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Abstract

There are hypothesis testing problems for (nonlinear) functions of parameters against functional
ordered alternatives for which a reduction to a conventional order-restricted hypothesis testing prob-
lem may not be feasible. While such problems can be handled in an asymptotic setup, among the
available choices, it is shown that the union–intersection principle may have certain advantages over
the likelihood principle or its ramifications. An application to a genomic model is also considered.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) random vectors (r.v.)
having the density

f�(x) = exp{�′T(x) − �(�)} d�(x), (1.1)

where� = (�1, . . . , �m)′ is an unknown parametric vector,T(x) = (T1(x), . . . , Tm(x))′ is
a vector of functions ofx, of given forms, and� is a�-finite measure on the Borel subsets of
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Rm,mbeing a positive integer. Thus,f�(x) is assumed to belong to the regular exponential
family with the natural parameter space

N� = {� :
∫

e�′T(x)−�(�) d�(x) < ∞}. (1.2)

N� is open and�(�) is continuous onN� (Brown [7]). Let �(�) = (�/��)�(�). Then
E�T(X) = �(�) andT(·) is complete, sufficient statistic for�. As the exponential family
itself is a 1-flat manifold,�(�) and the canonical parameter� have dual relationship to each
other (Amari [1]), which has been exploited in formulating optimal tests for�(�) against
global, as well as, restricted alternatives.

We consider here a set of parametric functions

�(�(�)) = (�1(�(�)), . . . , �p(�(�)))
′, p�m (1.3)

which need not be linear or one-to-one; it is also possible to express�(�(�)) as�∗(�), though
often,�(·) is more handy than�∗(·). �(·) is assumed to be continuously differentiable. We
thus allow form − p nuisance parametric functions. Our contention is to test

H0 : �(�(�)) = 0 against H+1 : �(�(�))�0. (1.4)

A general characteristic of such parametric functions (and functional alternatives) is that
even if the classical maximum likelihood estimator (MLE)�̂ exists and can be found in a
closed form, the plugged-in estimator�(�(̂�)) may not necessarily be the MLE of�(�(�)).
This difficulty stems primarily from the fact that the�(�(�)) are not generally one-to-one
functions of� or �(�), and under H+1 , it might be even more difficult to have the MLE of
�(�(�)), as is needed to obtain the likelihood ratio test (LRT). All the illustrative examples
in Section 2 testify this feature, and raise the issue of finite sample properties of the LRT
even when the densities belong to the exponential family.

Let � = {�(�(�)) : � ∈ N�} and�+ = {�(�(�)) ∈ � : �(�(�))�0}. As such, it might be
tempting to reduce this hypothesis testing problem to apositive orthant alternativeproblem,
and thereby to use various tests available in the literature. However, we shall see in Section
3 that there are roadblocks for constructions of optimal tests based on finite sample sizes.
Before that in Section 2, we consider some illustrative models that motivate our hypothesis
testing problem and bring the relevance of asymptotics. Section 3 also outlines the utility
of marginal likelihood functions in this context. Our main emphasis is on the role of Roy’s
[24] union–intersection principle (UIP) in the proposed testing problem. In Section 4, based
on some basic results of Shapiro [27] asymptotic optimality properties are studied, and the
likelihood principle (LP) is contrasted with the UIP. In the last Section, the proposed test
procedure is applied to test for homogeneity in some genomic sequence models.

2. Some motivating illustrations

To bring out the basic differences between conventional and functional models, we con-
sider the following. Some other reasons for illuminating these examples are also mentioned
in the next section.
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Example 1. Behrens–Fisher problem: ordered alternatives. Let Xij , j = 1,2, . . . , ni be
i.i.d.r.v.’s with the normal pdf mean�i and variance�2

i , i = 1,2, . . . , k, where�i and�2
i

are all unknown, and it is not apriorily assumed that the�2
i are all equal. Consider then the

hypothesis testing problem

H0 : �1 = · · · = �k against H>1 : �1� · · · ��k, (2.1)

not all equal. Even fork = 2, the LP does not yield a similar test, and the situation is worse
for k�3. Actually, Linnik [14] showed that, even fork = 2, no similar test having certain
desirable properties exists. There are some other ad hoc tests which may not be generally
optimal when the�2

i are all nuisance parameters.

Example 2. Coefficient of variation problem: ordered alternatives. Under the set-up of
Example 1, assuming�i �= 0, i = 1, . . . , k and consider the hypothesis

H0 : �1

�1
= · · · = �k

�k
= � against H>1 : �1

�1
� · · · � �k

�k
, (2.2)

with at least one strict inequality (� is nuisance); we may refer to Berger et al.[5] who point
out the difficulties in using LP for making exact inference.

Example 3. Fieller–Creasy problem: ordered alternatives. Under the set-up of Example
1, assuming that�1 �= 0 (but unknown), set

H0 : �2

�1
= · · · = �k

�1
against H>1 : �2

�1
� · · · � �k

�1
, (2.3)

with at least one strict inequality. Even fork = 2, there are some difficulties for drawing
exact inference and the situation becomes worse fork�3 (Glesar and Hwang[11]).

Example 4. The ordered noncentrality problem. Let Xij , j = 1,2, . . . , ni be i.i.d.r.v.’s
with the multinormal distribution with mean vector�i and dispersion matrix�i , i =
1, . . . , k. Define the noncentrality parameters as�i = �′

i�
−1
i �i , for i = 1, . . . , k, and

set

H0 : �1 = · · · = �k vs. H>
1 : �1� · · · ��k, (2.4)

with at least one strict inequality. It is difficult to find the MLE under the alternative hy-
pothesis, and no optimal exact test may exist (Berger et al.[5]).

Example 5. Theorthant spaceproblem. LetXi , i = 1,2, . . . , nbe i.i.d.r.v.’s withNp(�,�)
density, with both� and� unknown. Consider the hypothesis testing problem

H0 : � = 0 vs. H+
1 : ��0, � nuisance. (2.5)

Following Perlman’s[18] seminal paper, lots of work have been done in this case (Wang
and McDermott [29], Sen and Tsai [26], and Perlman and Wu [19]). Still, the finite sample
resolutions are not final say in this matter.

Example 6. The ordered correlation problem. In the same set-up of Example 5, set� =
((�j l)),�j l = �j�l	j l for j, l = 1, . . . , p. Set then

H0 : 	ij+1 = · · · = 	ip, ∀ i�p vs. H>
1 : 	ij is ↘ in j (> i), ∀i. (2.6)
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It is difficult to obtain MLE under H+1 .

Example 7. Gini–Simpson indexes:orderedalternatives. Let(ni1, . . . , niJ )have the multi-
nomial law(ni,�i ), where�i = (
i1, . . . ,
iJ )′,�′

i1= 1, for i = 1, . . . , k (�2). Define

I(�i ) = 1 − �′
i�i (i = 1, . . . , k). (2.7)

As a measure of biodiversity that was proposed by Simpson[28] while Pinheiro et al.
[21] used this measure in Genomic analysis. We formulate

H0 : I(�1) = · · · = I(�k) vs. H>
1 : I(�1)� · · · �I(�k), (2.8)

with at least one strict inequality. Nei[17] defined thegene diversityas�′
i�i (whose recip-

rocal is called theeffectivenumber of alleles and has good use in statistical genetics). As a
result,(2.8) may also be formulated in terms of the gene identities. For further studies, we
may refer to Nayak and Gastwith [16], Rao [22] and Sen [25], where other related measures
have also been considered. We shall discuss them in the last section.

Example 8. The ordered entropy problem. For theith population (in the previous example),
we define the entropy function as

E(�i ) = −
J∑

j=1


ij log
ij , i = 1, . . . , k

and then formulate

H0 : E(�1) = · · · = E(�k) against H>1 : E(�1)� · · · �E(�k), (2.9)

with at least one strict inequality. Again, there are various related entropy measures, con-
sidered by Chakraborty and Rao[8], and in the last section we shall comment more on
them.

3. Proposed tests

From finite sample size point of views, generally we base on one of the well-known “op-
timal” criteria such as invariance principle (maximal invariance), unbiasedness, similar test
(Neyman’s structure),�-admissibility, generalized Bayes, Bayes factor, fiducial argument,
integrated likelihood methods, likelihood ratio principle tests (such as the conditional, par-
tial and marginal LRT) and score tests etc. to construct reasonable tests for various problems.
However, there are some impasses to incorporate the optimal criteria mentioned above to
construct finite sample (exact) optimal tests for the hypothesis problem in (1.4), and this
can be easily illustrated by the motivating examples in Section 2 (for details, please see the
corresponding references cited in this paper).

One of the major difficulties of the problem is that likelihood ratio based tests are hard
to compute. Although, in all the examples (belong to the exponential family of densities)∑n

i=1T(xi ) (or parallel statistics) is a complete sufficient statistic for� [and unbiased for
�(�)], as�(�(�)) may not be a one-to-one transformation of�(�), the MLE of �(�(�))
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may not have a closed form. Secondly, as�(�(�)) is not generally linear in�(�), a plug-
in estimator�(T̄n) [T̄n is defined in (3.2)] may not be unbiased for�(�(�)), and its exact
distribution may be quite cumbersome to have a closed form. Therefore, Neyman’s structure
may not generally hold, and as a result, MLE [of�(�)] based tests may not have the
similar region property, nor it may be optimal in a finite sample setup. To overcome it,
we, therefore, incorporate two important concepts, pivotal quantity (the normalization of
minimal sufficient statistics for interesting parameters under null hypothesis) and orthogonal
projection, to solve the problems. As a result, it turns out to be the same as by incorporating
the efficient score statistics and UIP. Then, we proceed to appraise an asymptotic situation
where the dimension of the parameter spaceN� is held fixed but the sample size is made
to increase indefinitely. In passing, we may remark that if the dimensionality ofN� is also
made to increase with the sample size, an altogether different asymptotic situation may
evolve, and we shall not get into that context here. With the help of geometric structure of
exponential family (Amari[1]) and the asymptotic results of Shapiro [27], we can show that
the proposed tests are optimal in the sense that they are asymptotically power-equivalent to
those of (marginal) LRT in next section. This unified procedure is easy to implement, and has
widely applications including some interesting “genomic sequences” problems which the
parameter space under alternative hypotheses are no longer to be positively homogeneous
cones.

We confine ourselves to (1.1)–(1.4) in the regular case, where�(·) is twice differentiable,
and define

� = E�{[T(X) − �(�)][T(X) − �(�)]′}; (3.1)

� may, in general, depend on�. Also, let

T̄n = 1

n

n∑
i=1

T(Xi ) and Sn = 1

n − 1

n∑
i=1

[T(Xi ) − T̄n][T(Xi ) − T̄n]′. (3.2)

Then the following results hold: asn → ∞,

T̄n → �(�) almost surely(a.s.), (3.3)

Sn → � a.s., (3.4)

n1/2[T̄n − �(�)] D→ Nm(0,�). (3.5)

Let then� = %�(·) ,% being the gradient operator, be ap × m matrix (which is as well
defined onN�), and let

�∗ = ���′, (3.6)

where without loss of generality�∗ is assumed to be of full rank. We obtain from (3.3) to
(3.6) along with the Slutzky theorem,

n1/2[�(T̄n) − �(�(�))] D→ Np(0,�∗), asn → ∞. (3.7)

We note that the notion ofpivotal inferenceis central to the development of Fisher’s
fiducial argument, a pivotal quantity being recognized as a generalized ancillary statistic.
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Our basic contention is to project a linear pivotal quantity onto the set�+, defined after
(1.4), and it is easy to show that this coincides with the UIP approach in a natural way. To
incorporate UIP, we define for eachb�0,

H0,b : bt�(�(�)) = 0 and H1,b : bt�(�(�)) > 0, (3.8)

so that

H0 =
⋂

{b�0} H0,b and H+
1 =

⋃
{b�0} H1,b. (3.9)

Also, we evaluate� at T̄n , and denote it bŷ�n. Let then

�̂
∗
n = �̂nSn�̂

′
n, (3.10)

so that̂�
∗
n is a (strongly) consistent estimator of�∗.

For any givenb (�0), consider the pivotal quantity

Vn(b) = n1/2b′�(T̄n)/{b′�̂∗
nb}1/2. (3.11)

From (3.9) to (3.11), we may formulate a union–intersection test (UIT) for testing H0 vs. H+
1

based on the test statistic

Un = sup{Vn(b) : b�0} (3.12)

and the task is to find a closed expression forUn along with its critical value, saycn,� such
that

P {Un�cn,�| H0} → � (0 < � < 1),

the desired significance level.
To obtain a closed expression forUn, we virtually follow Sen and Tsai[26]. Let P =

{1,2, . . . , p}, and for everya : ∅ ⊆ a ⊆ P , let a′ be its complement and|a| its cardinality,
there being 2p subsets for which 0� |a|�p. For eacha: ∅ ⊆ a ⊆ P , we partition (following
possible rearrangement)Yn = �(T̄n) and�̂

∗
n as

Yn =
(
Yna

Yna′

)
and �̂

∗
n =

(
�̂

∗
naa �̂

∗
naa′

�̂
∗
na′a �̂

∗
na′a′

)
, (3.13)

and write

Yna:a′ = Yna − �̂
∗
naa′�̂

∗−1
na′a′Yna′ , (3.14)

�̂
∗
naa:a′ = �̂

∗
naa − �̂

∗
naa′�̂

∗−1
na′a′�̂

∗
na′a, (3.15)

Ina = I {Yna:a′ > 0, �̂
∗−1
na′a′Yna′ �0}. (3.16)

Note that only one of theIna (∅ ⊆ a ⊆ P ) will be equal to 1 and the rest all 0. Then using
the Kuhn–Tucker–Lagrange (KTL-) point formula theorem (Hadley[12]), we obtain that

U2
n =

∑
∅ ⊆ a ⊆ P

n{Y ′
na:a′�̂

∗−1
naa:a′Yna:a′ }Ina. (3.17)
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Using (3.7) and proceeding as in Theorem 2.1 of Sen and Tsai[26], we obtain that for every
c > 0

lim
n→∞P {U2

n �c2|H0} =
p∑

k=1

r(p, k;�∗)P {�2
k�c2} (3.18)

where the�2
j are independent r.v.’s, with�2

j having the central chisquare distribution with

j (�0) degrees of freedom (DF),j = 1, . . . , p and�2
0 = 0 with probability 1. Further,

for eacha : ∅ ⊆ a ⊆ P , for a r.v.Z ∼ Np(0,�), we define the quantitiesZa:a′ etc. as in
(3.14)–(3.15) with�∗ replaced by�. Then, we have

r(p, k;�) =
∑

{a⊆P :|a|=k} P {Za:a′ > 0,�−1
a′a′Za′ �0}, (3.19)

for k = 0, . . . , p. In passing, we may remark that for the global alternative H1 : �(�(�)) �= 0,
we would have the supremum over allb �= 0, as a result,U2

n reduces to

U2
n0 = nY ′

n�̂
∗−1
n Yn (3.20)

(with asymptotic�2
p distribution under H0).

Let us make some comments on the scope of LP in the context of testing for restricted
functional alternatives in (1.4). First, the conventional LRT; it involves the computation of
the MLE of � [or equivalently�(�)] under both H0 and H+

1 . Under H0, �(�(�)) = 0, so
that it may be more manageable than under H+

1 where�(�(�))�0 may create impasses
for the computation of the MLE [of�(�(�))]. Generally, closed expression of the MLE
may not be available, and on top of that the functional inequality restraints make it more
difficult to obtain the restricted (R)MLE of�(�(�)), under H+

1 . Another possibility is to use
the unrestricted (U)MLE of�(�), plug-in the�(·) and then obtain the approximate UMLE
of �(�(�)). One may then use a variant of the classical Wald method, but for restricted
alternatives. In this way, we end up with the same test statisticU2

n in (3.17). This explains
the proximity of the restricted alternative Wald test and the UIT. In any case, even if we
use the plug-in MLE, we are not directly using the LP totally. Thus, in the present context,
we find the UIT more appealing and manageable. In the next section, we shall study some
asymptotic optimality properties of the UIT, as well as, other related tests.

4. Asymptotic optimality properties

The difficulty in implementing the LRT stems from the complexities involved in finding
the MLE of �(�(�)) over the parameter space�+. Let 
0 = {� : �(�(�)) = 0} and
ln(�) = n[�(�) − �′T̄n], where the notations are introduced in the previous section. Then,
to obtain the MLE under H0 and H+

1 respectively we need to minimizeln(�) for � ∈ 
0∩N�

and� ∈ �+ ∩ N�; let �̂0n and�̂
∗
n be the MLE of� under H0 and H+

1 respectively. By the
KTL-point formula, they are the solutions of the following:

[%ln(�) +
p∑
i=1

vi%�∗
i (�)]|�=�̂0n

= 0 (4.1)
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and

[%ln(�) +
p∑
i=1

ui%�∗
i (�)]|�=�̂

∗
n

= 0, u�0, ui�∗
i (̂�

∗
n) = 0, i = 1, . . . , p. (4.2)

Compare to (4.1), a closed form solution for (4.2) may not generally exist (see Example 7),
or tractable. Even a closed form solution for (4.1) may not exist, though iterative methods
can be used to obtain the RMLE by successive numerical iterations. We refer to McLachlan
and Krishnan[15] for an extensive account of the EM algorithm and extensions which would
be valuable for this iterative process; however, in view of the inequality restraints in (4.2),
such algorithms may need to be modified or generalized to suit the purpose. Nevertheless,
sans a closed form, finite sample optimality properties (of the MLE) may not exist, nor easy
to establish even if they exist. As such, we take recourse to asymptotic analysis to establish
some asymptotic optimality properties: some recent results of Geyer [10], Shapiro [27] and
others help us to analyze nonlinear, non-normal asymptotic behavior of the MLE, LRT and
other related tests. In that way, we may advocate the UIT for its relative computational
simplicity and general asymptotic properties.

Based onT̄n, the MLE of �(�), we consider the plug-in estimatorYn = �(T̄n), set an
objective functionh(b,Yn) = b′Yn, and aim to maximizeh(b,Yn), subject tob ∈ R+p =
{b| b�0} andb′�̂∗

nb = 1. This provides a unified method of obtaining asymptotically
optimal estimator of�(�(�)) over the set�+. For everya ⊆ P , if u, v are |a|− and
(p−|a|)− vectors respectively, we set[Ma(u, v)]i = ui orvi according asi ∈ a or i ∈ a′.
Then proceeding as in Section 3, the estimator of�(�(�)) restricted to the set�+ can then
be taken as

�̂(�(�)) =
∑

∅ ⊆ a ⊆ P

Ma(Yna:a′ ,0)Ina, (4.3)

while the unrestricted estimator of�(�(�)) isYn. We proceed to study properties of�̂(�(�)).
CaseI: Quasi-factorizable likelihood function. Suppose that the likelihood function can

be factorized intog(x, �(�(�))) andh∗(x, �(�(�))), whereg(·) involves only the�(�(�)),
the parameters entering the hypothesis, whileh∗(·) only involves the nuisance parameters
�(�(�)); this is the case when there is a Barndorff-cut (Bandorff-Nielsen[3]) which separates
�(�(�)) from�(�(�)). Let
N be the space of nuisance parameters and�+ defined as before.
Then

sup�+g(x, �(�(�)))sup
N
h∗(x, �(�(�)))

sup
0
g(x, �(�(�)))sup
N

h∗(x, �(�(�)))

= sup�+g(x, �(�(�)))
sup
0

g(x, �(�(�)))
. (4.4)

As a result, the LRT can be obtained by direct use of only the factorg(x, �(�(�))). For (1.4),
p = m relates to Case I. In this no nuisance parameter problem�(·) can be expressed as
one-to-one correspondence to�(�), and we have the so called positive orthant alternative.
Robertson and Wegman[23], Dykstra and Robertson [9] and others studied the LRT and
also their asymptotic distributions under the null hypotheses. Even for generalp�m, we
show that the UIT proposed in Section 3 is asymptotically power-equivalent to the LRT. For
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simplicity of proof, we consider the case ofp = m. Using the general results of Shapiro[27]
on nearly convex and prox-regular parameter spaces and their impact on the asymptotics of
local as well as global MLE, we obtain the following results:

(i) Let �̂l (�(�)) be the local MLE of�(�(�)) over the set�+ and̂�(�(�)) be the true MLE
over the same set, then

n1/2[̂�l (�(�)) − �̂(�(�))] P→ 0, asn → ∞. (4.5)

(ii) Let �̂p(�(�)) be the partial MLE of�(�(�)) over the set�+ [based on the factor
g(x, �(�(�)))]. Then if the set�+ is nearly convex and prox-regular at
0,

n1/2[̂�p(�(�)) − �̂l (�(�))] P→ 0, asn → ∞. (4.6)

In the above formulation, for local MLE, one considers a sequence of parameter spaces
�+
n = {�(�(�)) : �(�(�)) = �0 + n−1/2�, � ∈ �+}, and in the present context (under

H0), �0 = 0. In the literature, these type of hypothesis are also called Pitman (or contiguous)
alternatives. As a result, by (4.5) and (4.6), we obtain that if�+ is nearly convex and prox-
regular at�0, then

n1/2[̂�p(�(�)) − �̂(�(�))] P→ 0, asn → ∞. (4.7)

On the other hand, linking the local MLE’s role in the UIT formulated in Section 3, and
the role of̂�(�(�)) to the LRT, we conclude that if�+ is nearly convex and prox-regular
then the UIT and LRT are asymptotically power-equivalent. Generally, for the hypothesis
testing problems, the power of any reasonable test approaches to one as the sample size is
sufficiently large. As such, we usually attack the problems “locally” by using the notion
of “contiguity”. Hence, the asymptotically power-equivalent generally means “locally”
asymptotically.
CaseII: Orthogonal parameter space. Them-vector�(�) may be partitioned as(�′

(1)(�),

�′
(2)(�))

′ with p andm − p elements, such that�(�(�)) = �(�(1)(�)) depends only on
�(1)(�), while the nuisance parameter�(�(�)) = �(�(2)(�)) depends only on�(2)(�). Fur-
ther,�(1)(�) and�(2)(�) are orthogonal, and as a result,�(�(�)) and�(�(�)) are also so.
Note that Case I is a special case of Case II. For regular multivariate exponential families,
Barndorff–Nielsen[4] showed that�(1)(�) and�(2)(�) are orthogonal. Also, Hudson and
Vos [13] have shown that when the orthogonalized score function is a function ofT̄n(1), for
drawing inference on�(�(�)), no Fisher information is lost in using the marginal distribu-
tion of T̄n(1) [instead of the fullT̄n which hasm(�p) coordinates]. As such, under this
orthogonality setup, we may work with the marginal likelihood function [forT̄n(1)], and then
proceed as in Case I [to draw conclusion on�(�(�))]. Therefore, the UIT proposed in Section
3, as modified for̄Tn(1), is asymptotically power-equivalent to the corresponding marginal
likelihood ratio test, though the latter may be harder to formulate. This may be illustrated
with Example 5 where� and� are orthogonal, though the Barndorff–Nielsen characteri-
zation or the factorization of the likelihood function may not hold; we refer to Sen and Tsai
[26] for the asymptotic power-equivalence of UIT and Perlman’s [18] LRT for this specific
problem.
CaseIII: Nonorthogonal parameter space. Under parametric restraints, the orthogonality

condition in Case II may not generally hold, resulting in a harder problem of eliminating
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the nuisance parameters while drawing conclusion on�(�(�)). In such a case, the conven-
tional likelihood principle may not suit, and usually, either Bayes methods or integrated
likelihood approaches are employed. Conventional Bayes methods rest on the choice of
suitable priors; in a multi-parameter case, particularly with nonlinear restraints, a choice
of a subjective (or conjugate) prior may often be ambiguous, and difficult too. Compu-
tational Bayes methods are increasingly advocated for this reason. Integrated likelihood
approaches may be viewed as pseudo-Bayesian, and as agreed by Barnard[2], they adhere
to Fisher’s fiducial methodology. Also, optimality properties of integrated likelihood meth-
ods are not that precisely known. Further, such integrated likelihood functions may not be
of simple forms, so that closed solution for the integrated (I)MLE may not be tractable.
Example 7 of Section 2 serves as a good illustration of all these points. Moreover, without
parametric orthogonality, conditional likelihood approaches (given estimates of nuisance
parameters) may result in low efficiency, even asymptotically. All these provocate the use
of marginal likelihood functions for�(�(�)), though their exact form may no longer be
simple, and the computation of marginal (M)MLE (over the set�+) may still be quite
difficult.

Based on all these reasons, we take recourse to the asymptotic case where, as in after
(4.6), we confine ourselves to local (restricted) alternatives. Note that the MMLE of�(�(�))
(over the set�+) may still be a problem and this leads to complications in the formulation
of marginal (M)LRT. On the other hand,�(�(�)) is continuously differentiable. Thus, if
%�(�(�)) is Lipschitz continuous in a neighborhood of�0(�), the true parameter point,
then the set�+ is nearly convex and prox-regular at�0(�). This enables us to use Shapiro’s
[27] results, make use of the plug-in estimates�(�̂ (�)), and construct UIT as in Section
3. This appears to be, at least computationally, simpler than the MLRT, and asymptotically
these UIT and MLRT are power-equivalent. With respect to most of the examples in Section
2,�+ is a positively homogeneous cone which is nearly convex and prox-regular, and even
without this positive homogeneous cone property, in the other examples, we have the nearly
convex and prox-regular condition satisfied. Thus, it seems that the suggested UIT approach
combines the computational ease and the asymptotic power-equivalence to the MLRT.

5. An application in genomics

In genomic sequence analysis, we encounter a large number (say,K) of sites, where in
each site, there is a purely qualitative categorical response variable (like the chemical words
A, C, G, T in DNA or the amino acids in a protein sequence). Analysis of such data sets
in a conventional categorical data modeling results in considerable loss of efficiency. On
top of that often the null and alternative hypotheses are formulated in a way that resembles
our formulation in Section 1. We refer to Pinheiro et al. [20,21] for a detailed account of
statistical modeling and analyses of genomic data sets, and consider here a simpler model
to illustrate our main point of interest, namely, formulation of UIT for such nonstandard
restricted alternative hypotheses testing problem. We conceive of a purely categorical data
model wherein a response vectorX = (X1, . . . , XK)

′ hasK coordinates and eachXk can
take onC(�2)categorical values, indexed as 1, . . . , C (though there may not be any implicit
ordering in theseC categories). For two independent observationsXi andXj , a Hamming
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distance is defined as

dij = K−1
K∑
k=1

I (Xik �= Xjk), (5.1)

so that

� = E{dij } = K−1
K∑
k=1

P(Xik �= Xjk)

= K−1
K∑
k=1

[1 −
C∑
c=1

(P {Xik = c})2]

= K−1
K∑
k=1

I(�k), (5.2)

whereI(�k), the Gini–Simpson index, is defined as in (2.7), and�k = (
k1, . . . ,
kC)′
is the (marginal) probability (vector) for the outcomeXik, k = 1, . . . , K. Note that the
coordinates ofX are generally stochastically dependent (having aCK -cell multinomial
law) but the parameter� is a function of theK marginals�1, . . . ,�K only. As a result, the
(sample) Hamming distance forn independentX1, . . . ,Xn is defined as

Un =
(n

2

)−1 ∑
1� i� j �n

dij ; (5.3)

Un is a natural (i.e., unbiased, symmetric and consistent) estimator of�, and thedij can
only take on the valuesr/K, r = 0,1, . . . , K. Further, in view of the anticipated stochastic
dependence among the elements ofXi (or Xj ), the I (Xik �= Xjk)(1�k�K) are not
necessarily independent, so thatKUn may not have the binomial law. In fact, the exact
distribution theory ofUn depends on theCK -cell multinomial probability law, and may not
be simple.

Suppose now that there areG(�2) groups of sequences where thegth group consists of
ng independent sequences having the marginal probability vectors�(g)1 , . . . ,�(g)K , for g =
1, . . . ,G. Note that they actually haveCK -cell multinomial probability laws�(g), whose
marginal probabilities are the�(g)j ,1�j�K; g = 1, . . . ,G. We define the population
Hamming distances as in (5.2) and denote them by�g, g = 1, . . . ,G. In the context of
genomic studies, it has been observed that the�g may vary according to the HIV positivity
status of the sequences, HIV positive status may increase the� measure, though� would
remain bounded in (0,1) (Pinheiro et al.[21]). Thus, it may be of interest to consider the
following hypotheses:

H0 : �1 = · · · = �G vs. H<
1 : �1� · · · ��G, (5.4)

with the strict inequality holding in at least one place. Viewed from this perspective, we
have a model which is a generalization of (2.8) in a genuine (discrete) multivariate case.

For thegth group, we denote the sample counterpart of�g byU(g)
n , defined as in (5.3), for

g = 1, . . . ,G. If we want to use the full likelihood function for all then(= n1 + · · · + nG)
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sequences, using theCK -cell multinomial law, we do not have any resolution with optimal
properties. Use of partial, marginal or quasi-likelihoods may have similar problems. On the
other hand, the UIT approach works out well.

We also define the entropy functionE(�(g)k ) as in (2.9) and let

Eg = K−1
K∑
k=1

E(�(g)k ), g = 1, . . . ,G. (5.5)

Then, parallel to (5.4), we set

H0 : E1 = · · · = EG vs. H<
1 : E1� · · · �EG, (5.6)

with at least one strict inequality.
Note that�g as well asEg are functions of marginal probability vectors�(g)k , k =

1, . . . , K, and these parameters admit MMLE which we denote by�̂(g)k , k = 1, . . . , K; g =
1, . . . ,G. Further, if we consider the independent Poisson variables model for multidimen-
sional contingency tables (Bishop et al.[6]), then these MMLE may also be characterized
as the unrestricted (U)MLE of the�(g)k . For both of these hypotheses testing problems,
the nearly convex and prox-regular property of the associated�+ can be established by
standard techniques, and hence, we may directly incorporate the UIT in Section 3. The
main advantage of this UIT is the computational ease of an estimated covariance matrix of
the associated�(̂�(g)), using either the classical delta method or any suitable resampling
scheme, such as jackknifing or bootstrapping. The computation of the RMLE and the as-
sociated information matrix would have been comparatively much more cumbersome, and
hence, using the results in Section 4, we may claim that the UIT may be advocated in such
nonstandard models.
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