directions are appropriate. The classical von Mises–Fisher–Langevin (vMFL) distribution
and its generalizations (see Mardia and Jupp [9]) are particularly noteworthy in this respect. Yet real
directional data may not generally pertain to such specific models. For example, contamination in
spherical data, appraised by Ko and Guttorp [6], raises concern regarding their impact on statistical
inference for spherical data models with special attention to robustness and efficiency. Parallel
to conventional location-scale models, for directional data models, robust and nonparametric
statistical inference procedures are needed. In this direction, reference may be made to Fisher and
Hall [3] for bootstrap procedures, and Neeman and Chang [10] for rank tests for modal direction.

We confine ourselves to a general class of unipolar densities on a spherical surface with modal
location �, in a form of invariance under rotation of coordinates. For such rotation-invariant modal
location models (including a majority of distributions considered for spherical data models, see
Mardia and Jupp [9] and Watson [11]), we consider the hypothesis testing problem

H0 : � = �0 (specified) against H1 : � �= �0, (1.1)

As anticipated, for this hypothesis testing problem there is no uniformly most powerful rotation-
invariant test (UMPRIT). Though a locally best rotation-invariant test (LBRIT) can be obtained,
neither it is simple in form nor it is robust. For this reason, Neeman and Chang [10] considered some
rank tests for this hypothesis testing problem, although not much is known about their optimality
properties, if any. To bridge this gap, we intend to focus on locally best rotation-invariant rank
tests (LBRIRT).

Section 2 is devoted to the preliminary notion. Parametric LBRIT are formulated in Section
3. For convenience of comprehension, three steps are incorporated: Step 1 explores the role of
rotation-invariance (RI) and maximal invariants (MIs) in the formulation of suitable likelihood
functions. In Step 2, a monotone likelihood ratio (LR) property of the MI is exploited to obtain
suitable RI tests; these test statistics involve the parameter in the alternative hypothesis, and hence,
cannot be the best RI test uniformly over � �= �0. Hence, in Step 3, locally best RI tests have
been appraised. Locally best RI-rank tests (LBRIRT) are considered in Section 4. The LBRIRTs
have been exploited towards the formulation of a general class of RI-rank tests in Section 5; these
include some RI tests already cited in the literature. For the vMFL pdf, the empirical local powers
of the LR-type test, the LBRIT and the LBRIRT are studied in Section 6. The Pitman asymptotic
relative efficiency (ARE) results of spherical Wilcoxon rank test with respect to the optimal test
are presented in Section 7. The last section is devoted to an illustrative example. Some of the
derivations are relegated to the Appendix for smooth reading of the main results.

2. Preliminary notion

Let Sp−1 = {x ∈ [−1, 1]p : ‖x‖2 = xtx = 1} be the spherical surface of the unit p-sphere,
p�2. Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) random vectors (r.v.)
with a probability density function (pdf) (with respect to the surface measure on Sp−1) f (x, �),
x ∈ Sp−1, � ∈ Sp−1. For simplicity, we first assume that f (·) is unipolar with modal location �.
We also assume that f (x, �) belongs to a suitable exponential family of densities on Sp−1:

f (x, �) = exp{g(〈x, �〉) + h(xtAx)}, x ∈ Sp−1, � ∈ Sp−1, (2.1)

where g(〈x, �〉) depends on x and � through their inner product 〈x, �〉, h(xtAx) on xtAx, A being a
symmetric p×p matrix; as 〈x, x〉 = 1, without loss of generality (WLOG), we take trace(A) = 0
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(see Mardia and Jupp [9, p. 175] and Watson [11, p. 80] for general motivation). This form of
f (x, �) is invariant under rotation of coordinates, so that it would be natural to seek rotation-
invariant statistical inference procedures.

To have unimodality along with RI, we assume that g(y) is monotone nondecreasing (and not
a constant) on [−1, 1]. For a bipolar density, g(−y) = g(y), ∀y ∈ (−1, 1) so that g(·) cannot be
monotone. Further, we assume that g(y) admits continuous first and second derivatives, g′(y) and
g′′(y) a.e. on (−1, 1). In addition, we assume that g(·) is skew-symmetric (about y = 0), so that
g′(−y) = g′(y), ∀y ∈ (−1, 1) and g′′(−y) = −g′′(y); hence g(−y)+g(y) = 2g(0), so that ab-
sorbing g(0) in h(·), we could have g(−y) = −g(y), ∀y ∈ [−1, 1]. Though this skew-symmetric
condition is not necessary, it holds in a majority of cases and renders simpler resolutions. In
passing, we may remark that several important pdf’s are special cases of (2.1). For example, the
vMFL pdf corresponds to A = O and g(〈x, �〉) = �〈x, �〉 − c(�), ��0 and c(�) depends on �
alone. The Fisher–Bingham pdf corresponds to h(u) = u, g(〈x, �〉) = �〈x, �〉 + c(�, A). The
Kent distribution, Fisher–Watson distribution and Bingham–Mardia distributions (viz., Mardia
and Jupp [9, pp. 174–177]) all belong to this exponential family. For rotation-invariant rank tests,
when not seeking local optimality properties, some of these regularity conditions may not be
necessary (see Sections 3 and 5).

Let Q be an orthogonal matrix of order p (so that QtQ = Ip), and let O(p) be the group of
orthogonal transformations of Rp onto itself. Thus, for x ∈ Sp−1, � ∈ Sp−1, Q ∈ O(p),

xt� = xtQtQ� = x∗t�∗ where x∗ ∈ Sp−1, �∗ ∈ Sp−1 ∀Q ∈ O(p), (2.2)

exhibiting the RI of 〈x, �〉 on Sp−1 × Sp−1. Therefore, O(p) acts transitively on the parameter
space Sp−1 as well, that is, for every pair of elements �1 and �2 belonging to the parameter space
Sp−1, there exists an Q ∈ O(p) such that Q�1 = �2, so that if for a � ∈ Sp−1, we define the
isotropy subgroup O�(p)(⊂ O(p)) as

O�(p) = {Q ∈ O(p) : Q� = �}, (2.3)

then O�(p) represents itself on the tangent space T�S
p−1. Therefore, g(x, �) [in (2.1)] is rotation-

ally symmetric about its modal location �. Further, xtAx [in h(·) in (2.1)] is free from � and this
form of exponential family is invariant under rotation of coordinates (viz., Watson [11, p. 80]).
Clearly O(p) is a Lie group. Let A∗ = QAQt , by the group acting on the sample space and pa-
rameter space Q · (x, A) = (Qx, QAQt ) = (x∗t , A∗), then h(x∗tA∗x∗) = h(xtQt (QAQt )Qx) =
h(xtAx), and trace(A∗) = trace(A) = 0, ∀Q ∈ O(p). Thus, h(xtAx) remains invariant under
rotation. As a result, f (x, �) in (2.1) is rotationally symmetric about its modal location �. We
therefore require our testing problem to be invariant with respect to the group O(p) and the
isotropy subgroup O�0(p). Note that spherically uniform pdf (on Sp−1) are not unimodal, and
hence, we exclude them from our discussion.

3. The LBRIT

From our discussions relating to the orthogonal group O(p) in (2.2) and the hypothesis testing
problem in (1.1), we confine ourselves to RI tests only. As such, WLOG, we take

�0 = (�1, �
t
(2))

t = (1, 0t )t , (3.1)
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and set alternatives as �t = (�1, �
t
(2)) with �1 �= 1 and �(2) �= 0. This reduction (under RI) allows

an easy formulation of local alternatives. We set Xi = (Xi1, X(2)t
i )t as

Xi1 = Xt
i�0, Yi = ‖Xi − (Xt

i�0)�0‖ = ‖X(2)
i ‖ =

⎛⎝ p∑
j=2

X2
ij

⎞⎠1/2

, (3.2)

for i = 1, . . . , n. Thus, if we let

U(2)
i = Y−1

i X(2)
i for i = 1, . . . , n, (3.3)

then ‖U(2)
i ‖ = 1, ∀i. As mentioned above that h(xtAx) remains invariant under rotation and is

free from �. And hence, the fact that f (x, �) in (2.1) is rotationally symmetric about its modal
location � implies that, under H0 : � = �0, (i) U(2)

i has the uniform density (with respect to

the surface measure) on Sp−2, (ii) U(2)
i and Xt

i�0 are rotation-invariant, and (iii) U(2)
i and Xi1

are independent, so that Yi = (1 − X2
i1)

1/2 and U(2)
i are independent too. On the spheres, these

results are true for a general class of distributions which include the vMFL distributions as the
special ones (Mardia and Jupp [9, p. 179]). These results are further extended to the two-point
homogeneous spaces which include spheres as the special cases (see Theorem 3 of Chang and
Tsai [1]). We have the tangent-normal decomposition (at �0):

Xi = (Xt
i�0)�0 + YiUi , Ui = (0, U(2)t

i )t , i = 1, . . . , n, (3.4)

where (Xt
i�0)�0, i = 1, . . . , n, capture all information in the likelihood

Ln(�) =
n∏

i=1

f (Xi , �) (3.5)

(�0) while (Yi, U(2)t
i ), i = 1, . . . , n, are ancillary statistics whose distribution (under H0) does

not depend on �0. However, when H0 does not hold, the Yi, 1� i�n will have a distribution that
would depend on �, while the U(2)

i , 1� i�n, can still be made ancillary (up to a scalar factor).

Thus, we work with the MI {(Yi, U(2)t
i ), 1� i�n}, and invoking the invariance of the hypothesis

testing (H0 vs. H1) problem under the group O(p), it seems natural to base our test statistic solely
on these MI. We first present this theme in a group-theoretic framework to suit our purpose better.

Let G be a group that acts on a manifold X . Then, for every x ∈ X , the orbit is defined as
Gx = { Gx : G ∈ G }. G acts transitively on X if X contains only one orbit. In this case, for
every x, y ∈ X , there exists a G ∈ G, such that y = Gx. If a function �(x) is G-invariant, i.e.,
�(Gx) = �(x), ∀G ∈ G, x ∈ X , and it assumes different values on different orbits, it is called
MI (Eaton [2]). Invariant hypothesis testing problems fully exploit MIs. In fact, if the probability
density of the MI has monotone LR, then for one-sided alternatives, the best test can be solely
based on the MI (Lehmann [8, Section 6.3]).

In our present context, for each i (= 1, . . . , n),X = Sp−1, G = { Q : QtQ = Ip }, and
�(xi , �) = exp{g(xt

i�) + h(xt
iAxi )}, the pdf in (2.1) (with respect to the surface measure on

Sp−1), where both xi and � ∈ Sp−1. By the decomposition in (3.4),

Yi = ‖X(2)
i ‖2 = 1 − X2

i1 �⇒ Xi1 = ±
√

1 − Yi
2, 1� i�n, (3.6)
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withXi1 taking on the two values±
√

1 − Yi
2, givenYi with equal probability. Note thatf (xi , �) =

exp{g(xt
i�) + h(xt

iAxi )}, where h(·) is free from �. Hence, in the likelihood function Ln(�), in
(3.5), viewed as a function of � ∈ Sp−1 (given the xi , 1� i�n), h(·) does not contribute to any
variation (over �). Therefore, that will drop out in a version of the LR. Thus, for simplicity of
presentation and notation, in (2.1), we drop h(·), and take f (x, �) = exp{g(xt�)}, x, � ∈ Sp−1.
By reference to (3.1), we set �t

0 = (1, 0t ) and � = 2(1−�t�0), so that 0���4, for all � ∈ Sp−1.
Under H0 : � = �0, � = 0, and H1� : � �= �0, � > 0. Let us write

H1� : �t�0 = 1 − 1
2�, 0���4, H1 = ∪{0���4}H1�. (3.7)

Note that as � ∈ Sp−1, we have �1 = 1 − 1
2� and ‖�(2)‖2 = �(1 − 1

4�). We take �(2) =√
�(1 − 1

4�) �, where � ∈ Sp−2. Also note that U
(2)
i has a spherical uniform density on Sp−2.

Thus, the joint pdf of (Yi, U(2)t
i ) is given by

f ∗(y, u) = 1
2 {eg((1− 1

2 �)
√

1−y2+
√

�(1− 1
4 �) yu(2)t�)

+e
g(−(1− 1

2 �)
√

1−y2+
√

�(1− 1
4 �) yu(2)t�)}. (3.8)

Therefore, if we let E∗ = (Y1, U(2)t
1 ; . . . ; Yn, U(2)t

n ), then the joint pdf of E∗ is given by

p(E∗, �) = 2−n
n∏

i=1

{eg((1− 1
2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)

+e
g(−(1− 1

2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)}. (3.9)

In order to exploit fully the G-invariance of both H0 and H1, we appeal to the invariance measure
�(d�) on Sp−2 (generated by the spherical uniform pdf of � on Sp−2), and construct the two
integrated likelihood statistics:∫

Sp−2
p(E∗, �0)�(d�) = p(E∗, �0) = 2−n

n∏
i=1

{eg(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )} (3.10)

and ∫
Sp−2

p(E∗, �)�(d�) = 2−n

∫
Sp−2

n∏
i=1

{eg((1− 1
2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)

+e
g(−(1− 1

2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)}�(d�) (3.11)

and consider a test statistic Tn:

=
∫
Sp−2

∏n
i=1{eg((1− 1

2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)+e

g(−(1− 1
2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)}�(d�)∏n

i=1{eg(

√
1−Y 2

i )+e
g(−

√
1−Y 2

i )}
= Tn(E

∗, �), say. (3.12)

The test statistic Tn = Tn(E
∗, �) deserves further appraisal. Note that the numerator involves an

integration over � on the surface Sp−2, so that it is a function of the Yi, U(2)t
i , 1� i�n as well as
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�(> 0). Thus, for each �(> 0), Tn can be incorporated into a test for � = 0 vs. � > 0, using
the right-hand tail of the distribution of Tn (under � = 0). This will provide the MP RI test at
the specified �(> 0) alternative. However, in order to claim that this test is (uniformly) UMP (or
best) RI test for all � > 0, we need to show that for a given significance level � (0 < � < 1) and
a specified �(> 0), the critical level c�(�) of Tn(E

∗, �) satisfies the following:

Tn(E
∗, �)�c�(�) ⇐⇒ T ∗

n (E∗)�c∗
� ∀� > 0, (3.13)

where T ∗
n (E∗) is free from � and so is c∗

�. This task is, however, not simple, and a UMPRI-test
(for all � > 0) may not generally exist. This outcome is not surprising, as even for the vMFL-
distribution, the shortcomings of RI-LR tests have been discussed in the literature (Mardia and
Jupp [9]). For this reason, we appraise the prospects of locally best RI tests. Towards this end, we
consider the following lemma whose proof is relegated to the Appendix.

Lemma 3.1. Under the assumed regularity conditions, as � → 0,

Tn(E
∗, �) = 1 + 1

2(p − 1)
�Ln(E

∗) + O(�3/2), (3.14)

where

Ln(E
∗) =

∥∥∥∥∥
n∑

i=1

g′(
√

1 − Y 2
i )YiU

(2)
i

∥∥∥∥∥
2

+
n∑

i=1

(g′(
√

1 − Y 2
i ))2Y 2

i

+
n∑

i=1

{Y 2
i g′′(

√
1 − Y 2

i ) − (p − 1)

√
1 − Y 2

i g′(
√

1 − Y 2
i )}c(

√
1 − Y 2

i ) (3.15)

with c(·) defined in (A.5).

In passing, we may note that the second and third terms on the right-hand side of (3.15) depend
only on Y 2

1 , . . . , Y 2
n but not on the U(2)

i , 1� i�n. Using the general formulation of Tn(E
∗; �)

and Lemma 3.1, we immediately arrive at the following:

Theorem 3.1. For the density in (2.1) with skew-symmetric g(·) on (−1, 1), under the assumed
regularity conditions, for testing H0 : � = �0 versus H1 : � = �1; �t

1�0 = 1− 1
2�, � > 0, locally,

for 0 < ���0 (sufficiently small), at any significance level � (0 < � < 1), there exists a best RI
test based on Ln(E

∗), rejecting H0 in favor of H1 whenever Ln(E
∗)� l∗�,n, a critical value tuned

to the level �.

Note that a similar but more complicated test statistic exists even when g(·) is not skew-
symmetric. As an illustration, consider the vMFL density for which g(〈x, �〉) = �〈x, �〉−c(�), x ∈
Sp−1, � ∈ Sp−1. Thus, g(y) (= �y − c(�), −1�y�1) is skew-symmetric, g′(y) = �, ∀y ∈
(−1, 1) and g′′(y) = 0, ∀y ∈ (−1, 1). Thus Ln(E

∗) reduces to

�4

[(
n∑

i=1

YiU
(2)
i

)t ( n∑
i=1

YiU
(2)
i

)
+

n∑
i=1

Y 2
i

]
− �2(p − 1)

n∑
i=1

√
1 − Y 2

i tanh(�
√

1 − Y 2
i )

⇐⇒ �2

⎧⎨⎩
∥∥∥∥∥

n∑
i=1

YiU
(2)
i

∥∥∥∥∥
2

+
n∑

i=1

Y 2
i

⎫⎬⎭ − (p − 1)

n∑
i=1

√
1 − Y 2

i tanh(�
√

1 − Y 2
i ). (3.16)
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Recall that because of RI, we choose �0 = (1, 0t )t , so that
√

1 − Y 2
i = |Xi1| and YiU

(2)
i =

X(2)
i = (Xi2, . . . , Xip)t . Thus, ‖∑n

i=1 YiU
(2)
i ‖2 = ‖∑n

i=1 X(2)
i ‖2 which is used in a conventional

RI-LR-type testing setup. The adjustment by the second and third terms (�2 ∑n
i=1 Y 2

i − (p −
1)
∑n

i=1

√
1 − Y 2

i tanh(�
√

1 − Y 2
i )) relates to the locally best RI version of the former.

4. The LBRIRT

We formulate rank tests by replacing the Yi by their ranks Ri , and let R = (R1, . . . , Rn)
t . Since

the Yi are i.i.d. random variables, and the second and third terms on the right-hand side of (3.15)
is a symmetric function h∗(Y 2

1 , . . . , Y 2
n ) of the Y 2

i , we have

E[h∗(Y 2
1 , . . . , Y 2

n ) | R] = E[h∗(Y 2
n:1, . . . , Y 2

n:n)] = h∗
n, (4.1)

which is a constant. Thus, the task is to evaluate

E

⎡⎣∥∥∥∥∥
n∑

i=1

g′(
√

1 − Y 2
i )YiU

(2)
i

∥∥∥∥∥
2
∣∣∣∣∣∣R

⎤⎦ (4.2)

and reformulate a test based on this statistic. Let us denote by a(Yi) = g′(
√

1 − Y 2
i )Yi , i =

1, . . . , n, and note that a(Yi) and U(2)
i are independent. Then we have

E

⎡⎣∥∥∥∥∥
n∑

i=1

a(Yi)U
(2)
i

∥∥∥∥∥
2
∣∣∣∣∣∣R

⎤⎦
=

n∑
i=1

E[a2(Yi) | R] +
n∑

i �=j=1

E[a(Yi)a(Yj ) | R]U(2)t
i U(2)

j

=
n∑

i=1

an(i, i) +
n∑

i �=j=1

an(Ri, Rj )U
(2)t
i U(2)

j

= Ln, say, (4.3)

where an(i, i) = E[a2(Yn:i )], 1� i�n (so that
∑n

i=1 an(i, i) = nE[a2(Y )] = na∗), and

an(Ri, Rj ) = E[a(Yn:i )a(Yn:j )]
= E[a(Yn:i )]E[a(Yn:j )] + Cov(a(Yn:i ), a(Yn:j ))

= �ni�nj + �n,ij , i �= j = 1, . . . , n. (4.4)

Write an(i, i) = �2
ni + �n,ii , i = 1, . . . , n, therefore we have

Ln = E

⎡⎣∥∥∥∥∥
n∑

i=1

a(Yi)U
(2)
i

∥∥∥∥∥
2
∣∣∣∣∣∣R

⎤⎦
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=
∥∥∥∥∥

n∑
i=1

�nRi
U(2)

i

∥∥∥∥∥
2

+
n∑

i=1

n∑
j=1

�n,RiRj
U(2)t

i U(2)
j . (4.5)

Using the general theorem on LMPR tests in Hájek et al. [5, pp. 71–73], we have

Theorem 4.1. For the density in (2.1) with a skew-symmetric g(·) on (−1, 1), under the assumed
regularity conditions, defining Ln as in (4.5), the test with critical region

Ln � k (4.6)

is the locally best rotation-invariant rank test for H0 : � = �0 versus {H�}, where H� : �t�0 =
1 − 1

2�; 0 < ���0, sufficiency small, at the respective level.

Recall that U(2)
i and Ri are independent, and R takes on each permutation of (1, . . . , n) with

the same probability (n!)−1. Under this permutation measure (Pn), for every i �= j ,

EPn
[an(Ri, Rj )U

(2)t
i U(2)

j ] = 1

n(n − 1)

⎛⎝ n∑
r �=s=1

an(r, s)

⎞⎠U(2)t
i U(2)

j (4.7)

so that the second term on the right-hand side of (4.3) has the centering, under Pn,

1

n(n − 1)

⎛⎝ n∑
r �=s=1

an(r, s)

⎞⎠ n∑
i �=j=1

U(2)t
i U(2)

j

= 1

n(n − 1)

⎛⎝ n∑
r �=s=1

an(r, s)

⎞⎠⎧⎨⎩
(

n∑
i=1

U(2)
i

)t
⎛⎝ n∑

j=1

U(2)
j

⎞⎠ −
n∑

i=1

‖U(2)
i ‖2

⎫⎬⎭
= 1

n(n − 1)

⎡⎣ n∑
r,s=1

an(r, s) −
n∑

r=1

an(r, r)

⎤⎦⎧⎨⎩
∥∥∥∥∥

n∑
i=1

U(2)
i

∥∥∥∥∥
2

−
n∑

i=1

‖U(2)
i ‖2

⎫⎬⎭ . (4.8)

Note that the permutation distribution can be generated by Pn and this provides a convenient
conditionally distribution-free test given the U(2)

i , 1� i�n.
In the particular case of vMFL density, a(Yi) = �Yi, 1� i�n. By (3.6) and the density function

of Xi1 which is of the form f (x1) = b(�)e�x1 , −1�x1 �1, we obtain after, some standard
manipulations, the density of Yi under H0, as

h(y) = �

(e� − e−�)

y√
1 − y2

(e�
√

1−y2 + e−�
√

1−y2
), 0�y�1 (4.9)

and thus

H(y) = 1 −
(

e�
√

1−y2 − e−�
√

1−y2

e� − e−�

)
, 0�y�1. (4.10)
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Then, the expectation of the product of two order statistics Yn:i and Yn:j , 1� i < j �n can be
approximated by

E(Yn:iYn:j ) = H−1
(

i

n + 1

)
H−1

(
j

n + 1

)
+ O(n−1), (4.11)

where H−1(u) is the inverse function of H(u). Note that the pdf of Y has the support [0, 1], and
hence H−1(u) is bounded in [0, 1]. After some simplifications, we have

h′(y) = 1

y(1 − y2)
h(y) + �2

(e� − e−�)

y2

(1 − y2)
(e−�

√
1−y2 − e�

√
1−y2

). (4.12)

Let pi = H(Qi), Q(pi) = H−1( i
n+1 ) (pi = i

n+1 ). Thus,

Q′
i = 1

dpi/dQi

= 1

h(Qi)
= 1

h

(
H−1

(
i

n + 1

)) , (4.13)

and

Q′′
i = −[h(Qi)]−3h′(Qi) = −

[
h

(
H−1

(
i

n + 1

))]−3

h′
(

H−1
(

i

n + 1

))
. (4.14)

Using these refinements, E(Yn:iYn:j ) has a better approximation

E(Yn:iYn:j ) = Cov(Yn:i , Yn:j ) + E(Yn:i )E(Yn:j )

=
[
H−1

(
i

n + 1

)
+ i(n + 1 − i)

2(n + 1)2(n + 2)
Q′′

i

] [
H−1

(
j

n + 1

)

+ j (n + 1 − j)

2(n + 1)2(n + 2)
Q′′

j

]
+ i(n + 1 − j)

(n + 1)2(n + 2)
Q′

iQ
′
j + O(n−3/2),

∀ 1� i < j �n. (4.15)

Thus, the entries an(i, j) in (4.3) [or the �ni, �n,ij in (4.5)] when substituted give us a linear

function of the ranks R and U(2)
i , 1� i�n.

5. Asymptotically optimal RI-rank tests

There is a close connection between LBRIRT tests and asymptotically optimal rotation-invariant
rank tests for contiguous alternatives. In Section 4, we consider the case of a fixed but � small.
In a conventional setup, we allow n → ∞ but � small such that

√
n� has a finite positive limit

as n → ∞. Hence, we consider a sequence {H1n} of alternatives where

H0 : � = �0 = (1, 0t )t and H1n : � = �(n) : �t
n�0 = 1 − 	

2n
, (5.1)

for some fixed 	. Note that

�t
n�0 = 1 − 	/2n ⇔ �n1 = 1 − 	/2n and ‖�(2)

n ‖2 = 	

n

(
1 − 	

4n

)
∼ 	

n
. (5.2)
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Let H(y) = P0{Y �y}, y ∈ [0, 1]. As y is bounded, we have uniformly in i (1� i�n),∣∣∣∣�ni − a

(
H−1

(
i

n

))∣∣∣∣ → 0 as n → ∞, (5.3)

and further, uniformly in i, j : 1� i, j �n,

�n,ij → 0 as n → ∞. (5.4)

Therefore, the LBRIRT statistic can be approximated by∥∥∥∥∥
n∑

i=1

a

(
H−1

(
i

n

))
U(2)

i

∥∥∥∥∥
2

, (5.5)

a form that has been suggested by Neeman and Chang [10] from pure asymptotic considerations.
However, because of the local optimality property, we prefer to work with a general class of rank
statistics of the form

L∗
n =

[
(p − 1)∑n
i=1 an(i, i)

] n∑
i=1

n∑
j=1

an(Ri, Rj )U
(2)t
i U(2)

j , (5.6)

where the an(i, j) are defined as in before, and noting that k∗
n�, the �-level critical value of L∗

n

needs to be approximated by the asymptotic distribution of L∗
n (under H0). We consider next the

following lemma which adds more convenience to the study of the asymptotic null distribution;
its proof is outlined in the Appendix.

For the scores an(i, j), 1� i, j �n, assume that there exists a sequence {a0
n(i), 1� i�n} such

that

an(i, j) − a0
n(i)a0

n(j) = bn(i, j), (5.7)

max
i,j

| bn(i, j)| = o(1) as n → ∞. (5.8)

Then

1

n

n∑
i=1

an(i, i) = 1

n

n∑
i=1

(a0
n(i))2 + 1

n

n∑
i=1

bn(i, i)

= A2
n + Bn, say. (5.9)

Lemma 5.1. Define

L0∗
n = (p − 1)

nA2
n

n∑
i=1

n∑
j=1

a0
n(Ri)a

0
n(Rj )U

(2)t
i U(2)

j . (5.10)

Then, under H0, as n → ∞,

|L∗
n − L0∗

n | → 0 in probability. (5.11)
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We assume that the Noether condition holds:

max
1� i �n

(a0
n(i))2

/
n∑

i=1

[a0
n(i)]2 → 0 as n → ∞. (5.12)

So that invoking the permutational central limit theorem (on the a0
n(Ri)), along with the indepen-

dence of Ri and U(2)
i , and the spherical uniformity of the distribution of U(2)

i on Sp−2, we obtain
that under H0,

1√
nAn

n∑
i=1

a0
n(Ri)U

(2)
i

D→ Np−1

(
0,

1

p − 1
Ip−1

)
, (5.13)

and as a result

L0∗
n

D→ 
2
p−1 (⇒ L∗

n

D→ 
2
p−1). (5.14)

Next, we consider the following lemma whose proof is relegated to the Appendix.

Lemma 5.2. Under H0, as n → ∞,

log(Ln(�n)/Ln(�0))
D→ N

(
−	

2
�2

1, 	�2
1

)
. (5.15)

At this stage, we are in a position to make use of the celebrated Le Cam’s first lemma (Le Cam
[7]) and thereby arrive at the following.

Theorem 5.1. A sequence of local alternatives {H1n} in (5.1) is contiguous to H0.

The distribution theory of
√

p−1√
nAn

∑n
i=1 a0

n(Ri)U
(2)
i for contiguous alternatives then follows the

standard way (as may also be found in Neeman and Chang [10]). Let A2
0 = ∫ 1

0 (a0(u))2 du. Then,
we have the following.

Theorem 5.2. Under a sequence of contiguous alternatives {H1n} in (5.1), as n → ∞,

L∗
n

D→ 
2
p−1,�, (5.16)

where � = 	
(p−1)A2

0
〈�, �0〉2 with �0 being the optimal score function and � = a(u).

6. Comparison of tests

In this section, we first investigate the empirical powers of proposed tests by Monte Carlo
simulation. Independent vMFL p-dimensional variates having the concentration parameter � are
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generated by the Matlab subroutine. Consider the LR-type test Tn, the proposed LBRIT Ln and
the LBRIRT Ln, where

Tn =
∥∥∥∥∥

n∑
i=1

[Xi − (Xt
i�0)�0]

∥∥∥∥∥
2

, (6.1)

Ln = �2

[
Tn +

n∑
i=1

Y 2
i

]
− (p − 1)

n∑
i=1

√
1 − Y 2

i tanh(�
√

1 − Y 2
i ), (6.2)

and

Ln =
∑

1� i<j �n

E(Yn:iYn:j )U(2)t
i U(2)

j (6.3)

with E(Yn:iYn:j ) being approximated by (4.15).
It is an interesting question: How the LR-type test (Tn) compares with the LBRIT Ln, and

how the latter compares with the rank version Ln? Since the hypothesis testing problem is RI, it
is expected that Ln would perform better than Tn. On the other hand, Ln is a rank statistic that
sacrifices some information contained in the MI Y 2

i . Therefore, Ln may not perform as well as Ln.
This relative performance picture is presented here in a local setup; for nonlocal alternatives, Ln

may not perform as well as the other two. For this study, we take for simplicity, n = 50, p = 3,
and � = 0.5, 1, 2, 5 at a level of significance � = 0.01. The reported values are the empirical
powers based on 10,000 replications for each combination � and � under 1% level of significance.
Tables 1(a)–(d) relate to the (local) power of tests for the hypothesis testing problem H0 : � = �0
against H1 : � �= �0, where �0 = (1, 0, 0)t . The numerical values reveal that the LBRIT Ln

performs better than the LR-type test Tn, while the concentration parameter � is small, Ln and
Ln are close to each other, often one is better than the other. However, when the concentration
parameter � is not small (��1), the test based on Ln performs better than the others. Thus, the
relative advantages of the rank test has to be contrasted with potential loss of power for not so
close alternative. The picture would be different for a fixed alternative and large sample sizes
where all the tests would have power close to 1.

Due to technical programming difficulties in generating samples from the Fisher–Bingham
density function of the following form:

f (x; �, �, A) = 1

a(�, A)
exp{�xt� + xtAx}, ‖x‖ = 1, (6.4)

(where A is symmetric with trace(A) = 0 and a(�, A) is a normalizing constant), additional
simulation results for (6.4) are not considered.

7. Pitman ARE

Generally, the forms of LR-type test statistics, the LBRI test statistics and the LBRIR test
statistics are rather complicated for the more general underlying density functions. To overcome
this we adapt the asymptotic approach of Section 5, leading us to approximate the LBRIRT
by a class of rank tests by Neeman and Chang [10]. As such, from simplicity and robust-
ness points of view, we may advocate to use the spherical Wilcoxon rank test based on the
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Table 1
Empirical powers of Tn, Ln and Ln for some �’s

� = 0.5

⎛⎜⎜⎝
0.9000

−0.0930

−0.4426

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9100

0.3768

0.1730

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9200

0.1810

0.3476

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9300

−0.2536

−0.2661

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9400

−0.0217

−0.3405

⎞⎟⎟⎠
(a)
Tn 0.0290 0.0290 0.0265 0.0242 0.0228

Ln 0.0320 0.0291 0.0271 0.0258 0.0236

Ln 0.0318 0.0307 0.0262 0.0229 0.0200

� = 0.5

⎛⎜⎜⎝
0.9500

−0.0049

0.3122

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9600

0.1500

0.2364

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9700

0.2145

0.1145

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9800

0.0911

0.1769

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9900

−0.0165

−0.1401

⎞⎟⎟⎠
Tn 0.0197 0.0157 0.0148 0.0137 0.0117

Ln 0.0208 0.0168 0.0169 0.0145 0.0115

Ln 0.0226 0.2010 0.0149 0.0146 0.0139

(b)

� = 1

⎛⎜⎜⎝
0.9000

0.3759

0.2206

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9100

0.3427

−0.2333

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9200

0.3078

0.2426

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9300

−0.0261

0.3666

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9400

−0.1574

0.3027

⎞⎟⎟⎠
Tn 0.1393 0.1277 0.1070 0.0942 0.0782

Ln 0.1402 0.1314 0.1092 0.0980 0.0801

Ln 0.1088 0.0939 0.0800 0.0719 0.0600

� = 1

⎛⎜⎜⎝
0.9500

−0.2427

0.1965

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9600

0.0540

−0.2748

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9700

0.2160

0.1116

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9800

−0.0711

−0.1859

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9900

0.0135

−0.1404

⎞⎟⎟⎠
Tn 0.0628 0.0504 0.0413 0.0273 0.0177

Ln 0.0645 0.0511 0.0416 0.0276 0.0178

Ln 0.0461 0.0387 0.0282 0.0249 0.0169

(c)

� = 2

⎛⎜⎜⎝
0.9000

−0.3375

−0.2758

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9100

0.3783

0.1697

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9200

−0.2579

−0.2951

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9300

0.0694

−0.3610

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9400

−0.2931

0.1747

⎞⎟⎟⎠
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Table 1 (continued).

Tn 0.6070 0.5434 0.4806 0.4043 0.3358

Ln 0.6187 0.5548 0.4899 0.4150 0.3438

Ln 0.4715 0.4065 0.3541 0.3035 0.2490

� = 2

⎛⎜⎜⎝
0.9500

−0.2248

0.2167

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9600

−0.1123

0.2565

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9700

−0.0457

−0.2388

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9800

0.1838

−0.0764

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9900

−0.1290

−0.0570

⎞⎟⎟⎠
Tn 0.2692 0.1914 0.1255 0.0769 0.0313

Ln 0.2746 0.1952 0.1295 0.0797 0.0314

Ln 0.1916 0.1455 0.1011 0.0601 0.0304

(d)

� = 5

⎛⎜⎜⎝
0.9000

−0.2048

−0.3848

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9100

−0.2090

0.3581

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9200

−0.1982

−0.3381

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9300

−0.1616

0.3301

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9400

0.1271

−0.3166

⎞⎟⎟⎠
Tn 0.9997 0.9987 0.9970 0.9912 0.9757

Ln 0.9997 0.9989 0.9972 0.9920 0.9778

Ln 0.9860 0.9755 0.9510 0.9170 0.8603

� = 5

⎛⎜⎜⎝
0.9500

0.6631

0.3051

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9600

−0.2330

0.1553

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9700

−0.1248

0.2086

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9800

0.1796

0.0856

⎞⎟⎟⎠
⎛⎜⎜⎝

0.9900

0.1117

−0.0862

⎞⎟⎟⎠
Tn 0.9415 0.8650 0.7207 0.4644 0.1963

Ln 0.9433 0.8678 0.7259 0.4690 0.2001

Ln 0.7785 0.6497 0.4900 0.2997 0.1262

test statistic

Wn = n−1/2
n∑

i=1

RiU
(2)t
i (7.1)

for the problem of testing H0 : � = �0 against H1 : � �= �0.
For the vMFL distribution, after some manipulations the Pitman ARE of spherical Wilcoxon

rank test with respect to the optimal test is

e(Wn) = 3

b(p, �)

[∫ 1
−1{1− 1

b(p,�)

∫ |v|
−|v| e

�s(1−s2)(p−3)/2 ds}�e�v(1−v2)(p−2)/2 dv]2∫ 1
−1 �2e�v(1−v2)(p−1)/2 dv

,

(7.2)

where

b(p, �) =
∫ 1

−1
e�v(1 − v2)(p−3)/2 dv. (7.3)
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Table 2

� = 0 � = 0.01 � = 0.1 � = 1.0 � = 10.0 � = 100.0 � = 500

p = 3 0.919632 0.919634 0.919817 0.935489 0.988233 0.985074 0.984726
p = 4 0.877328 0.87733 0.877472 0.890296 0.971131 0.974635 0.974789
p = 5 0.851196 0.851197 0.851304 0.86124 0.95161 0.960729 0.961299
p = 6 0.833774 0.833775 0.833857 0.841622 0.933901 0.947891 0.948819
p = 7 0.821402 0.821402 0.821467 0.827653 0.918387 0.936675 0.937921
p = 8 0.812184 0.812185 0.812237 0.817261 0.904824 0.926945 0.928479
p = 9 0.805061 0.805061 0.805104 0.809256 0.892906 0.918459 0.920258
p = 10 0.799394 0.799394 0.79943 0.802915 0.882365 0.910998 0.913042
p = 11 0.79478 0.79478 0.794811 0.797775 0.872983 0.90438 0.906655
p = 12 0.790952 0.790952 0.790978 0.79353 0.864586 0.898461 0.900954
p = 13 0.787725 0.787726 0.787748 0.789966 0.857036 0.893127 0.895828
p = 14 0.784969 0.784969 0.784989 0.786934 0.850219 0.888289 0.891188
p = 15 0.782587 0.782587 0.782605 0.784324 0.84404 0.883873 0.886962
p = 16 0.780508 0.780509 0.780524 0.782055 0.838422 0.87982 0.883093
p = 17 0.778679 0.778679 0.778693 0.780064 0.8333 0.876083 0.879532
p = 18 0.777056 0.777056 0.777068 0.778304 0.828616 0.872621 0.876241
p = 19 0.775607 0.775607 0.775618 0.776737 0.824322 0.869402 0.873188
p = 20 0.774304 0.774305 0.774315 0.775333 0.820378 0.866397 0.870344
p = 30 0.766110 0.766110 0.766114 0.766590 0.793966 0.844299 0.849663
p = 50 0.759620 0.759620 0.759622 0.759800 0.772577 0.820268 0.827844
p = 100 0.754792 0.754792 0.754793 0.754839 0.758725 0.793306 0.804597

When p = 3 and � → 0, then e(Wn) = 9(
/2 − 2/3)2/8. We computed the efficiencies for
various values of p and �. The results appear below (Table 2).

8. An illustrative example

We use the data set from Fisher et al. [4, p. 279] to illustrate the use of the spherical Wilcoxon
rank test based on the test statistic Wn defined in (7.1). The data set is the 26 measurements of
magnetic remanence in specimens of Palaeozoic red-beds from Argentina. The coordinate system
is (Declination, Inclination). They analyzed this data set and concluded that the data are sampled
from a distribution symmetric about its mean direction (see Examples 5.2, 5.12 and 5.13 of Fisher
et al. [4] for details). A question in their Example 5.14 is further appraised to see whether or not
the direction (Dec. 1500, Inc. 600) is acceptable as the true mean direction.

To perform the proposed tests, first the data are transformed into rectangular coordinates, as

such we have �0 = (−
√

3
4 , − 1

4 , −
√

3
2 )t . By the results of Watson [9, Section 3.4], it is easy to see

that under the null hypothesis, as n → ∞, 2n−1Tn/cn
D→ 
2

p−1, where cn = n−1 ∑n
i=1 Xt

i (I −
�0�

t
0)X

t
i . Similarly, let Q2

n = nWt
n�̂

−
n (�0)Wn, where �̂

−
n (�0) = 12[n(n+1)(2n+1)]−1(I−�0�

t
0).

Then by Theorem 5.2, under the null hypothesis, as n → ∞, Q2
n

D→ 
2
p−1.

These lead us to the (asymptotic) observed significance level (OSL) as Pr{
2
2 �2n−1Tn/cn} =

0.0028 and Pr{
2
2 �Q2

n} = 0.0027, respectively. Thus, both the spherical T 2 test and the spherical
Wilcoxon rank test are concordant regarding the untenability of the null hypothesis that the mean
direction (Dec. 1500, Inc. 600) as made by Fisher et al. [4, Example 5.14, p. 116]. We may remark
that the asymptotic approximation for the null distributions may tend to be comparatively less
precise in the tail. Hence, instead of the concluded values (0.0028 and 0.0027) the actual values



M.-T. Tsai, P.K. Sen / Journal of Multivariate Analysis 98 (2007) 1160–1179 1175

could be slightly different, possibly a bit larger, yet of the same order. Hence, it would be safe to
say that even at a significance level 0.005, both the OSL values convey the rejection of the null
hypothesis.

Appendix

Proof of Lemma 3.1. We rewrite Tn(E
∗, �) in (3.12) as

∫
Sp−2

n∏
i=1

⎧⎨⎩e
g((1− 1

2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �) + e

g(−(1− 1
2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎫⎬⎭
×�(d�). (A.1)

In the next step, we write

g(±(1 − 1
2�)

√
1 − Y 2

i +
√

�(1 − 1
4�) YiU

(2)t
i �)

= g(±
√

1 − Y 2
i ) + g′(±

√
1 − Y 2

i ){∓ 1
2�

√
1 − Y 2

i +
√

�(1 − 1
4�) YiU

(2)t
i �}

+ 1
2g′′(±

√
1 − Y 2

i ){�(YiU
(2)t
i �)2 + O(�3/2)} + o(�), (A.2)

so that after some routine manipulations, we obtain that as � ↘ 0,

e
g(±(1− 1

2 �)

√
1−Y 2

i +
√

�(1− 1
4 �) YiU

(2)t
i �)

= e
g(±

√
1−Y 2

i ){1 +
√

�(1 − 1
4�) g′(±

√
1 − Y 2

i )YiU
(2)t
i �

∓ 1
2�

√
1 − Y 2

i }g′(±
√

1 − Y 2
i ) + 1

2�[g′′(±
√

1 − Y 2
i )

+(g′(±
√

1 − Y 2
i ))2](YiU

(2)t
i �)2 + O(�3/2)}. (A.3)

As a result, the integrand in (A.1) can be expressed as

=
n∏

i=1

⎧⎪⎨⎪⎩1 +
√

�

(
1 − 1

4
�

)⎡⎢⎣g′(
√

1 − Y 2
i )e

g(

√
1−Y 2

i ) + g′(−
√

1 − Y 2
i )e

g(−
√

1−Y 2
i )

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎤⎥⎦

×YiU
(2)t
i � − 1

2
�

⎡⎢⎣
√

1 − Y 2
i {g′(

√
1 − Y 2

i )e
g(

√
1−Y 2

i ) − g′(−
√

1 − Y 2
i )e

g(−
√

1−Y 2
i )}

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎤⎥⎦

+1

2
�

⎡⎢⎣ ((g′(
√

1 − Y 2
i ))2 + g′′(

√
1 − Y 2

i ))e
g(

√
1−Y 2

i )

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )
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+
((g′(−

√
1 − Y 2

i ))2 + g′′(−
√

1 − Y 2
i ))e

g(−
√

1−Y 2
i )

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎤⎥⎦ (YiU
(2)t
i �)2 + O(�3/2)

⎫⎪⎬⎪⎭
= 1+

√
�

(
1−1

4
�
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i=1
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1 − Y 2
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√
1−Y 2

i ) + g′(−
√

1 − Y 2
i )e

g(−
√

1−Y 2
i )

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎤⎥⎦YiU
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2
�

n∑
i=1
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√

1 − Y 2
i {g′(

√
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√
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√

1 − Y 2
i )e

g(−
√

1−Y 2
i )}

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎤⎥⎦

+1

2
�

n∑
i=1

⎡⎢⎣ ((g′(
√

1 − Y 2
i ))2 + g′′(

√
1 − Y 2

i ))e
g(

√
1−Y 2

i )

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

+
((g′(−

√
1 − Y 2

i ))2 + g′′(−
√

1 − Y 2
i ))e

g(−
√

1−Y 2
i )

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎤⎥⎦ (YiU
(2)t
i �)2

+1

2
�

⎛⎜⎝ n∑
i=1

⎡⎢⎣g′(
√

1 − Y 2
i )e

g(

√
1−Y 2

i ) + g′(−
√

1 − Y 2
i )e

g(−
√

1−Y 2
i )

e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )

⎤⎥⎦YiU
(2)t
i �

⎞⎟⎠
2

+O(�3/2). (A.4)

Since �(∈ Sp−2) is uniform,
∫
Sp−2 � d�(�) = 0 and

∫
Sp−2 ��t d�(�) = 1

p−1 Ip−1. Further, for
skew-symmetric g(·) (on [−1, 1]), we have g′(−y) = g′(y) and g′′(−y) = −g′′(y), ∀y ∈
[−1, 1]. So that writing

c(

√
1 − Y 2

i ) = (e
g(

√
1−Y 2

i ) − e
g(−

√
1−Y 2

i )
)

(e
g(

√
1−Y 2

i ) + e
g(−

√
1−Y 2

i )
)

, −1 < Yi < 1, (A.5)

we have from (A.1), (A.4) and (A.5), a formal expansion of (A.1):

1 + 1

2(p − 1)
�

∥∥∥∥∥
n∑

i=1

g′(
√

1 − Y 2
i )YiU

(2)
i

∥∥∥∥∥
2

+ 1

2(p − 1)
�

n∑
i=1

{(g′(
√

1 − Y 2
i ))2

+g′′(
√

1 − Y 2
i )c(

√
1 − Y 2

i )}Y 2
i

−1

2
�

n∑
i=1

√
1 − Y 2

i g′(
√

1 − Y 2
i )c(

√
1 − Y 2

i ) + O(�3/2)
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= 1 + 1

2(p − 1)
�

⎧⎨⎩
∥∥∥∥∥

n∑
i=1

g′(
√

1 − Y 2
i )YiU

(2)
i
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2

+
n∑

i=1

(g′(
√

1 − Y 2
i ))2Y 2

i

+
n∑

i=1

[Y 2
i g′′(

√
1 − Y 2

i ) − (p − 1)

√
1 − Y 2

i g′(
√

1 − Y 2
i )]c(

√
1 − Y 2

i )

}

+O(�3/2)

= 1 + 1

2(p − 1)
�Ln(E

∗) + O(�3/2), say, (A.6)

where Ln(E
∗) is given by (3.15). �

Proof of Lemma 5.1. If we let

a0
n(u) = an([nu]/n), 0�u�1, (A.7)

and as n → ∞

an(u) → a0(u) :
∫ 1

0
(a0(u))2 du = A2

0 < ∞. (A.8)

Then, by (5.7)–(5.9), we may claim that

A2
n → A2

0 as n → ∞. (A.9)

Moreover, as n → ∞

1

n
E

⎡⎣ n∑
i=1

n∑
j=1

bn(Ri, Rj )U
(2)t
i U(2)

j

⎤⎦ = 1

n

n∑
i=1

bn(i, i) = Bn → 0, (A.10)

and

E

⎧⎨⎩ 1

n

⎡⎣ n∑
i=1

n∑
j=1

bn(Ri, Rj )U
(2)t
i U(2)

j

⎤⎦⎫⎬⎭
2

= 1

n2

n∑
i=1

n∑
j=1

b2
n(i, j) → 0. � (A.11)

Proof of Lemma 5.2. Consider the log-likelihood ratio statistic

n∑
i=1

{
g

((
1 − 	

2n

)
X1i +

√
	

n

(
1 − 	

4n

)
YiU

(2)t
i �

)
− g(X1i )

}
, (A.12)

where � ∈ �p−1 and U(2)
i ⊥ X1i , ∀i = 1, . . . , n. By routine expansion, we write the above as√

	

n

n∑
i=1

g′(X1i )YiU
(2)t
i � − 	

2n

n∑
i=1

g′(X1i )X1i

+ 	

2n

n∑
i=1

g′′(Xi)Y
2
i (U(2)t

i �)2 + Op(n−1/2). (A.13)
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Invoking the independence of (U(2)
i , Yi) and X1i , we notice that under H0,√

	

n

n∑
i=1

g′(X1i )YiU
(2)t
i � ∼ N (0, 	�2

1), (A.14)

where

�2
1 = E[(g′(X11))

2Y 2
1 (U(2)t

1 �)2]
= E[(g′(X11))

2]E[Y 2
1 (U(2)t

1 �)2]
= E[(g′(X11))

2]E(Y 2
1 )E(U(2)t

1 �)2

= 1

p − 1
E[(g′(X11))

2](EY 2
1 ). (A.15)

Note that,

1

n

n∑
i=1

g′(X1i )X1i
P→ E[g′(X11)X11]

=
∫ 1

−1
xf ′(x)(1 − x2)

p−3
2 dx

= −1

p − 1

[∫ 1

−1
f ′(x) d(1 − x2)(p−1)/2

]

= 1

p − 1

∫ 1

−1
(1 − x2)(p−1)/2f ′′(x) dx.

= 1

p − 1
E

[
f ′′(X11)

f (X11)

]
E(Y 2

1 ) (A.16)

and

1

n

n∑
i=1

g′′(X1i )Y
2
i (U(2)t

1 �)2 P→ E[g′′(X11)Y
2
1 (U(2)t

1 �)2]

= Eg′′(X11)E(Y 2
1 )E(U(2)t

1 �)2

= 1

p − 1
Eg′′(X11)E(Y 2

1 ), (A.17)

where

g′(x) = f ′(x)/f (x), g′′(x) = f ′′(x)

f (x)
− (g′(x))2. (A.18)

Thus,

Eg′′(X11) = E

[
f ′′(X11)

f (X11)

]
− E[g′(X11)]2. (A.19)
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Therefore,

	

2

{
1

n

n∑
i=1

[g′′(X1i )Y
2
i (U(2)t

i �)2 − g′(X1iX1i )]
}

P→ 	

2

[
1
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E

{
f ′′(X11)

f (X11)
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− E(g′(X11))

2
]

E(Y 2
1 ) − 1
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E
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]

= −	

2
�2

1. � (A.20)
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