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Abstract

For multinormal distributions, testing against a global shift alternative, the Hotelling

T2-test is uniformly most powerful invariant, and hence admissible. For testing against

restricted alternatives this feature may no longer be true. It is shown that whenever the

dispersion matrix is an M-matrix, Hotelling’s T2-test is inadmissible, though some

union–intersection tests may not be so.
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1. Introduction

Let X1;y;Xn be n independent and identically distributed random vectors
(i.i.d.r.v.) having a pðX2Þ-variate normal distribution Npðh;RÞ; the covariance

matrix R (though unknown) is assumed to be positive definite (p.d.). For the mean
vector h; consider the null hypothesis H0 : h ¼ 0 against (i) the global alternative
H1 : ha0; and (ii) the positive orthant alternative;

Hþ
1 : hAOþ

p ; Oþ
p ¼ fh j hX0; jjhjj40g: ð1:1Þ
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Let

%Xn ¼ n	1
Xn

i¼1

Xi and Sn ¼
Xn

i¼1

ðXi 	 %XnÞðXi 	 %XnÞ0; ð1:2Þ

and express the Hotelling T2-statistic as

T2
n ¼ nðn 	 1Þ %Xn

0S	1
n

%Xn: ð1:3Þ

For testing H0 vs. H1; the Hotelling T2-test is uniformly most powerful invariant
(UMPI), and hence, is also admissible (Simaika [13]); Stein [14] established the

admissibility of the Hotelling T2-test by using the exponential structure of the

parameter space. The UMPI character, or even the admissibility of the Hotelling T2-

test may not generally hold for restricted alternatives, such as Hþ
1 in (1.1). The affine-

invariance structure of the parameter space Y ¼ fhARpg does not hold for Hþ
1 ; and

hence, when R is arbitrary p.d., restriction to invariant tests makes little sense. As
such, it is conjectured, though not formally established, that possibly some other

non-(affine) invariant tests dominate Hotelling’s T2-tests, and hence, the latter is

inadmissible. We consider here the hypothesis testing problem H0 vs. Hþ
1 in an

important class of statistical models, where it may be apriorily known that R belongs
to the class of M-matrices. Note that

A ¼ðaijÞ such that aijp0 for all iaj is an M-matrix

if and only if A	1 ¼ ðaijÞ exists and aij
X0; 8i; j; ð1:4Þ

(see Tong [15], p. 78). Some statistical models where R is an M-matrix are presented

in the concluding section. Our contention is to establish that for testing H0 vs. H
þ
1 ; R

nuisance but R an M-matrix, the Hotelling T2-test is inadmissible, whereas some
other versions of the union–intersection tests (UIT) (Roy [10]) belong to Eaton’s [5]
essentially complete class of tests, and hence, may perform better than the Hotelling

T2-test (at least on a part of the parameter space).

2. The main results

First, we appraise Eaton’s [5] basic result on essentially complete class of test
functions for testing against restricted alternatives, when the underlying density
belongs to an exponential family, as in the present context. Let F be Eaton’s
essentially complete class of tests, that means for any test j�eF there exists a test
jAF such that j is at least as good as j�:

Theorem 1. For testing H0 : h ¼ 0 vs. Hþ
1 : hAOþ

p ; whenever R is an M-matrix, the

Hotelling T2-test is inadmissible.

Proof. First, note that in the current context, it follows from Theorem 2.4 of Brown
and Marden [2] that the essentially complete class of tests is nonempty.
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The posed hypothesis testing problem is invariant under the group of
transformations of positive diagonal matrices, hence, for simplicity, R may be
treated as the correlation matrix. Following Eaton [5], we define

O1 ¼ fR	1h j hARþ
p g\f0g; Rþ

p ¼ fx j xX0g: ð2:1Þ

Let VDRp be the smallest closed convex cone containing O1: Then the dual cone of
V is defined as

V	 ¼ fw j/w; xSRp0; 8xAVg: ð2:2Þ

At this stage, we make use of the fact that R; though nuisance, is an M-matrix.
Hence

V ¼ fh j hX0g ¼ Rþ
p ; ð2:3Þ

and its dual cone is

V	 ¼fw j x0R	1wp0; 8xAVg

¼fw jR	1wp0g

¼fw jR	1wp0;wp0g:

D fw jwp0g ¼ R	
p : ð2:4Þ

The acceptance region of the Hotelling T2-test is given by

AT2 ¼ fð %Xn;SnÞ j T2
npT2

ag; ð2:5Þ

where T2
a is the upper 100a% point of the null hypothesis distribution of T2

n (which is

linked to a F -distribution). Since AT2 is an ellipsoidal set with origin 0; it is bounded
while V	; as shown before, is unbounded. Therefore, Eaton’s [5] condition is not

tenable, and hence the Hotelling T2-test is not a member of essentially complete
class. &

Birnbaum [1] in the context of complete class type theorems noted that for testing
H0 vs. H1; a test is admissible if and only if it is a generalized Bayes test. In the
literature, there are admissible tests which are not generalized Bayes tests for some
other hypothesis testing problems. For testing H0 against restricted alternatives, due
to the difficulty of integration over a restricted parameter space, explicit forms of
generalized Bayes tests generally cannot be obtained. More often than not, it is hard
to characterize whether or not some existing tests are generalized Bayes tests. For

testing H0 against H
þ
1 ; the set of proper Bayes tests and their weak limits might only

constitute a proper subset of essentially complete class of tests. As such when the
covariance matrix is an M-matrix, there are tests which are the members of Eaton’s
[5] essentially complete class though they might not be generalized Bayes. In this
vein, a finite union–intersection test (FUIT) (Roy et al. [11]) and a modified union–
intersection test (MUIT) of Sen and Tsai [12] are presented below.

A test which is a member of Eaton’s [5] essentially complete class of tests can be
established by showing the acceptance region covers R	

p or ðV	Þ as a subspace. We

ARTICLE IN PRESS
M.-T. Tsai, P.K. Sen / Journal of Multivariate Analysis 89 (2004) 87–96 89



formulate a FUIT based on the one-sided coordinatedwise Student t-tests. Define
Sn ¼ ðSnijÞ as in (1.2) and let

tj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn 	 1Þ

p
%Xnjffiffiffiffiffiffiffi

Snjj

p ; j ¼ 1;y; p: ð2:6Þ

Corresponding to a given significance level a; define

a� : pa� ¼ a: ð2:7Þ

Let then tn	1;a� be the upper 100a�% point of the Student t-distribution with n 	 1

degrees of freedom. Consider the critical region Wj ¼ ftj j tjXtn	1;a�g for j ¼
1;y; p: Then the critical region of the FUIT is

W� ¼
[p
j¼1

Wj ð2:8Þ

and the acceptance region is

A� ¼
\p
j¼1

%Aj; ð2:9Þ

where Aj ¼ R\Wj and %Aj denote the closure of Aj; j ¼ 1;y; p: Then A� is a

closed convex set and R	
p DA� as long as tn	1;a� is X0 or a�p1

2
(or ap1). Therefore,

the FUIT is a size-a test for H0 vs. Hþ
1 (though not an invariant one), and is a

member of the essentially complete class of tests. The FUIT can be replaced by a
MUIT as formulated below.

To formulate the MUIT, first we estimate R under the condition that R is an M-
matrix. For the restricted alternative problem, the likelihood function depends on
h;R both in an intricate manner, though the Wishart distribution of the global
maximum likelihood estimator (MLE) of R given below is free from h: For this
reason, we shall work with this partial likelihood function to obtain suitable
estimators of R which belong to the M-matrices. Note that the Wishart density is

f ðSn;RÞ ¼
j Sn j

ðn	p	2Þ
2 expð	1

2
trR	1SnÞ

2
1
2ðn	1Þpppðp	1Þ=4Pp

i¼1Gðn	i
2
Þ j R j

ðn	1Þ
2

: ð2:10Þ

We maximize f ðSn;RÞ with respect to R subjecting to (i) R	1 having all nonnegative

elements (ii) R having all non-positive off-diagonal elements. We write c ¼ VecðR	1Þ
and c0 ¼ VecðRÞ; note that both are ðpþ1

2
Þ vector. Partition c0 as

c0 ¼
c00

c�0

 !
; ð2:11Þ

where c�0 contains the p diagonal elements sii; i ¼ 1;y; p: Thus the problem is to

minimize 	f ðSn;RÞ in (2.10) with respect to c0 subjecting to the conditions that

c00p0; %c�0p0 and %cp0; where %c ¼ 	c and %c�0 ¼ 	c�0: In order to apply the Kuhn–

Tucker–Lagrange (KTL) point formula (Hadley [7]) for this problem, we need some
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further notations. Write R	1 ¼ ðsijÞ; we know that sij ¼ cofactor of sij

jRj ; 8i; j: In other

words, sij are the functions of R: Let r ¼ ðpþ1
2
Þ and

%c ¼

g1ðc0Þ
g2ðc0Þ

^

grðc0Þ

0
BBB@

1
CCCA: ð2:12Þ

Replace the condition %cp0 by gjðc0Þp0; j ¼ 1;y; r and then apply the KTL point

formula to get the partial MLE of R: This may not come out in a closed-form
estimator, however it can be solved by non-linear programming from Sn: We denote

this solution by ðn 	 1Þ	1
S0n and note that S0n based on the partial likelihood

function f ðSn;RÞ is by construction an M-matrix. In that way, we may term it
M-restricted partial MLE of R:

Let P ¼ f1;y; pg; and for every a: |DaDP; let a0 be its complement and jaj its
cardinality. For each a; we partition %Xn and S0n as

%Xn ¼
%Xna

%Xna0

� �
and S0n ¼

S0naa S0naa0

S0na0a S0na0a0

� �
; ð2:13Þ

and write

%Xna:a0 ¼ %Xna 	 S0naa0S
	1
0na0a0

%Xna0 ; ð2:14Þ

S0naa:a0 ¼ S0naa 	 S0naa0S
	1
0na0a0S0na0a: ð2:15Þ

Further, let

Ina ¼ 1f %Xna:a040;S	1
0na0a0

%Xna0p0g; ð2:16Þ

for |DaDP; where 1f�g denotes the indicator function. The classical UIT for testing

H0 vs. Hþ
1 has been discussed in Sen and Tsai [12]. We proceed to adopt a suitable

modification by defining U0
n as in (2.11) of Sen and Tsai [12] with Sn being replaced

by S0n

U0
n ¼

X
|DaDP

fn %X0
na:a0S

	1
0naa:a0

%Xna:a0 gIna; ð2:17Þ

refer U0
n as the MUIT. Adopting the same proof as in (Perlman [8]) yields the upper

bound for the MUIT:

Sup
fRAM0g

P0;RfU0
nXc jH0g ¼ P0;IfU0

nXc jH0g; 8cX0; ð2:18Þ

where M0 denotes the group of M-matrices. Thus the MUIT is a size-a test, the size
being attained in the independent case.

Corresponding to a preassigned a ð0oao1Þ; let ca be the critical level, obtained
by equating the right hand side of (2.18) to a; and let A0 be the acceptance region

formed by letting in (2.17) U0
npca: Partition the sample space Rp into

S
a I0na;

and for each a; |DaDP; let A0a ¼ f %Xn j n %X0
na:a0S

	1
0naa:a0

%Xna:a0pcagI0na: Treating
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V	
n ¼ f %Xn j S	1

0n
%Xnp0g ¼ I0n| as the skeleton (pivotal set), then by (2.17) we have

that A0 ¼ V	
n

S
attach A0a; where

S
attach means that for each a; |CaDP; the

hyperspace A0a is attached to the boundary of V	
n on the subspace I0na: By the

property that S0n is an M-matrix, we have V	DR	
p DV	

n DA0 	 a0 for each

a0A@A0: Thus we arrive at the following.

Theorem 2. In the same setup of Theorem 1, the MUIT belongs to Eaton’s essentially

complete class of tests.

Theorem 2 does not guarantee that the MUIT is admissible. However, by virtue of

Theorems 1 and 2 it is interesting to see whether the Hotelling T2-test is dominated

by the MUIT. We provide an affirmative answer for it when R ¼ s2D; where s2 is an
unknown scalar parameter and D is a known M-matrix. All the examples considered
in next section belong to this class. First, note that the MUIT is the same as those of

UIT and LRT for the problem of testing H0 : h ¼ 0 vs. Hþ
1 : hAOþ

p ; when R ¼ s2D:
We make use of Theorems 1 and 2 of Tsai [16] (where the case of known R was
treated) to cover the present case. First, we take D ¼ I (the identity matrix), and note

that here by (2.17) and (2.6), we have the test statistics U0
n ¼

Pp
j¼0

P
fi1;y;ijg ðt2i1 þ

?þ t2ij Þ If %Xnim40; 1pmpj; %Xnimp0; j þ 1pmppg and T2
n ¼

Pp
j¼1 t2j ; respec-

tively, where tj is defined in (2.6) and fi1;y; ijg is any permutation of f1;y; jg:
Also, note that for the power comparison of these two tests it suffices enough to

consider the situation that h ¼ ð0;y; 0; ypÞ0; ypa0: Let l ¼ yp

s ; and consider a test

statistic U�
n having the power function Pl2fU�

nXrg ¼
Pp

j¼0 ðp
j
Þð1

2
Þp

PfFj;n	pðnl2ÞXrg;
where the Fj;n	pðnl2Þ represents noncentral F random variable with noncentrality

nl2 and degrees of freedom j and n 	 p (F0;n	p 
 0). For any a with 0oao1; let

a ¼ P0fU�
nXu�g ¼ P0fT2

nXT2
ag: Then for any l240; by Theorem 2.1 of Dasgupta

and Perlman [4], we have Pl2fU�
nXu�g4Pl2fT2

nXT2
ag: Next, choose u0 such that

P0;s2IfU0
nXu0g ¼ a: Then for any l40;

Pð 0yp
Þ;s2IfU0

nXu0g 	 Pl2fU�
nXu�g

¼
Z

N

	N

?
Z

N

	N

fðxpÞ
Yn

i¼1

f ðxip; yp; s2Þ
Yn

i¼1

dxip

	
Z

N

	N

?
Z

N

	N

f�ðxpÞ
Yn

i¼1

f ðxip; yp;s2Þ
Yn

i¼1

dxip; ð2:19Þ

where

fðxpÞ ¼
Z

U0
nXu0

Yn

i¼1

Yp	1

m¼1

f ðxim; 0; s2Þ
Yn

i¼1

Yp	1

m¼1

dxim; ð2:20Þ

ARTICLE IN PRESS
M.-T. Tsai, P.K. Sen / Journal of Multivariate Analysis 89 (2004) 87–9692



f�ðxpÞ ¼
Z

U�
nXu�

Yn

i¼1

Yp	1

m¼1

f ðxim; 0; s2Þ
Yn

i¼1

Yp	1

m¼1

dxim; ð2:21Þ

and f ðxp; yp; s2Þ denotes the univariate normal density with mean yp and variance s2:
Note that the facts that f ðxp; yp; s2Þ has the monotone likelihood ratio property in xp

and fðxpÞ is more righted-titled than f�ðxpÞ: Hence by Theorem 2.2 of Chatterjee

and De [3], we may conclude that Pð 0yp
Þ;s2IfU0

nXu0gXPl2fU�
nXu�g:Moreover, as D is

an M-matrix, D	1 has all nonnegative elements, and hence, proceeding as in
Theorem 2 of Tsai [16] and using the arguments similar to those in (2.19)–(2.21), it
follows that his Theorem 2 remains valid in this case as well. Incidentally, there is a

typo in Eq. (2.9) in [16]; it should be correctly read as Ta ¼ fD; D	1=2
aa:a0 ATðjajÞg:

As for the totally unknown R; we study the powers of MUIT and FUIT by some
simulations, and then compare them with the corresponding powers of the Hotelling

T2-test. The critical point tn	1;a� of the FUIT can be easily obtained via (2.6) and

(2.7). Note that the underlying density in the right hand side of (2.18) is multinormal
with mean 0 and covariance matrix I: Thus, we may conclude that, under the null
hypothesis, S0n has the Wishart distribution Wpðn 	 1; IÞ: As such, by Theorem 2.1

of Sen and Tsai [12] and Eq. (2.18), the critical point ca of the MUIT can be
numerically obtained by

a ¼ 1

2

� �p Xp	1

k¼1

p

k

� �Z
N

0

P

�
k

n 	 p
Fk;n	pX

ca

½1þ ðp	kÞ
n	pþk

t�

�2
4 fp	k;n	pþkðtÞ dt

#

þ 1

2

� �p

P
p

n 	 p
Fp;n	pXca

� �
; ð2:22Þ

where fp	k;n	pþkðtÞ is the density function of central F random variable with degrees

of freedom p 	 k and n 	 p þ k: To study the powers, we consider the following
three cases: (a). n ¼ 10; p ¼ 5; h ¼ ð1; 2; 6; 0; 3Þ0;R ¼ ðsijÞ; where s11 ¼ 70;

s22 ¼ 10; s33 ¼ 30; s44 ¼ 20; s55 ¼ 50; and sij ¼ 	5=2; 8iaj: (b). n ¼ 13; p ¼ 6;

h ¼ ð4; 5; 0; 1; 7; 3Þ0;R ¼ ðsijÞ; where s11 ¼ 39; s22 ¼ 13; s33 ¼ 91; s44 ¼ 26; s55 ¼ 78;

s66 ¼ 65; and sij ¼ 	13=5; 8iaj: (c). n ¼ 21; p ¼ 7; h ¼ ð1; 2; 7; 0; 3; 4; 5Þ0;R ¼ ðsijÞ;
where s11 ¼ 21; s22 ¼ 42; s33 ¼ 63; s44 ¼ 84; s55 ¼ 105; s66 ¼ 126; s77 ¼ 147; and
sij ¼ 	7=2; 8iaj: First, we generate ten thousand pairs of (h;s;R;s), where the

components are randomly generated from uniform ð	1; 1Þ distribution so that R is
positive definite. Then for each pair ðh;RÞ; we generate n samples from

Npð100h; 100RÞ to get the data set of %Xn and Sn: For a given Sn; we apply the

algorithm of orthant probability (Evans and Swartz [6]) to calculate the rejection
probability of FUIT under the alternative and then take the average of these ten
thousand rejection probabilities as the simulation power of FUIT. As for the MUIT,
we first use the optimalization algorithm mentioned in Section 2 to obtain the

numerical MLE ðn 	 1Þ	1
S0n of R for a given Sn: Repeating this procedure for each

Sn; we then can obtain the corresponding ten thousand S0n’s. However, sometime it
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is quite time consuming to get a more precise S0n for a given Sn by using the
optimalization algorithm of Matlab package. As such it is hard to simulate the

empirical distribution function of U0
n: To overcome the difficulty, one of feasible

ways is to use Sn instead of S0n and assume that the corresponding

n %X0
na:a0S

	1
0naa:a0

%Xna:a0 and %Xna:a0 are independent under alternatives, |DaDP: As such,

we can obtain the exact distribution function of the modified statistic (say Un) under
alternatives, which turns out to be the weighted sum of convolutions of central-F

distribution and noncentral-F distribution with noncentrality nh0a:a0R
	1
aa:a0ha:a0 ; where

ha:a0 and Raa:a0 are defined the same as in (2.14) and (2.15) with h;R replacing %Xn;Sn;
respectively. By incorporating the algorithm of orthant probability, we can obtain
the corresponding powers. These results along with the power of the Hotelling

T2-test are presented in Table 1. Note that the values in the bracket of last row are
the powers of FUIT when the samples are generated from Npð1000h; 1000RÞ for each
pair ðh;RÞ:

3. Some general remarks

The problem of testing H0 vs. H1 is invariant under the group of invariant affine

transformations. For the problem of testing H0 vs. Hþ
1 ; generally this hypothesis

testing problem is not invariant although it is invariant under two special groups of
linear transformations, positive diagonal matrices and permutation matrices. As
such, a canonical reduction of the noncentrality to a single coordinate may not work
out, and lacking this invariance, the usual techniques fail to provide an optimality

property of the usual tests. Although the Hotelling T2-test is invariant, it is
inadmissible when the covariance matrix is an M-matrix. From the power
consideration of tests, the invariance principle may not be so important for testing
against restricted alternatives.

Notice that for the problem of testing H0 vs. Hþ
1 ; when the covariance matrix is

arbitrary p.d., the dual cone V	 in (2.2) becomes a lower dimensional subspace
whose dimension is less than p: Thus the Lebesgue measure of the set V	 is null, and
hence Theorem 4.1 of Eaton [5] is inapplicable.

In (possibly mixed-effects) randomized block designs, the covariance matrix is of

the form R ¼ s2½ð1	 rÞIþ r110�; where 	1=ðp 	 1Þoro1; 1 ¼ ð1;y; 1Þ0: For this
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Table 1

The powers of three tests

a ¼ 0:1 Case (a) Case (b) Case (c)

MUIT 0.9064 0.9992 0.9977

T2 0.8059 0.9942 0.9838

FUIT 0.9660 0.9955 0.9973

FUIT (0.3876) (0.6565) (0.8997)
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intra-class correlation model, we have R	1 ¼ s	2ð1	 rÞ	1½I 	 r
1þ ðp 	 1Þr11

0� and

hence R is an M-matrix when r is non-positive.

With respect to the intra-class correlation model R ¼ s2½ð1	 rÞIþ r110�; against
the null hypothesis of homogeneity of the mean, consider (i) the starshaped

alternative Hs
1 : y1X2	1ðy1 þ y2ÞX?Xp	1

Pp
i¼1 yi; or (ii) the simple order alter-

native H�
1 : y1py2p?pyp: A linear transformation Y ¼ CX (where C ¼ ðcijÞ; for

(i): cij ¼ ½iði þ 1Þ�	1 if jpi; cij ¼ 	ði þ 1Þ	1 if j 	 i ¼ 1 and cij ¼ 0 otherwise, 8i ¼
1;y; p 	 1; j ¼ 1;y; p; for (ii): cii ¼ 	1; cij ¼ 1 if j 	 i ¼ 1 and cij ¼ 0 otherwise,

8i ¼ 1;y; p 	 1; j ¼ 1;y; p) transforms the original problem to the problem of
positive orthant space (based on YÞ with the new covariance matrix R (for (i): R is

diagonal; for (ii): R ¼ ðsijÞ with sii ¼ 2s2ð1	 rÞ; sij ¼ 	s2ð1	 rÞ; jj 	 ij ¼ 1; and

sij ¼ 0 otherwise, 8i; j ¼ 1;y; p 	 1). In passing, we may note that the new

covariance matrices in these models are all M-matrices, 8 	 1=ðp 	 1Þoro1:
In many problems involving linear models, testing the null hypothesis that the

regression parameter h is linear, the alternative hypothesis may be specified by
inequality restraints. For example, after some linear transformations, we have

H0 : h ¼ 0 against Hþ
1 : hX0: Consider a simple regression model Xi ¼ y1 þ y2ui þ ei

case, where ei with Nð0; s2Þ; i ¼ 1;y; n: Let #y1 and #y2 be the maximum likelihood

estimators of y1 and y2; respectively, then we have Covð#y1; #y2Þ ¼ 	 %uPn

i¼1
ðui	 %uÞ2

s2; where

%u ¼ n	1
Pn

i¼1 ui: Thus it is easy to see that the covariance matrix of #y1 and #y2 is an

M-matrix if %uX0:
For testing H0 against a restricted alternative which is a pointed closed convex

cone, Perlman and Wu [9] downplayed the role of admissibility and other theoretical
properties in favor of justifying likelihood ratio test (LRT). This note has nothing to
do with the subjective review; however it provides a support for (restricted partial)
LRT and UIT (see Perlman and Wu [9], p. 380) for the problems of testing H0

against restricted alternatives.
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