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aDepartment of Statistics, University of North Carolina, Chapel Hill, NC 27599, USA
bDepartment of Probability and Statistics, Centro de Investigación en Matemáticas A. C., Apdo. Postal 402,
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Abstract

A model is developed for multivariate distributions which have nearly the same marginals,

up to shift and scale. This model, based on ‘‘interpolation’’ of characteristic functions, gives a

new notion of ‘‘correlation’’. It allows straightforward nonparametric estimation of the

common marginal distribution, which avoids the ‘‘curse of dimensionality’’ present when

nonparametically estimating the full multivariate distribution. The method is illustrated with

environmental monitoring network data, where multivariate modelling with common

marginals is often appropriate.
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1. Introduction

When the data are sparse in multivariate statistical analysis, the statistician often
has little alternative to normal theory methods, even when the data are clearly not
normal, because there is insufficient information in the data for the usual
nonparametric alternatives, as for example density estimation. This is a common
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situation in environmental monitoring data, where, up to shift and scale, it is sensible
to view the marginal distributions of observations at different monitoring stations as
all the same.
Here we propose a semiparametric multivariate model for distributions where the

marginals are the same. The problem of multivariate modelling from given marginals
has been extensively studied in the literature; see for example [7,9,13,21,22]
for a comprehensive review of this subject, and [10] for an earlier history. Some
of the general attempts for this kind of modelling are within the framework of
the so-called frailty distributions which are generated by mixtures of distribution
or survival functions [12]. These methods require knowledge of the explicit form
of the one-dimensional distribution function and are particularly useful for
reliability and extreme value distributions. Other approaches, like the random-

additive-effects model [2], are based on moment generating or characteristic
functions.
In our approach, very mild nonparametric assumptions are made about the

common marginal distribution. The multivariate model is constructed through
decomposition of characteristic functions by an ‘‘interpolation formula’’ having
the totally dependent and the independent models as extreme points, and in
such a way that the usual multivariate Gaussian results when the marginal
distributions are Gaussian. This last property does not hold for other approaches to
this problem. A by-product of this modelling is a new look at measures of
dependence. Our model gives a class of such measures which includes the usual
Pearson correlation coefficient as a special case. A new view as to why other
measures of correlation are probably more useful when the distribution is not
multivariate Gaussian is provided.
The problem of multivariate density estimation with common marginals arises

naturally in the context of environmental monitoring network design and evaluation;
see for example [3,14]. Specifically, a network consists of d possible monitoring sites
where one or several environmental variables are monitored. In the case of a single
variable, it is assumed that at each site the variable follows a common distribution
with density f ðxjÞ; j ¼ 1;y; d: The corresponding multivariate density f ðx1;y; xdÞ
for the d stations is needed to compute the Shannon index, which is a quantification
of the quality of the performance of the network. Experience shows that the
assumption of equal marginals after a location-scale transformation is reasonable
here. One then expects an environmental variable to originate from the same family
of distributions at each monitoring station.
Our multivariate model is developed in Section 2, where we also propose a

method for estimating the dependence parameters. Section 3 presents some
theoretical properties of the model, its relationship to cumulants, to the multivariate
Gaussian distribution, and a discussion of the connection between the new
dependence parameters and the usual correlation coefficients and other concepts
of dependence. Results of a computational study to evaluate the performance
of the estimation method are presented in Section 4. In Section 5 we fit the
model to CO and ozone data from the environmental monitoring network in
Mexico City.
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2. Dependence model

2.1. Proposed model

A useful tool for understanding the multivariate probability distribution of a

random vector X
-

¼ ðX1;y;XdÞ0ARd is its joint probability density function

fX
-
ðx1;y; xdÞ (when it exists). Another representation of the joint distribution is

through its characteristic function

fX
-

ð t
-
Þ ¼ Ee

i t0
-

X
- ¼

Z
N

�N

?
Z

N

�N

e
i t0
-

x
-fX

-
ðx
-
Þ dx1?dxd ;

which is the Fourier transform of the density, or in general of a multivariate
probability distribution. For a comprehensive review of multivariate characteristic
functions we refer to the book by Cuppens [4].
Our multivariate model assumes a common marginal density f ðxÞ; i.e. for

j ¼ 1;y; d

f ðxjÞ ¼
Z

N

�N

?
Z

N

�N

fX
-
ðx1;y; xdÞ dx1?dxj�1 dxjþ1?dxd :

This entails a common marginal characteristic function

fðtÞ ¼
Z

N

�N

eitxf ðxÞ dx:

When the components of X
-

are independent, the joint density factors as

fX
-
ðx
-
Þ ¼

Yd

j¼1
f ðxjÞ;

and the joint characteristic function also factors as

fX
-

ð t
-
Þ ¼

Yd

j¼1
fðtjÞ: ð1Þ

When d ¼ 2; and the components of X
-

are the same, i.e. X1 ¼ X2; the joint

characteristic function has the simple form

fX
-

t1

t2

 ! !
¼ Eeiðt1X1þt2X1Þ ¼ fðt1 þ t2Þ: ð2Þ

Our multivariate model is a ‘‘geometric mixture’’ of the characteristic functions (1)
and (2). Hence it can be viewed as a combination (in the Fourier domain) of
distributions that are independent and have marginal variables that are the same. In
particular, in the case d ¼ 2; for a given marginal characteristic function fðtÞ; and
given a parameter aA½0; 1	; our bivariate model is the distribution (when it exists)
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with interpolated characteristic function

fX
-

t1

t2

 ! !
¼ fðt1 þ t2Þa½fðt1Þfðt2Þ	1�a: ð3Þ

When a ¼ 1; the total dependence model is obtained, while a ¼ 0 yields the
independent case, in analogy with the usual correlation coefficient. In general,

powers of the characteristic function fðtÞ are defined by ½fðtÞ	a ¼ exp½a log fðtÞ	;
where we take for log fðtÞ the principal branch of the complex logarithm, that is, the
one for which log fð0Þ ¼ 0: As will be seen in Section 3.1, this leads to a proper
multivariate distribution, when f corresponds to an infinitely divisible distribution.
In Section 3.2 it is seen that when the marginal distribution is the standard

Gaussian, this reduces to the bivariate Gaussian distribution with correlation a: In
Section 3.3 it is seen that the usual Pearson correlation coefficient (defined for any
multivariate distribution with second moments) is a special case of a which results
from fitting this model (with respect to different norms) to the joint characteristic
function.
In the general case having dX3; given parameters aj;k ¼ ak;jA½0; 1	; j; k ¼ 1;y; d;

jak; with
Pd

k¼1; kaj aj;kp1 for each j; our model is the multivariate distribution

(when it exists) with characteristic function

fX
-

ð t
-
Þ ¼

Y
1pjokpd

fðtj þ tkÞaj;k

" # Yd

j¼1
fðtjÞ1�

Pd

k¼1; kaj
aj;k

" #
: ð4Þ

Again in the standard Gaussian case, aj;k are the usual correlations.

2.2. Estimation

Data X
-

ð1Þ;y;X
-

ðnÞ is assumed to be in the form of marginal standardizations, that

is, each original sample is modified by subtracting the marginal mean and dividing
by the marginal standard deviation. To estimate the marginal characteristic function
f and the parameters aj;k in this model recall that an unbiased estimate of the joint

characteristic function is the ‘‘empirical characteristic function’’ (see for example [6]):

#fX
-
ð t
-
Þ ¼ n�1

Xn

c¼1
e

i t0
-

X
-

ðcÞ
: ð5Þ

‘‘Pooling’’ the marginal versions of this empirical characteristic function (using the
assumption of same marginals) gives the following estimate of f:

#fðtÞ ¼ d�1
Xd

j¼1

#fXj
ðtÞ ¼ ðndÞ�1

Xn

c¼1

Xd

j¼1
eitX

ðcÞ
j :

aj;k are then taken to ‘‘make the model match the joint distribution as well as

possible’’. In particular, given some norm jj � jj on Rd ; take the vector #a
-
of estimates
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#aj;k to be

arg min
a
-

#fX
-
ð t
-
Þ �

Y
1pjokpd

#fðtj þ tkÞaj;k

" # Yd

j¼1

#fðtjÞ1�
Pd

k¼1; kaj
aj;k

" #					
					

					
					:

Insight into the anticipated behavior of these estimates, in particular, how well this
model fits various types of multivariate distributions having characteristic function
cð t

-
Þ; comes from studying the ‘‘theoretical version’’, *a

-
of approximations *aj;k;

defined to be

arg min
a
-

jjcð t
-
Þ � fX

-

ð t
-
Þjj:

In Section 3.3 we show that under a limiting argument, the minimizing values #a
-

and *a
-

are the empirical and theoretical (respectively) Pearson correlation

coefficients. Thus we have developed generalizations of the notion of ‘‘measure of
correlation’’ which can be viewed as more sensible than the Pearson version, as
shown by the computational results of Section 4.
In many applications it is of interest to obtain an estimate of the joint density of

the observations. For this we use an inversion formula on the fitted joint

characteristic function (see [4, Theorem 2.3.1]). Let #fX
-
ð t
-
Þ be the fitted characteristic

function obtained by substituting #a
-

and #fðtÞ in (4). The estimate of fX
-
ðx
-
Þ is

f̂X
-
ðx
-
Þ ¼ 1

2p

Z
j t
-
joB

expð�i t0
-

x
-
Þ #fX

-
ð t
-
Þ d t

-
;

where B acts as a smoothing parameter, see e.g. [15, Section 2.7]. Our numerical
approach is Monte Carlo integration, which involves generating t1

-
;y; tM

-

independent uniform vectors on j t
-
joB; for large M and then approximating

f̂X
-
ðx
-
Þ ¼ 1

2p
1

M
real

XM
i¼1

expð�i t0i
-

x
-
Þ #fX

-
ð ti
-
Þ

( )
:

3. Theoretical properties

3.1. Connection to infinitely divisible laws and cumulants

As pointed out by Olkin [13], any construction of multivariate distributions with
given marginals has limitations, since they apply to many different situations. The
restriction that 0pap1 ensures that fX

-

given by (3) is indeed the characteristic

function of a joint distribution for a large class of marginal distributions which
includes the infinitely divisible laws (we do not assume existence of a density here).
This class is reasonably rich, and includes many distributions recently used in
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nonparametric and parametric statistical modelling such as the stable and the self-
decomposable distributions; see for example [1,5,18].
In general, our model assumes that the left-hand side of (3) is a bivariate

characteristic function having the particular a-decomposition-type (see [4]) given
by its right-hand side. We do not know which kind of marginals other than
the univariate infinitely divisible give a valid multivariate model (4). However,
we conjecture that (4) well approximates several models, as suggested by
Theorem 9.2.1 in [4] and the results for uniform marginals obtained in
Section 4.
Knowledge of the univariate characteristic function f provides important

information about (4) and conversely. Specifically, if the marginal characteristic
function f is infinitely divisible, so are the multivariate models (3) and (4).
Conversely, if (4) is multivariate infinitely divisible with additional properties
(see [4, Theorems 9.3.1 and 9.3.2]), under the assumption of common marginals,
f is also (univariate) infinitely divisible. Moreover, it is not difficult to see that if f is
a univariate stable (more generally self-decomposable) characteristic function then
(4) gives a multivariate stable (self-decomposable) distribution. The specific
connection with the multivariate Gaussian distribution is illustrated in the next
section.
If f is the (real) characteristic function of a symmetric univariate distribution, then

the dependence model (4) is the (real) characteristic function of a symmetric

multivariate random vector. On the other hand, if
R
N

�N
jfðtÞja dt is finite, thenZ

N

�N

Z
N

�N

jfX
-

ðt1; t2Þj dt1 dt2oN;

and therefore, using Corollary 2.3.1 in [4], the bivariate density of (3) exists, and
similarly for the general multivariate situation. From now on we will always assume
the existence of the multivariate density, which exists for all nondegenerate
multivariate self-decomposable distributions [19].
Instead of using characteristic functions, sometimes it is easier to work with the

moment generating functions (when they exist)

MX
-
ð t
-
Þ ¼

Y
1pjokpd

Mðtj þ tkÞaj;k

" # Yd

j¼1
MðtjÞ1�

Pd

k¼1; kaj
aj;k

" #
; ð6Þ

MX
-
ð t
-
Þ ¼ Ee

t0
-

X
- ¼

Z
N

�N

e
t0
-

x
-fX

-
ðx
-
Þ dx1?dxd

and

MðtÞ ¼
Z

N

�N

etxf ðxÞ dx:

From [4, Theorem 9.2.1] it follows that if the distribution of the left-hand side of
(4) has multivariate moment generating function MX

-
; then the moment generating

function M of the distribution of f also exists.
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Norman L. Johnson has pointed out the following fact. Since the log of a
characteristic function generates cumulants, our log model becomes

log fX
-

t1

t2

 ! !
¼ a log fðt1 þ t2Þ þ ð1� aÞ log½fðt1Þfðt2Þ	 ð7Þ

and therefore, the dependence model (3) has the interpretation that its cumulants are
interpolated averages of cumulants from the total dependence model and the
independent one.
We finally observe that expression (3) has recently been used—in a completely

different context—by Houdré et al. [8], as a basic tool for proving correlation
inequalities and in studying association of infinitely divisible random vectors.

3.2. Connection to the multivariate normal distribution

When the joint distribution is multivariate normal, with mean vector 0
-

and

covariance matrix R; the joint density is

fX
-
ðx
-
Þ ¼ 1

ð2pÞd=2jRj1=2
e
�1
2

x0
-

R�1 x
-:

Much insight about this distribution comes from its characteristic function

fX
-

ð t
-
Þ ¼ e

�1
2

t0
-

R t
-

(see [20, p. 28]).
If we use approach (4) to create a multivariate distribution from univariate

standard normals, using the relationship ðtj þ tkÞ2 ¼ t2j þ t2k þ 2tjtk; we obtain

Y
1pjokpd

fðtj þ tkÞaj;k

" # Yd

j¼1
fðtjÞ1�

Pd

k¼1; kaj
aj;k

" #

¼ exp �1
2

X
1pjokpd

aj;kðtj þ tkÞ2 þ
Xd

j¼1
1�

Xd

k¼1; kaj

aj;k

 !
t2j

" #( )

¼ exp �1
2

X
2

1pjokpd

aj;ktjtk þ
Xd

j¼1
t2j

" #( )

¼ e
�1
2

t0
-

R t
-;

where R is the covariance matrix with entries aj;k;

R ¼

1 a12 ? a1d

a12 1

^ & ^

a1d ? 1

0
BBB@

1
CCCA:
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Hence our model is multivariate Gaussian when we start with Gaussian marginals,
and the aj;k are just the usual correlations.

Conversely, if (4) is a multivariate Gaussian model, then using Theorem 9.3.1 in [4]
it follows that f is the characteristic function of a univariate Gaussian distribution.

3.3. Connection to Pearson’s correlation

For simplicity and clarity only the case d ¼ 2 is handled here, but the extension to
general d is straightforward. In this section we do not need to assume that the
marginal distributions are the same, but instead only need common second

moments. In particular, assume EX1 ¼ EX2 ¼ 0; EX 2
1 ¼ EX 2

2 ¼ 1; and all third

moments exist. Then, as t1; t2-0; standard Taylor expansion gives

EðeitjXj Þ ¼ 1� 1
2

t2j þ Oðjtjj3Þ;

Eðeiðt1þt2ÞX1Þ ¼ 1� 1
2

t21 � 1
2

t22 � t1t2 þ Oðjt1j3Þ þ Oðjt2j3Þ;

Eðeiðt1X1þt2X2ÞÞ ¼ 1� 1
2

t21 � 1
2

t22 � t1t2EðX1X2Þ þ Oðjt1j3Þ þ Oðjt2j3Þ:
The relation (as s-0)

ð1þ s þ oðsÞÞb ¼ 1þ bs þ oðsÞ;
together with straightforward algebra gives

jEðeiðt1X1þt2X2ÞÞ � ½Eðeiðt1þt2ÞX1Þ	a½Eðeit1X1ÞEðeit2X2Þ	ð1�aÞj

¼ jt1t2ða� EðX1X2ÞÞ þ Oðjt1j3Þ þ Oðjt2j3Þj:
Thus, when t1; t2 are near to 0; we obtain that *a is near to EðX1X2Þ; the Pearson
correlation coefficient under these assumptions.
This development has been in terms of the ‘‘theoretical’’ correlation coefficient,

but the same calculation also applies to the ‘‘empirical’’ version, by replacing the
expectation operator with its sample version, i.e. by replacing the operation

EgðX
-
Þ ¼

Z
N

�N

?
Z

N

�N

gðx
-
ÞfX

-
ðx
-
Þ dx1?dxd

with

ÊgðX
-
Þ ¼ n�1

Xn

c¼1
gðX ðcÞ

-
Þ

at all points. The assumption of common marginal mean 0 and variance 1 is achieved

by ‘‘standardizing’’, i.e. by assuming that the X
ðcÞ
j come from data Y

ðcÞ
j as

X
ðcÞ
j ¼ ðY ðcÞ

j � %YjÞ= #sj ð8Þ

for c ¼ 1;y; n and j ¼ 1;y; d; where %Yj ¼ n�1 Pn
c¼1 Y

ðcÞ
j and

#sj ¼ n�1
Xn

c¼1
ðY ðcÞ

j � %YjÞ2
" #1=2

:
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Thus, in the limit as t1; t2-0; we get

#a ¼ n�1
Xn

c¼1
X

ðcÞ
1 X

ðcÞ
2 ¼ n�1

Xn

c¼1
ðY ðcÞ

1 � %Y1ÞðcÞ1 ðY ðcÞ
2 � %Y2ÞðcÞ2 =ð #s1 #s2Þ;

which is the empirical Pearson correlation coefficient.

3.4. Connection to other dependence concepts

If 0pajp1; j ¼ 1;y; d and f is infinitely divisible, model (4) gives the

characteristic function of an associated random vector. Recall that a random vector
X
-

is associated if CovðG1ðX
-
Þ;G2ðX

-
ÞÞX0; for all componentwise nondecreasing

functions G1;G2 :R
d-R; for which the covariance exists (see [8,17], for the

association of infinitely divisible random vectors).
Recently, Rosinski and Zak [16] have studied a useful measure of dependence for a

general pair of infinitely divisible random variables. Namely, if ðX1;X2Þ is an

infinitely divisible random vector with characteristic function fðt1
t2
Þ; the codifference

tðX1;X2Þ is defined as

tðX1;X2Þ ¼ log f
1

�1

 !
� log f

1

0

 !
� log f

0

�1

 !
: ð9Þ

For the Gaussian case the codifference is the usual correlation coefficient and in
general, it holds that X1 and X2 are independent if and only if tðX1;X2Þ ¼
tðX1;�X2Þ ¼ 0:
When ðX1;X2Þ follows model (3),

tðX1;X2Þ ¼ �a log fð1Þfð�1Þ;

that is, the codifference is proportional to a: In general, if ðX1;y;XdÞ follows model
(4), tðXj;XkÞ ¼ �aj;k log fð1Þfð�1Þ:

4. Computational study

To gain insight about the properties of our common marginal dependence model,
and the proposed estimators, we conducted a computational study which include
both theoretical computations and simulations. Of particular interest is how well our
model (3) approximates joint distributions that are not of exactly that form.
The examples considered were bivariate distributions, normalized so that EX1 ¼

EX2 ¼ 0 and varðX1Þ ¼ varðX2Þ ¼ 1: The dependence structures were:

D1. X1; X2; independent.

D2.
X1

X2

� �
¼ S�1=2 Z1

Z2

� �
; for EZ1 ¼ EZ2 ¼ 0; varðZ1Þ ¼ varðZ2Þ ¼ 1; and S ¼

1 0:5
0:5 1

� �
: This intended to be a ‘‘moderate positive correlation’’ model.
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D3. Same as D2, except S ¼ 1 0:9
0:9 1

� �
: This is intended to be a ‘‘high positive

correlation’’ model.
D4. A mixture of the degenerate distribution X1 ¼ X2 (with probability 1/2) and the

X1;X2 independent distribution (with probability 1/2). This distribution has
positive correlation of a very nonstandard type.

D5. A mixture of the two degenerate distributions X1 ¼ X2 (with probability 1/2)
and X1 ¼ �X2 (with probability 1/2). This distribution is supported on the 45�

lines in the plane and is a very nonstandard distribution. Even the notion of
‘‘correlation’’ could be defined in many quite different ways.

D6. Same as D2, except S ¼ 1 �0:9
�0:9 1

� �
: This is intended to be a ‘‘high

negative correlation’’ model. Note that our model is not expected to work at all
here, because it is specifically designed for positive correlation.

The marginal distributions considered were:

M1. Gaussian.
M2. Laplace (also called the ‘‘double exponential’’). Intended to represent

nonGaussian shapes.
M3. Uniform. Even further from the Gaussian in shape.
M4. Exponential. A different type of nonGaussian, and also asymmetric.

Four natural norms were considered for the estimation procedure of Section 2:

N1. Standard L2: jj f1 � f2jj21 ¼
R
N

�N
?
R
N

�N
j f1ð t

-
Þ � f2ð t

-
Þj2 d t

-
;

N2. Weighted L2: jj f1 � f2jj22 ¼
R
N

�N
?
R
N

�N
j f1ð t

-
Þ � f2ð t

-
Þj2eð t0

-
t
-
Þ

d t
-
; (this puts

more weight on the origin)
N3. Weakly weighted L2:

jj f1 � f2jj23 ¼
Z

N

�N

?
Z

N

�N

j f1ð t
-
Þ � f2ð t

-
Þj2eð t0

-
t
-
Þ=2

d t
-
;

(this uses weights in between jj � jj1 and jj � jj2)
N4. Evaluation at 0: jj f1 � f2jj4 ¼ j f1ð0

-
Þ � f2ð0

-
Þj (this is only a seminorm, but is

included to study the connection to Pearson’s correlation discussed in Section
3.3).

We have done both theoretical and empirical computations for all combinations
of the above settings, but just show a few here, chosen to highlight the main ideas, to
save space. The case of the mixture dependence (D4), with the Laplace marginal
distributions (M2) was fairly representative (our model gave better performance in
most cases). Fig. 1 shows the theoretical joint characteristic function, fX

-

ð t
-
Þ;

together with the characteristic function of our model as defined in (3), fit by the L2
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norm (N1). The approximation is reasonable, but not perfect. We observed
substantially better approximation for the more standard dependence models (D1),
(D2) and (D3), and also for the Gaussian common marginal distributions (M1).
Insight into the behavior of the different norms (N1)–(N4) is given in Fig. 2, which

shows these as a function of the parameter a: In what follows *ai denotes the
minimizing value under norm Ni: The theoretical value of Pearson’s correlation for
this joint distribution is 0.5, so the norm (N4) works as expected, with *a4 ¼ 0:499:
When ‘‘correlation’’ is instead taken to be the a that minimizes other norms, the

value is somewhat different. Most different is the standard L2 norm (N1), with
*a1 ¼ 0:714: Putting more weight on the origin gives something in between (N1) and
(N4), so it is not surprising that the minimizers are *a2 ¼ 0:569 and *a3 ¼ 0:609 (note
(N3) is ‘‘between’’ (N1) and (N2)).
An interesting variation on Fig. 2 showed up for the unusual dependency model

(D5), with Gaussian marginal distributions (M1), as shown in Fig. 3. For this model

the notion of ‘‘correlation’’ that follows from the standard L2 norm has two
solutions *a1 ¼ 70:790: This is consistent with the fact that ‘‘positive’’ and
‘‘negative’’ correlations are not simply defined notions for this model (where the
bivariate probability puts mass symmetrically on the two 45� lines in the plane).

ARTICLE IN PRESS

Fig. 1. Characteristic functions, for the underlying joint distribution. Left-hand panels are for the true

underlying joint distribution, right-hand panels are for the model of the form (3) fit by norm (N1). Top

panels are mesh plots, and bottom panels are contour plots of the same surfaces. For the mixture joint

distribution (D4), with common Laplace marginal distributions (M2).
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However, the other three norms all result in *ai ¼ 0 (only (N3) is shown but the others
are similar) which is also a sensible definition of ‘‘correlation’’. Insight as to why
these answers are different comes from studying the mesh plots of the characteristic
functions, as shown in the lower row. Note that the joint characteristic function is
approximately radially symmetric near the origin, but has distinct ‘‘shoulders’’ away

from the origin. The standard L2 norm is more strongly influenced by points away
from the center, so these ‘‘shoulders’’ give the multiple minima apparent in Fig. 3a
(which reflect fitting quite elliptical Gaussian distributions, of the type shown in Fig.
3d). But the other norms are more strongly influenced by points near the origin,
where the radially symmetric part is dominant, so the best Gaussian fit is spherical.
Next we studied the performance of the empirical version of our model, in these

various contexts. For comparison with the theoretical case, we again focus on the
nonstandard mixture distribution (D4) and common Laplace marginals (M2). This
case was again fairly representative. Using one pseudo-data set of size n ¼ 100; gave
the empirical version of Fig. 1 that is shown in Fig. 4. This is the empirical joint

characteristic function, #fX
-
ð t
-
Þ; together with the empirical fit of our model, fit by the

L2 norm (N1). Again as in Fig. 1, the approximation is reasonable, but not perfect.
Again we observed substantially better approximation for the more standard
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(a) (b)

(c) (d)

Fig. 2. Theoretical norms between joint characteristic functions and our common marginal dependency

model, as a function of the dependency parameter a:Norms are (N1) for (a), (N2) for (b), (N3) for (c), and
(N4) for (d). For the mixture joint distribution (D4), with common Laplace marginal distributions (M2).
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dependence models (D1), (D2) and (D3), and when the common marginals were
Gaussian (M1).
The empirical versions of Fig. 2 are not worth the space, because the norms

were quite similar to each other in this case (and had a shape very similar to what is
seen in Fig. 2). The analogs of this for most other settings were similar. Even the
analog of Fig. 3 had a similar ‘‘single minimum’’ shape (because the special
symmetry that created the two minima disappeared in the empirical characteristic
function).
We also studied some sampling properties of our model via a simulation study.

The results are reported in [11]. The main insight gained is that norm (N3) has
marginal smaller variability, so we prefer it. Furthermore, we conclude that our
dependence model is not robust against violation of the assumption of positive
correlation, and recommend that adjusting for this by changing appropriate
signs of variables is worthwhile. We also studied the performance of our final

marginal density estimates f̂X
-
ðx
-
Þ; defined in Section 2.2. The estimation was very

good for the case of Gaussian (M1) marginals, but not so good for the Laplace (M3)
marginals.

ARTICLE IN PRESS

(a) (b)

(d)(c)

Fig. 3. Top row shows theoretical norms between joint characteristic functions and our common marginal

dependency model, as a function of the dependency parameter a: Norms are the standard L2 norm (N1)

for (a), the weighted L2 norm (N3) for (b). Large differences are explained by characteristic functions

shown in the bottom row, joint for (c), and our model, fit by (N1) for (d).
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5. Data application

5.1. CO and ozone data from a monitoring network

When modelling a single variable in environmental monitoring, it is often
appropriate to assume common marginals; moreover, the Gaussian assumption is
not often met so one must build a different dependence model in order to estimate
the associated multivariate density. In this section we illustrate our multivariate
modelling by considering data at four stations of the automatic air monitoring
network in Mexico City (known as RAMA), examining two pollution variables, one
at a time: CO and ozone. Additional RAMA stations were not considered here
because they did not provide an adequate amount of data which was complete in these
variables. We presently focus only on fitting the model; this is a first step towards
further and more general analysis in this setting, for example, in finding the least
informative station using the Shannon index as a measure of performance (see [3,14]).
The RAMA stations considered are: Merced (MER), Pedregal (PED), Cerro de la

Estrella (EST) and Plateros (PLA). PED and PLA are located SW, EST is NE, and
MER is near the center of the city. The data consist of vectors of dimension d ¼ 4;
with each entry corresponding to the weekly maxima of CO and ozone at each

ARTICLE IN PRESS

Fig. 4. Empirical characteristic functions, based on a single pseudo data set of size n ¼ 100: Left-hand

panels are for the empirical joint distribution, right-hand panels are for the model of the form (3) fit by

norm (N3). Top panels are mesh plots, and bottom panels are contour plots of the same surfaces. For the

mixture joint distribution (D4), with common Laplace marginal distributions (M2).
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station for the years 1988–1993. We consider only those weeks for which complete
observations (simultaneously in all stations) were available; 122 observations for
CO, and 128 for ozone were obtained. Stationwise scatterplots show distinguishing
features for which our model seems especially appropriate: positive correlations, and
common marginals (of an unspecified nature). In both examples below, the
parameters in the characteristic function (4) are estimated using norm (N3).
When considering CO, preliminary inspection showed us clearly that common

marginals are plausible in three of the stations considered, so our first example
concerns CO observations disregarding PED. The exclusion of PED may be
debatable, because the degree to which its distribution does not conform to the other
three is not serious; but we prefer to be cautious in this illustrative example. Upon
standardizing each data entry by substracting marginal means and dividing by
marginal standard deviations, we observe that the marginals are approximately the
same, and heavily right-skewed (i.e. far from Gaussian). The estimated a values are

EST PLA

MER 0.20 0.12
EST 0.44

Estimates of a are nonnegative, as expected in an air pollution monitoring
network, and correlation is stronger between EST and PLA despite the fact that
there is a large distance between these two stations. A possible explanation for this is
that station PLA is aligned with respect to EST in a north-easterly direction, so that
correlation could be induced by transport due to dominant trade winds.
Our second example concerns Ozone observations at the four stations. In this case

we observe that the marginal distributions approximately follow the same
distribution in all four stations after appropriate standardizing. Results of estimates
of a are

PED EST PLA

MER �0:01 0.57 0.03
PED 0.06 0.51
EST 0.27

Note, in contrast to CO, that zero correlation between some pairs of stations (MER–
PED, MER–PLA, PED–EST) is suggested, which correspond to pairs of stations
which are geographically far apart from each other, and in different types of location
(residential vs. industrial).

5.2. Graphical results

A specific goodness of fit tool has not yet been developed especially for this model,
so for this purpose we use the following ad hoc graphical device. Let v

-
represent a

direction in Rd with j v
-
j ¼ 1: We compare real and imaginary parts of the empirical
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characteristic function (5) and the fitted characteristic function (4), by plotting these
at t v

-
; for �2ptp2 for different choices of v

-
: When v

-
is made equal to each of d

orthogonal directions—principal components based on the sample covariance
matrix of data, for example—this amounts to comparing two characteristic functions

in d variables along orthogonal slices in Rd : If v
-

was instead taken to be standard

directions, the d plots obtained would compare each of the marginal distributions;
but note that at least one additional plot in a nonstandard direction is required in
order to better resolve dependence structure, because plots for a distribution with
common marginals and any correlation structure would always show agreement in
the standard directions. The alternative graphical display used in Fig. 4 also
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Fig. 5. CO Data. Comparison of real (solid) and imaginary (long dashed) parts of empirical and real

(dotted) and imaginary (short dashed) parts of fitted characteristic functions, corresponding to the first

principal component and the three standard directions.

Fig. 6. Comparison of real (solid) and imaginary (long dashed) parts of empirical and real (dotted) and

imaginary (short dashed) parts of fitted characteristic functions, corresponding to the first principal

component and the three standard directions, for three sets of standardized three-dimensional data of size

n ¼ 125: The first row originated from a trivariate Gaussian distribution with correlation among entries;

second row from i.i.d. realizations of a ðNð0; 1Þ;Uð0; 1Þ; w21Þ vector with independent entries; third row

from i.i.d. realizations of independent common w23 random variables.
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Figure 6
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Fig. 6 (continued).
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compares an empirical and a fitted joint characteristic function, but it is well suited
for two dimensions only.
Fig. 5 shows the plots which result from the three-dimensional fit to the CO data,

letting v
-
be the first principal component and the three standard directions. Notice

that there is general agreement in these plots. The nonzero imaginary parts in the
marginal plots show that this distribution is asymmetrical.
Similar plots constructed for ozone as a result of the four-dimensional fit in the

directions of all four principal components and standard directions give even better
agreement, and are not shown here. In these, imaginary parts of characteristic
functions are practically zero, indicating that the marginal distributions involved are
more symmetric; furthermore, the shape of the real part of the marginal
characteristic functions suggests that ozone may be described by a distribution
which is nearly multivariate Gaussian.
In order to get a feel for what this graphical method is doing, consider three

standardized three-dimensional data sets of size 125 (this value was chosen because it
is central to our real data examples): the first originated from a Gaussian distribution
with correlation among entries; the second from i.i.d. realizations of a

ðNð0; 1Þ;Uð0; 1Þ; w21Þ vector with independent entries (that is, a joint distribution

which does not even share common marginals); and the third from i.i.d. realizations

of independent common w23 random variables. Assuming model (4), estimating a
parameters, and constructing the described plots in each case produces Fig. 6. Note
that there is a general agreement in characteristic functions in the first and last data
sets, whereas in the second there clearly is not. An important aspect of Fig. 6 is that it
illustrates by how much these plots (for the given sample size) can differ for data
whose model is (4). Also, it is here evident that inspection of various directions is
necessary, because there is not a single direction which tells the whole story.
Discrepancies for the first and third simulated data sets are qualitatively similar to
the ones obtained for CO in Fig. 5 and for ozone (not shown); we interpret this to
mean that there are not severe objections to the validity of model (4) in these cases.

6. Conclusions

We constructed a semiparametric model for multivariate observations when the
marginals are the same. The model incorporates parameters which give a new notion
of dependence for a wide family of distributions.
The model (4) has nice properties and is useful when the marginals are infinitely

divisible. It enables easy multivariate modelling with common marginals taking into
account dependence parameters between all pairs of marginals, and reduces to the
multivariate Gaussian in the case of Gaussian marginals.
To estimate the dependence parameters we considered the empirical characteristic

functions in such a way that the assumption of same marginals is involved. A
computational study was conducted to evaluate several norms used in the estimation
of the dependence parameters. Our recommendation is that norm (N3) should be
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used for this purpose. The proposed method was applied to two sets of pollution
data from an environmental monitoring network, showing that the proposed
distribution has potential for modelling this type of environmental data.
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