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1. INTRODUCTION

Let X1 , ..., Xn be independent random variables each having distribution
function (d.f.) F1 , ..., Fn , respectively, and let c1 , ..., cn be a sequence of real
numbers. Consider a weighted empirical process

Sn*(x)=C &1
n :

n

i=1

cniI[Xi�x],

where cni=(c i&c� n)�Cn , c� n=n&1 �n
i=1 ci , and C 2

n=�n
i=1 (ci&c� n)2, and

consider

Sn(x)=(n+1)&1 :
n

i=1

I[Xi�x].
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Motivated by the pioneering work of Ha� jek (1963), we are interested in the
following functional of (Sn*, Sn),

9(S n* , Sn)=|
�

&�
[Sn*(x)]2 �(Sn(x)) dSn(x), (1.1)

where � is a non-negative weight function. The following example shows
one application of this functional in statistics problems.

Example 1 (Tests in Simple Linear Regression Model). Let Xi 's be the
observations of the following simple linear regression model,

Xi=:+ci;+=i , i=1, ..., n, (1.2)

where ci are known regression constants, (:, ;) is the vector of unknown
(regression) parameters to be estimated, and =i are independent and identi-
cally distributed random variables (i.i.d.r.v.). For testing the null hypothesis

H0 ; ;=0 vs H1 : ;{0, (1.3)

we have that with �#1, C 2
n9(S n*, Sn) is equivalent to the Crame� r�von

Mises type test statistic (Ha� jek and S8 ida� k, 1967, p. 103). We refer to Ha� jek
and S8 ida� k (1967) for some general motivation and a useful survey of the
related asymptotic theory. For a general weight function �, 9(Sn*, Sn) is
termed as generalized Crame� r�von Mises (GCvM) type statistic and its
asymptotic properties have not been studied in the literature. The motiva-
tion of such a use of the weight function in certain situations is given in
Example 3 of Section 2, which shows that the use of �(t)=[t(1&t)]&1 is
of special importance.

Several additional examples on the applications of functional 9(Sn*, Sn)
in statistical problems are presented in Section 2, where some new test
statistics are proposed for the tests of goodness of fit in the 3-sample
problems, the tests in linear regression models and the tests of bivariate
independence.

For all these examples, asymptotic distribution theory of 9(Sn* , Sn) is of
focal importance. Thus we intend to develop a general approach for such
studies in this paper. Let F be a continuous d.f., and observe that 9 induces
a function defined on the space D[0, 1]_D[0, 1],

{(Un* , Un)=|
1

0
[Un*(t)]2 �(Un(t)) dUn(t), (1.4)

where Un*=S n* b F&1, Un=Sn b F &1 and D[0, 1] is the space of right con-
tinuous real valued functions with left hand limits endowed with the
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supremum norm & }&. In Example 1, F is the common d.f. of Xi 's under H0 .
We will see later on that this functional { is Hadamard differentiable at
(0, U), where U is the uniform d.f. on [0, 1]. Hence, we have a form of the
Taylor expansion,

{(Un* , Un)={(0, U)+{$(0, U)(Un* , Un&U)+Rem(Un*, Un&U; {), (1.5)

where {$(0, U) is a linear functional and is the Hadamard derivative at (0, U),
and Rem(Un*, Un&U; {) is the remainder term of this first-order expan-
sion. Usually, we would expect to derive the asymptotic normality of
{(Un* , Un) through verifying

Cn Rem(U n* , Un&U; {) w�P 0, as n � �. (1.6)

References on this approach can be found in Ren (1994) and Ren and Sen
(1995) or a simpler case in Fernholz (1983). However, we have {$(0, U) #0
in (1.5) for our examples. Hence, the first-order expansion (1.5) cannot
help us obtain the limiting distribution of {(Un*, Un)=9(Sn*, Sn). As noted
in von Mises (1947), this leads us to consider a higher order expansion of
(1.5), i.e.,

{(U n* , Un)={(0, U)+{$(0, U)(Un* , Un&U)+ 1
2{"(0, U)(Un* , Un&U)

+Rem2(Un* , Un&U; {), (1.7)

where {"(0, U) is the second-order Hadamard derivative at (0, U) and
Rem2(Un* , Un&U; {) is the remainder term of this second-order expansion.

It appears that this second-order expansion (1.7) also provides some
deeper asymptotic results on regression M-estimators in linear models.
Such an application is discussed in Example 5 of Section 2. Moreover, the
bivariate version of (1.7), i.e., for bivariate random vectors Xi=(Vi , Wi)
(see Ren and Sen, 1995, for the first-order expansion with multivariate ran-
dom vectors), gives a convenient tool to study the limiting distributions of
the test statistics for the tests of independence of Vi and Wi , which is briefly
discussed in Example 6 of Sections 2 and 5.

Motivated by the studies described above and by broader potential
applications in other studies of the asymptotic properties of the statistics in
different model settings (for instance, the L- and R-estimators in linear
model, etc.), the concept of second-order Hadamard differentiability
(SOHD) and some related theoretical results are established in Section 3
with proofs deferred to Section 6. While there might be methods other than
the SOHD method to study the asymptotic distributions of the statistics
considered in this paper, the general motivation of our work here is that
the SOHD property possessed by a statistic provides more information
than the first-order Hadamard differentiability property about the statistic's
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asymptotic behavior. Thereby, deeper asymptotic properties of the statistics
can be obtained more easily. In some situations (e.g., Examples 2�4 and 6
of Section 2), we may hope that the testing or estimating procedure can be
constructed and studied conveniently by the SOHD method.

The applications of the concept of SOHD are considered in Section 4 in
deriving the limiting distributions of {(Un* , Un) given by (1.4) with proofs
deferred to Section 6. These results are used in Section 5 to study the
specific limiting distributions of the test statistics given in Examples 1�4
and 6 of Sections 1 and 2. The use of the special weight function �(Sn)=
[Sn(1&Sn)]&1 is included as a special case in our studies.

2. EXAMPLES

In the following examples, the GCvM type statistics 9(S n* , Sn) are used
as test statistics, some of which are new or have not been studied in the
literature.

Example 2 (Tests in General Linear Regression Model). We generalize
the Crame� r�von Mises type test statistic by Ha� jek and S8 ida� k (1967) to a
general linear model. Let Xi 's be the observations of the following linear
regression model,

Xi=:+ci;+di#+= i , i=1, ..., n, (2.1)

where ci , di are known regression constants, (:, ;, #) is the vector of
unknown (regression) parameters to be estimated, and =i are i.i.d.r.v.'s. Let
dni=(d i&d� n)�Dn , d� n=n&1 �n

i=1 di , and D2
n=�n

i=1 (d i&d� n)2, and let

T n*(x)=D&1
n :

n

i=1

dniI[Xi�x]. (2.2)

For testing the null hypothesis

H0 : (;, #)=0
�

vs H i : (;, #){0
�
, (2.3)

proceeding as in Ha� jek and S8 ida� k (1967), we propose the following func-
tionals of (Sn*, T n*, Sn):

|
�

&�
(CnS n*(x), DnT n*(x))(CnSn*(x), Dn T n*(x))T �(Sn(x)) dSn(x)

=C 2
n9(S n* , Sn)+D2

n9(T n* , Sn) (2.4)
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or

max {C 2
n |

�

&�
[Sn*(x)]2 �(Sn(x)) dSn(x), D2

n |
�

&�
[T n*(x)]2 �(Sn(x)) dSn(x)=

=max[C2
n9(Sn*, Sn), D2

n9(T n*, Sn)] (2.5)

to be used as GCvM type test statistics. One may note that through rank
statistics C 2

n9(S n*, Sn) and D2
n9(T n* , Sn) measure the effects that ci 's and

di 's have on Xi 's, respectively. Clearly, these statistics can be easily further
extended to the linear regression model with p unknown regression
parameters, which will be briefly discussed in Section 5.

Example 3 (Goodness of Fit Tests in 3-Sample Problem). The test
statistic given in (2.4) may be used for the 3-sample problem.

(a) Case with equal sample size. For n=3m, let Xi , i=1, ..., m, have
d.f. F, Xi , i=m+1, ..., 2m, have d.f. G, and Xi , i=2m+1, ..., n, have d.f. H.
We are interested in the following 3-sample problem

H0 : F=G=H vs H1 : H0 not true. (2.6)

Suppose that

-
1
3 -

1
3 -

1
3

Q=_ a1 a2 a3 &b1 b2 b3

is an orthogonal matrix. In model (2.1), if we let

(a1 , b1), i=1, ..., m
(ci , bi)={(a2 , b2), i=m+1, ..., 2m (2.7)

(a3 , b3), i=2m+1, ..., n,

then model (2.1) becomes

:+a1;+b1 #+=i , i=1, ..., m
Xi={:+a2;+b2#+= i , i=m+1, ..., 2m

:+a3;+b3 #+=i , i=2m+1, ..., n
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and H0 of the 3-sample problem (2.6) implies H0 : a1;+b1 #=a2;+b2 #=
a3 ;+b3#, which is equivalent to test (2.3) because of a2

1+a2
2+a2

3=b2
1+

b2
2+b2

3=1 and a1+a2+a3=b1+b2+b3=a1b1+a2b2+a3b3=0. From
(2.7), we have C 2

n=D2
n=m,

(a1 �- m, b1 �- m), i=1, ..., m
(cni , dni)={(a2 �- m, b2 �- m), i=m+1, ..., 2m

(a3 �- m, b3 �- m), i=2m+1, ..., n

and

CnSn*(x)=a1 - m Fm(x)+a2 - m Gm(x)+a3 - m Hm(x)

Dn T n*(x)=b1 - m Fm(x)+b2 - m Gm(x)+b3 - m Hm(x),

where Fm , Gm and Hm are the empirical d.f.'s for (X1 , ..., Xm),
(Xm+1 , ..., X2m) and (X2m+1 , ..., X3m), respectively. Thus, we have

\n+1

- n
Sn , CnS n*, DnT n*+

T

=Q(- m Fm , - m Gm , - m Hm)T

and

C 2
nS*2

n +D2
nT*2

n =m(F2
m+G2

m+H 2
m)&n \n+1

n
Sn+

2

=m[(F2
m+G2

m+H 2
m)&3[(Fm+Gm+Hm)�3]2]

=m {\Fm&
n+1

n
Sn+

2

+\Gm&
n+1

n
Sn+

2

+\Hm&
n+1

n
Sn +

2

= .

Hence, from (2.4), the test statistic for the 3-sample problem (2.6) is given
by

C 2
n9(Sn*, Sn)+D2

n9(T n*, Sn)

=m |
�

&� {\Fm&
n+1

n
Sn+

2

+\Gm&
n+1

n
Sn+

2

+\Hm&
n+1

n
Sn+

2

= �(Sn) dSn . (2.8)

With �#1 and �(t)=[t(1&t)]&1, the test statistics (2.8) are equivalent
to those by Kiefer (1959) and Scholz and Stephens (1987), respectively. We
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note that under H0 , the asymptotic variance of - m[Fm(x)& n+1
n Sn(x)] is

given by 2
3F(x)(1&F(x)). In the one-sample goodness of fit tests, Anderson

and Darling (1952) used the reciprocal of the asymptotic variance of
- m[Fm(x)&F(x)] under the null hypothesis as the weight function to put
equal weight (in a certain sense) to each point of the distribution. However,
in the 3-sample goodness of fit test (2.6), F is not known even under H0 .
To generalize this idea of using the weight function from one-sample tests
to 3-sample tests, we may use the reciprocal of the estimator for the
asymptotic variance of - m[Fm(x)& n+1

n Sn(x)] as the weight function, i.e.,
we may use �(Sn(x))=[Sn(x)(1&Sn(x))]&1 as a weight function. Note
that for this special weight function, 9(Sn* , Sn) in (1.1) is well defined
because of our choice of Sn . For a general weight function �, (2.8) gives
GCvM type test statistic for the 3-sample goodness of fit tests.

(b) Case with non-equal sample size. Suppose that for n=n1+n2+
n3 , the random samples (X1 , ..., Xn1

), (Xn1+1 , ..., Xn1+n2
) and (Xn1+n2+1 , ...,

Xn1+n2+n3
), are drawn from F, G and H with the empirical d.f.'s Fn1

, Gn2

and Hn3
, respectively. Let

�n1

n �n2

n �n3

n
Qn=_ an1 an2 an3 &bn1 bn2 bn3

be an orthogonal matrix, and let C2
n=D2

n=n with

(an1 �- n1 , bn1�- n1 ), i=1, ..., n1

(cni , dni)={(an2 �- n2 , bn2�- n2 ), i=n1+1, ..., n1+n2

(an3 �- n3 , bn3�- n3 ), i=n1+n2+1, ..., n.

Then, we have

\n+1

- n
Sn , CnS n*, Dn T n* +

T

=Qn(- n1 Fn1
, - n2 Gn2

, - n3 Hn3
)T,

C 2
nS*2

n +D2
n T*2

n

=n1 \Fn1
&

n+1
n

Sn+
2

+n2 \Gn2
&

n+1
n

Sn+
2

+n3 \Hn3
&

n+1
n

Sn+
2

,
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and from (2.4), we have the following test statistic for (2.6) with non-equal
sample size

C 2
n9(S n*, Sn)+D2

n9(T n*, Sn)

=|
�

&� {n1 \Fn1
&

n+1
n

Sn+
2

+n2 \Gn2
&

n+1
n

Sn+
2

+n3 \Hn3
&

n+1
n

Sn +
2

= �(Sn) dSn . (2.9)

Example 4 (Alternative Tests in 3-Sample Problem). Functionals (2.4)
and (2.5) can be used to construct alternative tests for the 3-sample
problem (2.6). Consider a more general case of model (2.1),

Xi=:+ci;+di #+ei'+= i , i=1, ..., n, (2.10)

and denote

Rn*(x)=E &1
n :

n

i=1

eniI[Xi�x],

where =ni=(ei&e� n)�En , e� n=n&1 �n
i=1 ei , and E 2

n=�n
i=1 (ei&e� n)2. Several

alternative test statistics for (2.6) are given as follows.

(a) In (2.10), let

(1, 0, 0), i=1, ..., m
(ci , di , ei)=_(0, 1, 0), i=m+1, ..., 2m (2.11)

(0, 0, 1), i=2m+1, ..., n;

then model (2.10) becomes a special case of the 3-sample problem with
equal sample size, and H0 of the goodness of fit test (2.6) implies H0 : ;=
#='. Since under this H0 , Xi 's are i.i.d., from Ha� jek and S8 ida� k (1967, see
discussion on p. 90), we know that the test statistics (2.4) or (2.5) may be
used here. For (2.11), we have

C 2
n=D2

n=E 2
n=

2
3

m

(CnSn* , DnT n* , EnRn*)

=- 3m�2 \\Fm&
n+1

n
Sn+ , \Gm&

n+1
n

Sn+ , \Hm&
n+1

n
Sn++ ,
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and from (2.5), we have the following test statistic for (2.6):

max[C 2
n9(S n*, Sn), D2

n9(T n*, Sn), E 2
n9(Rn* , Sn)]

=
3
2

max {m |
�

&� \Fm&
n+1

n
Sn+

2

�(Sn) dSn ,

m |
�

&� \Gm&
n+1

n
Sn+

2

�(Sn) dSn ,

m |
�

&� \Hm&
n+1

n
Sn+

2

�(Sn) dSn = . (2.12)

For a general weight function �, this statistic has not been studied; for the
case of �#1, it is equivalent to that given by Kiefer (1959), where the
limiting distribution of this test statistic was not derived.

(b) For the case of the 3-sample problem with non-equal sample size,
let in (2.10)

C &1
n \1&

n1

n
, &

n2

n
, &

n3

n + , i=1, ..., n1

(cni , dni , eni)={D&1
n \&

n1

n
, 1&

n2

n
, &

n3

n + , i=n1+1, ..., n1+n2

E &1
n \&

n1

n
, &

n2

n
, 1&

n3

n + i=n1+n2+1, ..., n
(2.13)

and

C 2
n=n1 \1&

n1

n + , D2
n=n2 \1&

n2

n + , E 2
n=n3 \1&

n3

n + .

Then, we have

Cn Sn* =� n1n
n&n1 \Fn1

&
n+1

n
Sn+

Dn T n*=� n2n
n&n2 \Gn2

&
n+1

n
Sn+ ,

En Rn*=� n3n
n&n3 \Hn3

&
n+1

n
Sn+ ,
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and from (2.5), we have the following test statistic for the 3-sample
problem (2.6) with non-equal sample size

max[C 2
n 9(Sn* , Sn), D2

n9(T n* , Sn), E 2
n9(Rn* , Sn)]

=max { n1n
n&n1

|
�

&� \Fn1
&

n+1
n

Sn+
2

�(Sn) dSn ,

n2n
n&n2

|
�

&� \Gn2&
n+1

n
Sn+

2

�(Sn) dSn ,

n3n
n&n3

|
�

&� \Hn3
&

n+1
n

Sn +
2

�(Sn) dSn= . (2.14)

(c) In (2.10), let

(1, 0, &1), i=1, ..., m
(ci , di , ei)={(&1, 1, 0), i=m+1, ..., 2m (2.15)

(0, &1, 1) i=2m+1, ..., n;

then

C 2
n=D2

n=E 2
n=2m

(Cn S n*, DnT n*, EnRn*)=- m�2 ((Fm&Gm), (Gm&Hm), (Hm&Fm)),

model (2.10) becomes a special case of the 3-sample problem with equal
sample size, and H0 of the goodness of fit test (2.6) implies H0 : ;=#='.
From (2.5) and (2.4), we have the following test statistics for (2.6)

max[C 2
n9(S n* , Sn), D2

n9(T n*, Sn), E 2
n9(Rn*, Sn)]

= 1
2 max {m |

�

&�
(Fm&Gm)2 �(Sn) dSn ,

m |
�

&�
(Gm&Hm)2 �(Sn) dSn ,

m |
�

&�
(Hm&Fm)2 �(Sn) dSn= , (2.16)

and

C 2
n9(S n*, Sn)+D2

n9(T n*, Sn)+E 2
n 9(Rn*, Sn)

=
m
2 |

�

&�
[(Fm&Gm)2+(Gm&Hm)2+(Hm&Fm)2] �(Sn) dSn ,

(2.16a)
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respectively. For a general weight function �, these statistics have not been
studied; for the case of �#1, David (1958) constructed and studied a test
statistic which is the Kolmogorov�Smirnov version of (2.16).

(d) For the case of the 3-sample problem with non-equal sample size,
let in (2.10)

C &1
n (- n2 �n1 , 0, &- n3 �n1 ), i=1, ..., n1

(cni , dni , eni)={D&1
n (&- n1 �n2 , - n3�n2 , 0), i=n1+1, ..., n1+n2

E &1
n (0, &- n2 �n3 , - n1 �n3 ), i=n1+n2+1, ..., n,

(2.17)and

C 2
n=n1+n2 , D2

n=n2+n3 , E 2
n=n1+n3 ;

then we have

CnS n*=� n1n2

n1+n2

(Fn1
&Gn2

),

Dn T n*=� n2n3

n2+n3

(Gn2
&Hn3

), EnRn*=� n1n3

n1+n3

(Hn3
&Fn1

),

and from (2.5) and (2.4), we have the following test statistics for (2.6) with
non-equal sample size

max[C 2
n9(S n* , Sn), D2

n9(T n*, Sn), E 2
n9(Rn*, Sn)]

=max { n1n2

n1+n2
|

�

&�
(Fn1

&Gn2
)2 �(Sn) dSn ,

n2 n3

n2+n3
|

�

&�
(Gn2

&Hn3
)2 �(Sn) dSn ,

n1 n3

n1+n3
|

�

&�
(Hn3

&Fn1
)2 �(Sn) dSn= , (2.18)

and

C 2
n9(S n* , Sn)+D2

n9(T n*, Sn)+E 2
n9(Rn* , Sn)

=|
�

&� { n1n2

n1+n2

(Fn1
&Gn2

)2+
n2 n3

n2+n3

(Gn2
&Hn3

)2

+
n1n3

n1+n3

(Hn3
&Fn1

)2= �(Sn) dSn , (2.18a)

respectively.
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Clearly, our test statistics in Examples 3�4 here can be easily extended
to treat the k-sample problem (k�2).

The next example describes the application of the second-order expan-
sion (1.7) for statistical functionals to the studies of deeper asymptotic
results on regression M-estimators in linear models.

Example 5 (Regression M-estimators). For simplicity of presentation,
we consider the simple linear regression model given by (1.2) with error
distribution F. The robust M-estimator of (:, ;), denoted by (:̂n , ;� n), is
given by a solution (with respect to (%1 , %2)) of the estimating equations

:
n

i=1

�(Xi&%1&ci%2)=0

(2.19)

:
n

i=1

ci�(Xi&%1&ci%2)=0,

where �: R � R is a suitable score function. Setting Yi=Xi&:&ci;
(i.i.d.r.v.'s with d.f. F ), 1�i�n, with �n

i=1 ci=0, and u=(u1 , u2)T # R2 for
u1=- n(%1&:), u2=Cn(%2&;), we have that (2.19) is equivalent to

M1n(u)= :
n

i=1

n&1�2�(Yi&cT
niu)=0

(2.20)

M2n(u)= :
n

i=1

cni�(Yi&cT
niu)=0,

where cni=(n&1�2, cni)
T. Letting Mn(u)=(M1n , M2n)T, the asymptotic nor-

mality and related properties of (:̂n , ;� n) have been studied most con-
veniently by incorporating the following uniform asymptotic linearity for
the M-estimators:

sup
|u| �K

|Mn(u)&Mn(0)+#Qnu| w�P 0, as n � �, (2.21)

where K is any finite positive real number, | } | stands for supremum norm
on R2, #=� �$ dF>0, and Qn=�n

i=1 cni cT
ni . Note that Mn(u) is a linear

functional of the empirical functions

Vn(t, u)= :
n

i=1

n&1�2I[Y i�F&1(t)+cT
ni u]

Vn*(t, u)= :
n

i=1

cni I[Yi�F&1(t)+cT
niu],

198 REN AND SEN



where t # [0, 1] and u # R2, viz.,

Mn(u)={L(Vn( } , u), V n*( } , u))

=\| � b F&1 dVn( } , u), | � b F&1 dV n*( b , u)+
T

,

and that Mn(u) is a functional defined on D[0, 1]_D[0, 1], because
Vn( } , u) and Vn*( } , u) are elements on D[0, 1] for any fixed u # R2. Since
the Hadamard derivative is a linear functional, Mn(u) could be the
Hadamard derivative of some appropriate functional {. The choice of {
may not be unique, and general motivations for this are given in Ren and
Sen (1991). Ren and Sen (1991) showed that if a functional { is Hadamard
differentiable with first-order derivative Mn(u), then as n � �

sup
|u|�K } _

- n
0

0
an& [{(Vn( } u), Vn*( } , u))]&[Mn(u)&Mn(0)]} w�P 0,

(2.22)

where an=�n
i=1c+

ni =�n
i=1c&

ni with c+
ni =max[0, cni] and c&

ni =&min[0, cni],
and for some functional {1 , {2 : D[0, 1] � R,

{(Vn( } , u), V n*( } , u))=({1(Vn( } , u)�- n), {2(Vn*( } , u)�an))T. (2.23)

Thereby, using a convenient functional {, Ren and Sen (1994) established
(2.21) from showing

sup
|u| �K } _

- n
0

0
an& [{(Vn( } , u), V n*( } , u))]+#Qnu } w�P 0, as n � �.

This (first-order) Hadamard differentiability approach for establishing
(2.21) compares quite favorably with the alternative ones in the literature
(Ren and Sen, 1994). Note that (2.22) is given by the asymptotic behavior
of Rem(Vn( } , u)&U, Vn*( } , u)&U; {). Hence, we naturally expect to obtain
more detailed asymptotic properties of (2.21): the convergence rate in
probability, using the second-order expansion (1.7) for the functional { in
(2.22) and (Vn( } , u), V n*( } , u)). In this context, some asymptotic results on
Rem2(Vn( } , u)&U, Vn*( } , u)&U; {) will be given in Section 3. These results
have been used to establish an asymptotic representation of (:̂n , ;� n) under
weaker conditions than those available in the literature (Ren and Sen,
1993).
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Example 6 (Test of Independence). Let (V1 , W1), ..., (Vm , Wm) be a
random sample from a bivariate d.f. F(v, w). If one wishes to test if Vi and
Wi are independent, the test statistic for the following hypothesis,

H0 : F(v, w)=F(v, �) F(�, w) vs

H1 : F(v, w){F(v, �) F(�, w), (2.24)

may be given by the bivariate version of (1.1). To see this, let n=m+m2

and for 1�i�n, denote

Xi ={(Vi , Wi)
(V i& jm , W j)

if 1�i�m
if jm+1�i�( j+1) m, j=1, ..., m (2.25)

x=(v, w), I[Xi�x]=I[Vi�v, Wi�w].

Thus, in (1.1) for ci=2, 1�i�m; ci=1, m+1�i�n, we have C 2
n=

m2�(m+1),

Sn*(x)=C &1
n :

n

i=1

cniI[Xi�x]=[Fm(v, w)&Fm(v, �) Fm(�, w)]

(2.26)

Sn(x)=
n

n+1 _
1

m+1
Fm(v, w)+

m
m+1

Fm(v, �) Fm(�, w)& ,

where Fm is the bivariate empirical d.f. of (V1 , W1), ..., (Vm , Wm). Hence,
the bivariate version of (1.1) gives a test statistic for (2.24):

C 2
n9(S n*, Sn)=C 2

n || [S n*(x)]2 �(Sn(x)) dSn(x)

=
m2

m+1 || [Fm(v, w)&Fm(v, �) Fm(�, w)]2

_�(Sn(x)) dSn(x). (2.27)

We note that although the random vectors Xi in (2.25), 1�i�n, are not
all independent from one and other, and S n*(x), Sn(x) are bivariate pro-
cesses, a more general multivariate form of (1.5) for the first-order
Hadamard derivative is studied by Ren and Sen (1995), and the multi-
variate analogue of (1.7) for the second order Hadamard derivative applies
to the statistic given in (2.27), because under H0 , - m S n*(x) weakly con-
verges to a centered Gaussian process and Sn(x) uniformly converges to
F(v, �) F(�, w) with probability 1. This will be briefly discussed in
Section 5. Hoeffding (1948) studied the independence test (2.24) using
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U-statistics (its limiting distribution under H0 was not specifically given),
while our formulation in this paper does not require U-statistics representa-
tion and directly connects the degenerated limiting distribution of the test
statistic under H0 with the second-order Hadamard derivative.

3. SECOND-ORDER HADAMARD DIFFERENTIABILITY

First-order Hadamard differentiability is usually defined as follows. Let
V and W be the topological vector spaces, L1(V, W) be the set of con-
tinuous linear transformations from V to W, and A be an open set of V.

Definition I. A functional T: A � W is Hadamard differentiable (or
compact differentiable) at F # A if there exists T $F # L1(V, W) such that for
any compact set 1 of V,

lim
t � 0

T(F+tH)&T(F )&T $F (tH)
t

=0 (3.1)

uniformly for any H # 1. The linear function T $F is called the Hadamard
derivative of T at F.

For the sake of convenience, in (3.1) we usually denote

Rem1(tH)=T(F+tH)&T(F )&T $F (tH) (3.2)

as the remainder term of the first-order expansion. This definition is related
to the original one given in Reeds (1976) (see Fernholz, 1983). We should
note that in normed vector spaces, (3.1) is equivalent to the following form
(viz., Gill, 1989)

lim
t � 0

Rem1(F+tHn)
t

=0, (3.1a)

for any sequences Hn with Hn � H # V.
Let C(V, W) be the set of continuous transformations from V to W, and

let

L2(V, W )=[ f; f # C(V, W ), f (tH)=t2f (H) for any H # V, t # R]. (3.3)

We define second-order Hadamard differentiability as follows.
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Definition II. A functional T: A � W is second-order Hadamard dif-
ferentiable at F # A if there exists T $F # L1(V, W ) and T"F # L2(V, W ) such
that for any compact set 1 of V

lim
t � 0

T(F+tH)&T(F)&T $F (tH)& 1
2 T"F (tH)

t2 =0 (3.4)

uniformly for any H # 1. T $F and T"F are called the first- and second-order
Hadamard derivatives of T at F, respectively.

We denote the remainder term of the second-order expansion as below:

Rem2(tH)=T(F+tH)&T(F )&T $F (tH)& 1
2T"F (tH). (3.5)

In normed vector spaces, (3.4) may be presented in an equivalent form,

lim
t � 0

Rem2(F+tHn)
t2 =0, (3.4a)

for any sequences Hn with Hn � H # V.

Remark 1. In the literature, various types of higher order derivatives
have been considered by some authors, such as von Mises (1947),
Averbukh and Smolyanov (1967), Keller (1974), Reeds (1976), Sen (1988),
among others. Averbukh and Smolyanov (1967) defined the higher order
derivative inductively; that is the second-order derivative is defined if the
map F # A � T $F # L1(V, W ) is differentiable. In Keller (1974) and Reeds
(1976), the second-order derivative is required to be a ``2-linear map''. One
may note that all these definitions require the functional T to be at least
continuously differentiable at F, while our definition of the second-order
Hadamard derivative in Definition II does not require this, thus is a
weaker differentiability condition. Examples show that in some situations,
continuous differentiability condition fails to hold (see Gill, 1989). One
may also note that based on our Definition II, the computation of the
second-order Hadamard derivative is more straightforward. In (2.2) of Sen
(1988), if we let

T $F (H)=| T1(F; x) dH(x) and

T"F (H)=|| T2(F; x, y) dH(x) dH( y),

then (2.2) of Sen (1988) coincides with our (3.5) for continuous and
bounded T1 and T2 . Later on one will see that our concept of second-order
Hadamard differentiability in Definition II suffices in our studies here.
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Remark 2. From our definition of second-order Hadamard differen-
tiability, it is obvious that the existence of the second-order Hadamard
derivative implies the existence of the first-order Hadamard derivative, and
we have

T $F ($x&F )=IC(x; F, T )=
d
dt

T(F+t($x&F ))| t=0 (3.6)

and

T"F ($x&F )=
d 2

dt2 T(F+t($x&F ))| t=0 , (3.7)

where $x is the d.f. of the point mass one at x.

It is known that the chain rule holds for first-order Hadamard differen-
tiability (Fernholz, 1983), which makes it useful. We will show that the
chain rule also holds for second-order Hadamard differentiability. The
proof is given in Section 6.

Proposition 3.1. Let V, W and Z be the topological vector spaces with
T: V � W and Q: W � Z. If T is second-order Hadamard differentiable at
F # V and if Q is second-order Hadamard differentiable at T(F ) # W, then
{=Q b T is second-order Hadamard differentiable at F with derivatives

{$F =Q$T(F ) b T $F (3.8)

{"F =(Q b T )"F=Q"T(F ) b T $F+Q$T(F ) b T"F . (3.9)

In our current study, we will be primarily interested in the functionals
defined on Banach space (D[0, 1]_D[0, 1], & }&), where & }& stands for the
supremum norm and the _-field generated by all open balls is equipped
(see Shorack and Wellner, 1986, for references). In the next few proposi-
tions, we give some sufficient conditions for a second-order Hadamard dif-
ferentiable functional defined on the space D[0, 1] or D[0, 1]_D[0, 1]
with the proofs deferred to Section 6.

The next proposition is a generalization of Proposition 6.1.2 of Fernholz
(1983) for second-order Hadamard differentiability.

Proposition 3.2. Let L: R � R be differentiable and L$ be continuous,
bounded and piecewise differentiable with a bounded derivative. Let #:
D[0, 1] � L p[0, 1], p�1, be defined by

#(H)=L b H, H # D[0, 1]
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and let A be the set of points in R where L$ is not differentiable. If # is
defined in a neighborhood of Q # D[0, 1] and if +[x; Q(x) # A]=0, where
+ is Lebesgue measure, then # is second-order Hadamard differentiable at Q
with derivatives

#$Q(H)=(L$ b Q) H and #"Q(H)=(L" b Q) H2, H # D[0, 1].

Proposition 3.3. Let #: D[0, 1]_D[0, 1] � D[0, 1] be defined by

#(G, H)=G,(H), G, H # D[0, 1]

where , is a real valued function with continuous second derivative ,". Then
for G0 , H0 # D[0, 1], # is second-order Hadamard differentiable at (G0 , H0)
with derivatives

#$(G0 , H0)(G, H)=G0,$(H0) H+,(H0) G, G, H # D[0, 1]

and

#"(G0 , H0)(G, H)=2,$(H0) GH+G0,"(H0) H2, G, H # D[0, 1].

We should notice that a special case of the above proposition with
G0 #0 requires weaker conditions on ,. We state this case as a corollary
without proof.

Corollary 3.4. Let #: D[0, 1]_D[0, 1] � D[0, 1] be defined by

#(G, H)=G,(H), G, H # D[0, 1],

where , is a real valued function with continuous derivative ,$. Then for
H0 # D[0, 1], # is second-order Hadamard differentiable at (0, H0) with
derivatives

#$(0, H0)(G, H)=,(H0) G and

#"(0, H0)(G, H)=2,$(H0) GH, G, H # D[0, 1].

The proof of the following proposition, given in Section 6, is similar to
that of Lemma 3 by Gill (1989), where a class of elements in D[0, 1]_
D[0, 1] is considered,

E={(G, H); G, H # D[0, 1] with |
1

0
|dH|�C= , (3.10)

for a positive constant C. For detailed discussions on E, see Gill (1989).
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Proposition 3.5. Let #: D[0, 1]_D[0, 1] � R be defined by

#(G, H)=|
1

0
G2(t) dH(t), G, H # D[0, 1],

and let (G0 , H0) # E with �1
0 |dG0 |<�. Then # is second-order Hadamard

differentiable at (G0 , H0) with derivatives

#$(G0 , H0)(G, H)=2 |
1

0
G(t) G0(t) dH0(t)+|

1

0
G2

0(t) dH(t),

G, H # D[0, 1],

and

#"(G0 , H0)(G, H)=2 |
1

0
G2(t) dH0(t)+4 |

1

0
G(t) G0(t) dH(t),

G, H # D[0, 1].

For Un* and Un given in Section 1, the second-order remainder term
Rem2 in (1.7) has the following results which are similar to those for the
first-order remainder term. The proofs are given in Section 6.

Let C[0, 1] be the space of real valued continuous functions endowed
with the supremum norm & }&. We impose the following assumptions on
Un* and Un throughout this paper.

Assumption A. (A1) For some U* and U� # C[0, 1], we have that as
n � �, Cn[E[Un*]&U*] ww�& }& 0 and - n [E[Un]&U� ] ww�& }& 0;

(A2) n&1C 2
n�M, for all n�1 and some 0<M<�;

(A3) limn � � max1�i�n[c2
ni]=0.

Theorem 3.6. Suppose {: D[0, 1]_D[0, 1] � R is a functional. Then,
under Assumption A,

(i) if { is Hadamard differentiable at (U*, U� ), we have

Cn Rem1(Un*&U*, Un&U� ; {) w�P 0, as n � �, (3.11)

and

Cn[{(Un* , Un)&{(U*, U� )]=Cn{$(U*, U� )(Un*&U*, Un&U� )+op(1); (3.12)

(ii) if { is second-order Hadamard differentiable at (U*, U� ), we have

C 2
n Rem2(U n*&U*, Un&U� ; {) w�P 0, as n � �, (3.13)
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and

C 2
n[{(Un*, Un)&{(U*, U� )]=C 2

n{$(U*, U� )(U n*&U*, Un&U� )

+ 1
2C 2

n{"(U*, U� )(Un*&U*, Un&U� )+op(1).

(3.14)

Referring to Example 5 in Section 2, we have the following theorem on
the second-order remainder term Rem2(Vn( } , u)&U, Vn*( } , u)&U; {) for
the functional { in (2.22). Let

V*+
n (t, u)= :

n

i=1

c+
ni I[Yi�F&1(t)+cT

niu] (3.15)

V*&
n (t, u)= :

n

i=1

c&
ni I[Yi�F&1(t)+cT

niu]; (3.16)

then for this example, we usually have

{2(V n*( } , u)�an)={1(V*+
n ( } , u)�an)&{1(V*&

n ( } , u)�an) (3.17)

in (2.23) (see Ren and Sen, 1993).

Theorem 3.7. Suppose {1 : D[0, 1] � R is a functional and is second-
order Hadamard differentiable at U. Assume that F is absolutely continuous
with a positive and uniformly continuous derivative. Then, for any K>0,

(i) we have

sup
|u| �K

n |Rem2(n&1�2Vn( } , u)&U; {1)| w�P 0, as n � �; (3.18)

(ii) under (A3), we have

sup
|u| �K

a2
n |Rem2(a&1

n V*+
n ( } , u)&U; {1)| w�P 0, as n � �

and

sup
|u| �K

a2
n |Rem2(a&1

n V*&
n ( } , u)&U; {1)| w�P 0, as n � �.

The proof of Theorem 3.7 is similar to that of Theorem 3.1 in Ren and
Sen (1991), where we only need to replace t&1 Rem(tH; {1) by
t&2 Rem2(tH; {1). One may note that the Skorohod topology was used in
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Ren and Sen (1991), but their results apply here (and in Section 6) because
the limiting Gaussian process for the weak convergence here and in Ren
and Sen (1991) has continuous sample path (see discussions in Gill, 1989)
and the use of the _-field generated by all open balls in this paper ensures
the measurability of the weighted empirical processes.

Remark 3. Ren and Sen (1993) have used Theorem 3.7 along with
Proposition 3.2 to study the convergence rate in probability of (2.21).
Thereby, an asymptotic representation of M-estimators in linear models is
given under weaker conditions on the score function �, the error distribu-
tion F and the design matrix than those in Jure� ckova� and Sen (1984).

4. LIMITING DISTRIBUTIONS OF {(U*n , Un)

In this section, we will consider the functional { given by (1.4). Let
{: D[0, 1]_D[0, 1] � R be a functional, given by

{(G, H)=|
1

0
[G(x)]2 �(H(x)) dH(x), G, H # D[0, 1]. (4.1)

The following conditions may be required in our theorems.

Assumption B. (B1) � is positive on [0, 1] with continuous deriva-
tive �$;

(B2) For any $>0, � is positive on [$, 1&$] with continuous
derivative �$;

(B3) There exists $0>0 and 0<M1 , M2<� such that �(t)�M1 �t,
t # (0, $0] and �(t)�M2 �(1&t), t # [1&$0 , 1).

In the next lemma, we show that { given by (4.1) is second-order
Hadamard differentiable with the proof deferred to Section 6.

Lemma 4.1. Let ,=- � and let (G0 , H0) # E with �1
0 |dG0 |<�. Then,

(i) Under Assumption (B1), we have that the functional { given by
(4.1) is first-order Hadamard differentiable at (G0 , H0) with the first-order
Hadamard derivative

{$(G0 , H0)(G, H)=2 |
1

0
[G0 ,$(H0) H+,(H0) G] G0,(H0) dH0

+|
1

0
G2

0,2(H0) dH; (4.2)
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(ii) If in addition to Assumption (B1), we assume that � has con-
tinuous second derivative �", then the functional { given by (4.1) is second-
order Hadamard differentiable at (G0 , H0) with the first-order Hadamard
derivative given by (4.2), and the second-order Hadamard derivative

{"(G0 , H0)(G, H)=2 |
1

0
[G0,$(H0) H+,(H0) G]2 dH0

+4 |
1

0
[G0,$(H0) H+,(H0) G] G0 ,(H0) dH

+2 |
1

0
[2,$(H0) GH+G0 ,"(H0) H 2] G0 ,(H0) dH0 ,

(4.3)

where G, H # D[0, 1].

In a special case of Lemma 4.1 with G0 #0, weaker conditions are
required on �. We state this case as a corollary. From Corollary 3.4 and
Proposition 3.5, the proof is similar to that of Lemma 4.1.

Corollary 4.2. Under Assumption (B1), for H0 # D[0, 1] with
�1

0 |dH0 |<�, the functional { given by (4.1) is second-order Hadamard
differentiable at (0, H0) with the first-order Hadamard derivative

{(0, H0)(G, H)#0, G, H # D[0, 1] (4.4)

and the second-order Hadamard derivative

{"(0, H0)(G, H)=2 |
1

0
�(H0) G2 dH0 , G, H # D[0, 1]. (4.5)

To study the asymptotic distribution of {(Un*, Un) given by (1.4), we are
particularly interested in the following special case for (Un* , Un):

Assumption C. X1 , X2 , ..., Xn are i.i.d. with a continuous d.f. F.
In this case, we have U*=0 and U� =U in Assumption (A1), because we

always have

:
n

i=1

cni=0, n�1. (4.6)
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Theorem 4.3. Under Assumption (A), (B1) and (C), the functional {
given by (4.1) is second-order Hadamard differentiable at (0, U) with
derivatives

{$(0, U)(G, H)#0 (4.7)

and

{"(0, U)(G, H)=2 |
1

0
G2�(U ) dU, (4.8)

where G, H # D[0, 1]. Therefore,

C 2
n {(Un* , Un)=C 2

n |
1

0
U*2

n �(U) dU+op(1), as n � � (4.9)

and

C2
n {(Un*, Un) w�D |

1

0
W2(t) �(t) dt= :

�

j=1

* jZ2
j , as n � �, (4.10)

where W is a Gaussian process on [0, 1] with mean 0 and covariance

#(s, t)=min[s, t]&st, (4.11)

Zj are independent standard normal random variables, and *j are the eigen-
values for the following eigenvalue problem:

|
1

0
#(s, t) - �(s) - �(t) /(t) dt=*/(s). (4.12)

The proof of Theorem 4.3 is given in Section 6. It is clear that in
Theorem 4.3, we require � to be bounded. To handle more general weight
functions, we first establish the following lemma, then extend Theorem 4.3
to unbounded weight functions. The proofs are deferred to Section 6.
Under assumption (C), we denote

Wn(t)=Cn Un*(t)= :
n

i=1

cni (I[Yi�t]&t), t # [0, 1], (4.13)

where Yi=F(Xi) are i.i.d.r.v.'s with d.f. U.
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Lemma 4.4. Under Assumption (A), (B2)�(B3) and (C), we have that for
any =>0, there exists $>0 and N such that for n�N

P {} |
$

0
W 2

n �(Un) dUn }�==�1&= (4.14)

P {} |
1

1&$
W 2

n �(Un) dUn }�==�1&= (4.15)

P {} |
$

0
W 2

n �(U) dU }�==�1&= (4.16)

P {} |
1

1&$
W 2

n�(U) dU }�==�1&=. (4.17)

Theorem 4.5. Under Assumption (A), (B2)�(B3) and (C), the functional
{ given by (4.1) satisfies

C 2
n {(U n*, Un) = C 2

n |
1

0
U*2

n �(U) dU+op(1), as n � �, (4.18)

C 2
n {(U n*, Un) w�D |

1

0
W2(t) �(t) dt= :

�

j=1

* jZ2
j , as n � �, (4.19)

where W, Zj and *j are as those in Theorem 4.3.

Remark 4. Note that our condition (B2) is required for having the
decomposition of W(t) - �(t) in (4.19) (see Anderson and Darling, 1952).

5. APPLICATIONS

In this section, we give the specific limiting distributions of those test
statistics in Examples 1�4 and 6 of Sections 1 and 2.

Example 1. In model (1.2), we assume that the error variables =i 's are
continuous. Then, we know that under H0 , X1 , ..., Xn are i.i.d.r.v.'s with
some continuous d.f. F. Assuming (A2)�(A3), from Theorem 4.5, we know
that the test statistics 9(Sn*, Sn) has the following limiting distribution
under H0 ,

C 2
n 9(Sn* , Sn)=C 2

n{(Un* , Un) w�D |
1

0
W 2(t) �(t) dt

= :
�

j=1

*j Z2
j , as n � �, (5.1)
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where W, Zj and *j are as those in Theorem 4.3, � satisfies Assumption
(B2)�(B3), and { is given by (4.1). Particularly, for some special weight
function �, the values of *j in (5.1) have been given. If �#1, then

*j=1�( j?)2, j=1, 2, ... (5.2)

(Shorack and Wellner, 1986, p. 214). If �(t)=[t(1&t)]&1, then

*j=1�[ j( j+1)], j=1, 2, ... (5.3)

(Anderson and Darling, 1952).

Example 2. If the error distribution is continuous in model (2.1), we
have that X1 , ..., Xn are i.i.d.r.v.'s with a continuous d.f. F under H0 . If for
[cni] and [dni], (A2)�(A3) hold with \n=�n

i=1 cnidni � \, as n � �, then
by Theorem 4.5, we have that under H0 ,

C 2
n{(U n*, Un)+D2

n{(V n*, Un)

=C 2
n |

1

0
U*2

n �(U) dU+D2
n |

1

0
V*2

n �(U) dU+op(1),

as n � �,

where Vn*=T n* b F&1. Furthermore, from a generalization of Theorem
3.1.1 of Shorack and Wellner (1986, p. 93) and from the proof of our
Theorem 4.3 given in Section 6, we have

C 2
n |

1

0
U*2

n �(U) dU=|
1

0
W 2

1(t) �(t) dt+op(1), as n � �,

and

D2
n |

1

0
V*2

n �(U) dU=|
1

0
W 2

2(t) �(t) dt+op(1), as n � �,

where W1 and W2 are Brownian bridges with Cov[W1(s), W2(t)]=
\[min[s, t]&st]. Hence, we have that under H0 ,

|
�

&�
(CnS n*(x), DnT n*(x))(Cn Sn*(x), Dn T n*(x))T �(Sn(x)) dSn(x)

=C 2
n9(Sn*, Sn)+D2

n9(T n*, Sn)=C 2
n{(U n* , Un)+D2

n{(Vn* , Un)

w�D |
1

0
[W 2

1(t)+W 2
2(t)] �(t) dt

= :
�

j=1

*j (Z2
j +Z� 2

j ), as n � �, (5.4)
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and

max {C 2
n |

�

&�
[Sn*(x)]2 �(Sn(x)) dSn(x),

D2
n |

�

&�
[T n*(x)]2 �(Sn(x)) dSn(x)=

=max[C 2
n9(S n* , Sn), D2

n9(T n*, Sn)]

w�D max{ :
�

j=1

*jZ2
j , :

�

j=1

*jZ� 2
j = , as n � �, (5.5)

where *j are given by (4.12), (Zj , Z� j) are i.i.d. bivariate normal r.v.'s with
E[Zj]=E[Z� j]=0, Var[Zj]=Var[Z� j]=1 and Cov[Z j , Z� j]=\, � satis-
fies Assumption (B2)�(B3), and { is given by (4.1). For the special weight
function �#1 and �(t)=[t(1&t)]&1, the values of * j are given by (5.2)
and (5.3), respectively.

To find the critical values of the tests using (5.4) or (5.5), one may
generate i.i.d. standard normal r.v.'s: Y1 , Y� 1 , ..., YN , Y� N for some large N.

Then, set Zj=Yj and Z� j=\nYj&- 1&\2
n Y� j , j=1, ..., N. Since ��

j=1

*j (Z2
j +Z� 2

j )r�N
j=1 *j (Z2

j +Z� 2
j ) in (5.4) and max[��

j=1 *jZ2
j , ��

j=1 *jZ� 2
j ]r

max[�N
j=1 *jZ2

j , �N
j=1 *j Z� 2

j ] in (5.5), the critical values of the test statistics
(2.4) and (2.5) can be determined by the quantiles of �N

j=1 *j (Z2
j +Z� 2

j ) and
max[�N

j=1 *jZ2
j , �N

j=1 *j Z� 2
j ], respectively.

If a general linear model is considered,

Xi=:+cT
i ;+= i , i=1, ..., n, (5.6)

where ci are known p-vectors of regression constants, ; is the p-vector
unknown regression parameters, and = i are i.i.d.r.v.'s with a continuous d.f.,
we let

Dn=(c1 , ..., cn)T, D� n=n&11n1T
n Dn

Cn=Diag(&d1&E , ..., &dn &E), cni=C&1
n (ci&c� n)

7n= :
n

i=1

cnic
T
ni ,

where di is the column vector of Dn&D� n , c� n is a column of D� n , and & }&E

stands for Euclidean norm. Also, let

Sn*(x)=C&1
n :

n

i=1

cniI[Xi�x] (5.7)
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with limn � � max1�i�n &cni&2
E=0, limn � � 7n=7 and n&1 &1TCn&2

E�
M<�. Then, under H0 : ;=0 (vs. H1 : ;{0), we have that the test
statistics

|
�

&�
(Cn , Sn*)T (Cn Sn*) �(Sn) dSn w�D :

�

j=1

*jZ
T
j Zj , as n � �, (5.8)

and

max
1�k�p {|

�

&�
(eT

k CnSn*)2 �(Sn) dSn=
w�D max

1�k�p { :
�

j=1

*j (e
T
k Zj)

2= , as n � �, (5.9)

where ek is a p_1 vector with the k th component 1 and others 0, *j are
given by (4.12), Zj are i.i.d. Np(0, 7) and � satisfies Assumption (B2)�(B3).
The critical values of the tests can be obtained similarly as that for the case
of p=2 outlined above.

Example 3. Consider the test statistic given in (2.9) for the 3-sample
problem (2.6) with non-equal sample size. For [cni] and [dni], we have

\n= :
n

i=1

cni dni=an1bn1+an2bn2+an3bn3=0

and (A2)�(A3) hold if nj � �, as n � �, j=1, 2, 3. Hence, if (B2)�(B3)
hold for the weight function �, from (5.4) the test statistic (2.9) has the
following limiting distribution under H0 ,

|
�

&� {n1 \Fn1
&

n+1
n

Sn+
2

+n2 \Gn2
&

n+1
n

Sn+
2

+n3 \Hn3
&

n+1
n

Sn+
2

= �(Sn) dSn

w�D :
�

j=1

* j /2
j , as n � �, (5.10)

where /2
j are i.i.d. Chi-square random variables with degrees of freedom 2,

and for the special weight function �#1 and �(t)=[t(1&t)]&1, the
values of *j are given by (5.2) and (5.3), respectively.
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Example 4. Case (b): Consider the test statistic given in (2.14) for the
3-sample problem (2.6). For [cni], [dni] and [eni] in (2.13), we have

\n(c, d )= :
n

k=1

cnkdnk=&
- n1n2

- (n&n1)(n&n2)
(5.11)

\n(c, e)=&
- n1 n3

- (n&n1)(n&n3)
, \n(d, e)=&

- n2n3

- (n&n2)(n&n3)
.

Suppose that nj (1&
nj
n ) � �, as n � �, j=1, 2, 3, and (\n(c, d ), \n(c, e),

\n(d, e)) converges to (\cd , \ce , \de), as n � �, and that (B2)�(B3) hold for
the weight function �. Then, (A2)�(A3) hold, and from (5.9), the test
statistic (2.14) has the following limiting distribution under H0 ,

max { n1n
n&n1

|
�

&� \Fn1&
n+1

n
Sn+

2

�(Sn) dSn ,

n2n
n&n2

|
�

&� \Gn2
&

n+1
n

Sn+
2

�(Sn) dSn ,

n3n
n&n3

|
�

&� \Hn3
&

n+1
n

Sn+
2

�(Sn) dSn =
w�D max

1�k�3 { :
�

j=1

*j (e
T
k Zj)

2= , as n � �, (5.12)

where Zj are i.i.d. N3(0, 7) with

1 \cd \ce

7=_\cd 1 \de& , (5.13)

\ce \de 1

and for the special weight function �#1 and �(t)=[t(1&t)]&1, the
values of *j are given by (5.2) and (5.3), respectively. In particular, for
Case (a) with equal sample size as described in Section 2, we have \cd=
\ce=\de= &1�2 in (5.13).

Case (d): Consider the test statistics given by (2.18) and (2.18a) for the
3-sample problem (2.6). For [cni], [dni] and [eni] in (2.17), we have

\$n(c, d )=\n(c, e), \$n(c, e)=\n(d, e), \$n(d, e)=\n(c, d ), (5.14)

where \n(c, d ), \n(c, e) and \n(d, e) are given in (5.11). Suppose that n j �
�, as n � �, j=1, 2, 3, and (\$n(c, d ), \$n(c, e), \$n(d, e)) converges to
(\$cd , \$ce , \$de), as n � �, and that (B2)�(B3) hold for the weight
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function �. Then, (A2)�(A3) hold, and from (5.9) and (5.8), the test
statistics given by (2.18) and (2.18a) have the following limiting distribu-
tions under H0 ,

max { n1n2

n1+n2
|

�

&�
(Fn1

&Gn2
)2 �(Sn) dSn ,

n2n3

n2+n3
|

�

&�
(Gn2

&Hn3
)2 �(Sn) dSn ,

n1n3

n1+n3
|

�

&�
(Hn3

&Fn1
)2 �(Sn) dSn=

w�D max
1�k�3 { :

�

j=1

*j (eT
k Zj)

2= , as n � � (5.15)

and

|
�

&� { n1n2

n1+n2

(Fn1
&Gn2

)2+
n2n2

n2+n3

(Gn2
&Hn2

)2

+
n1n3

n1+n3

(Hn3
&Fn1

)2= �(Sn) dSn

w�D :
�

j=1

*j Z
T
j Zj , as n � �, (5.16)

respectively, where for 7$ given by (5.13) with \cd , \ce , \de replaced by \$cd ,
\$ce , \$de , respectively, Zj are i.i.d. N3(0, 7$), and for the special weight func-
tion �#1 and �(t)=[t(1&t)]&1, the values of *j are given by (5.2) and
(5.3), respectively. In particular, for Case (c) with equal sample size as
described in Section 2, we have \$cd=\$ce=\$de=&1�2, thus 7=7$.

Remark 5. It is worth mentioning that with equal sample size in the
3-sample problem (2.6), the limiting distribution of the test statistic given
by (2.18a) is 3

2 ��
j=1 *j/2

j , where /2
j are i.i.d. Chi-square random variables

with degrees of freedom 2, because the eigenvalues of 7$ in (5.16) are 0, 3�2
and 3�2. Also, one may note that by using Theorem 3.6 we can easily show
that under a fixed alternative hypothesis, the limiting distribution of the
test statistic given by (2.18a) is normal.

Remark 6. One may note that in Examples 1�2, it is shown that the
SOHD method allows us to generalize the Crame� r�von Mises type of test
statistics (Ha� jek and S8 ida� k, 1967, p. 103) from model (1.2) to (2.1) in a
rather straightforward way and allows us to derive their asymptotic dis-
tributions conveniently. The investigation on the power of the proposed
tests here in comparison with the alternative tests, say, (normal) rank tests,
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is technical, which will not be studied in this current paper. In Ha� jek and
S8 ida� k (1967, pp. 229�232), a comparison of the asymptotic local power of
the one-sided Kolmogorov�Smirnov test with that of the normal rank test
was given. We may expect similar results for our generalized Crame� r�von
Mises tests. One may also note that for the 3-sample problem (2.6), the
null limiting distributions of the test statistic studied by Scholz and
Stephens (1987) and the alternative test statistics constructed in Example 4
are just the special cases of that in Example 2 for linear regression model.

Example 6. Consider the test statistic given by (2.27) for the inde-
pendence test (2.24), and let x=(u, v), y=(s, t), F1(u)=F(u, �) and
F2(v)=F(�, v). It can be shown that under H0 , - m Sn*(F &1

1 (u),
F&1

2 (v))=- m Un*(u, v) weakly converges to a centered Gaussian process
G(x) with covariance function

#(x, y)=(min[u, s]&us)(min[v, t]&vt),

and Sn(F &1
1 (u), F &1

2 (v))=Un(u, v) uniformly converges to uv with prob-
ability 1. Following the concepts in Ren and Sen (1995) for the first-order
Hadamard derivative with bivariate random vectors, it is easy to generalize
Theorems 3.6 and 4.3 to their bivariate versions under suitable conditions.
Thus, we have that under H0 ,

C 2
n9(S n* , Sn) = C 2

n |
1

0
|

1

0
[U n*(u, v)]2 �(Un(u, v)) dUn(u, v)

w�D |
1

0
|

2

0
G2(u, v) �(uv) du dv, as m � �.

6. PROOFS

Proof of Proposition 3.1. Since T and Q are second-order Hadamard
differentiable at F and T(F ), respectively, for any compact set 1V of V and
compact set 1W of W, we have

lim
t � 0

T(F+tH)&T(F)&T $F (tH)& 1
2 T"F (tH)

t2 =0 (6.1)

uniformly for any H # 1V , and

lim
t � 0

Q(T(F )+tG)&Q(T(F ))&Q$T(F )(tG)& 1
2Q"T(F )(tG)

t2 =0. (6.2)
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uniformly for any G # 1W . By Proposition 3.1.2 of Fernholz (1983), we
know

{$F=Q$T(F ) b T $F ,

and obviously {$F # L1(V, Z). It is also obvious that {"F given by (3.9) is an
element of L2(V, Z). From (6.1) we have

T(F+tH)=T(F)+T $F (tH)+ 1
2 T"F (tH)+o(1) t2,

where o(1) converges to 0 uniformly for any H # 1V , as t � 0. Hence, by
the linearity of Q$T(F ) , we have

{(F+tH)&{(F)&{$F (tH)

=Q(T(F+tH))&Q(T(F ))&Q$T(F)(T $F (tH))

=Q(T(F )+T $F (tH)+ 1
2 T"F (tH)+o(1) t2)

&Q(T(F ))&Q$T(F )(T $F (tH))

=Q(T(F )+t[T $F (H)+ 1
2 tT"F (H)+o(1) t])&Q(T(F ))

&Q$T(F )(t[T $F (H)+ 1
2 tT"F (H)+o(1) t])

+ 1
2 t2Q$T(F )(T"F (H))+t2Q$T(F )(o(1)). (6.3)

It is easy to show that

1 $W =[T $F (H)+ 1
2 tT"F (H)+o(1) t; H # 1V , t # [&1, 1]]

=[T $F (H)+}(H, t); H # 1V , t # [&1, 1]]

is compact, where }(H, t)=[T(F+tH)&T(F )&T $F (tH)]�t converges to 0
uniformly for any H # 1V , as t � 0. Hence, by (6.2), we have

lim
t � 0

1
t2 [[Q(T(F )+t[T $F (H)+ 1

2tT"F (H)+o(1) t])&Q(T(F ))

&Q$T(F )(t[T $F (H)+ 1
2 tT"F (H)+o(1) t])]& 1

2Q"T(F )(T $F (tH))]

= lim
t � 0

Q"T(F )(t[T $F (H)+ 1
2 tT"F (H)+o(1) t])&Q"T(F )(T $F (tH))

2t2

= lim
t � 0

1
2[Q"T(F )(T $F (H)+ 1

2 tT"F (H)+o(1) t)&Q"T(F )(T $F (H))]

= lim
t � 0

1
2[Q"T(F )(T $F (H)+}(H, t))&Q"T(F )(T $F (H))] (6.4)
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uniformly for any H # 1V . Let

,(H, t)=Q"T(F )(T $F (H)+}(H, t))&Q"T(F )(T $F (H));

then ,: V_[&1, 1] � W is continuous and ,(H, t) converges to 0 for any
fixed H # 1V , as t � 0. Hence, for any open set O of W such that 0 # O and
for any H0 # 1V , there exists an open set O (H0 , 0)=OH0

_I(H0 , 0) of
V_[&1, 1] such that OH0 is an open set of V and H0 # OH0 , I(H0 , 0) is an
open interval and 0 # I(H0 , 0) , and [,(H, t)&,(H0 , 0)] # O if (H, t) #
O(H0 , 0) . Since [OH ; H # 1V] is an open covering of 1V and since 1V is
compact, there exists a finite open covering of 1V , say, 1V /�N

i=1 OHi .
Therefore, for any H # 1V and any small enough t, there exists i such that
(H, t) # O(Hi , 0) . Hence, ,(H, t)=[,(H, t)&,(H i , 0)] # O. Therefore, we
have

lim
t � 0

1
2[Q"T(F )(T $F (H)+}(H, t))&Q"T(F )(T $F (H))]=0 (6.5)

uniformly for any H # 1V . Since Q$T(F ) is continuous, then

lim
t � 0

t2Q$T(F )(o(1))
t2 = lim

t � 0
Q$T(F)(o(1))=0 (6.6)

uniformly for any H # 1V . Therefore, (6.3) through (6.6) imply that

lim
t � 0

{(F+tH)&{(F )&{$F (tH)& 1
2[Q"T(F )(T $F (tH))+Q$T(F )(T"F (tH))]

t2 =0

uniformly for any H # 1V . K

Proof of Proposition 3.2. For any compact set 1 of D[0, 1], we need to
show that

"Rem2(tH)
t2 "Lp

� 0 (6.7)

uniformly for H # 1, as t � 0, where

Rem2(tH)=L b (Q+tH)&L b Q&(L$ b Q) tH& 1
2(L" b Q) t2H 2.
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Since 1 is a compact set, for arbitrary =>0, we can choose H1 , ..., Hn #
1 such that for any H # 1,

inf
1�i�n

&H&Hi&<=. (6.8)

Since for a given Hi ,

Rem2(tH i)(x)
t2 =

L(Q(x)+tHi (x))&L(Q(x))&L$(Q(x)) tHi (x)
& 1

2L"(Q(x)) t2H 2
i (x)
t2

=
L$(!)&L$(Q(x))

t
Hi (x)& 1

2L"(Q(x)) H 2
i (x),

where ! is between Q(x) and Q(x)+tHi (x), by Lemma 5.4.3 of Fernholz
(1983), we have that

}L$(!)&L$(Q(x))
t }�M |Hi (x)|,

where M is a bound for L". Therefore, for each i,

}Rem2(tH i)(x)
t2 }�M1 |Hi (x)|2,

where M1 is a constant. Moreover, for x such that Q(x) � A,

Rem2(tHi)(x)
t2 � 0, as t � 0.

So, by the Dominated Convergence Theorem, we have

"Rem2(tHi)
t2 "Lp

� 0, as t � 0. (6.9)

For any H # 1,

"Rem2(tH)
t2 "Lp

�"Rem2(tHi)
t2 "Lp

+"Rem2(tH)
t2 &

Rem2(tHi)
t2 "Lp

(6.10)
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and

Rem2(tH)&Rem2(tHi)
t2

=
L(Q(x)+tH(x))&L(Q(x)+tHi (x))

t2

&
L$(Q(x))[H(x)&Hi (x)]

t
&

1
2

L"(Q(x))[H2(x)&H 2
i (x)]

=
L$(')&L$(Q(x))

t
[H(x)&Hi (x)]&

1
2

L"(Q(x))[H2(x)&H 2
i (x)],

where ' is between Q(x)+tH(x) and Q(x)+tHi (x). As above, by
Lemma 5.4.3 of Fernholz (1983), we have

}L$(')&L$(Q(x))
t }�M |H(x)&H i (x)|.

Hence, by (6.8), we have

inf
1�i�n "

Rem2(tH)
t2 &

Rem2(tH i)
t2 "Lp

�M1 =, (6.11)

where M1 is a constant which depends on 1. Therefore, (6.7) follows from
(6.9) through (6.11). K

Proof of Proposition 3.3. It suffices to show that

lim
t � 0

#(G0+tGn , H0+tHn)&#(G0 , H0)
&#$(G0 , H0)(tGn , tHn)& 1

2 #"(G0 , H0)(tGn , tHn)
t2 =0,

for any Gn � G, Hn � H, as n � �, where Gn , G, Hn , H # D[0, 1]. Note that

1
t2 [#(G0+tGn , H0+tHn)&#(G0 , H0)

&#$(G0 , H0)(tGn , tHn)& 1
2 #"(G0 , H0)(tGn , tHn)]

=
Gn[,(H0+tHn)&,(H0)]

t
&,$(H0) Gn Hn

+G0

,(H0+tHn)&,(H0)&,$(H0) tHn& 1
2,"(H0) t2H 2

n

t2

=[,$(!)&,(H0)] Gn Hn+ 1
2[,"(')&,"(H0)] G0 H 2

n , (6.12)
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where ! and ' are between H0 and H0+tHn . Since ," is continuous, the
proof follows from (6.12). K

Proof of Proposition 3.5. It suffices to show that

lim
n � �

Rem2(tn Gn , tnHn ; #)
t2

n

=0,

for any Gn � G, Hn � H, tn � 0, as n � �, where Gn , G, Hn , H # D[0, 1]
such that (G0+tnGn , H0+tnHn) # E. Note that

#(G0+tn Gn , H0+tn Hn)&#(G0 , H0)

&tn#$(G0 , H0)(Gn , Hn)& 1
2 t2

n #"(G0 , H0)(Gn , Hn)=t3
n |

1

0
G2

n(x) dHn(t).

Hence,

Rem2(tnGn , tn Hn ; #)
t2

n

=tn |
1

0
G2

n(x) dHn(t).

The proof follows from the one of Lemma 3 by Gill (1989). K

Proof of Theorem 3.6. The proof of (3.11) is similar to that of
Theorem 3.1 by Ren and Sen (1991). We sketch the idea of the proof as
below.

Let U� n* and U� n be the continuous version of Un* and Un , respectively,
with

&U� n*&U n*&�C &1
n max

1�i�n
|cni |, a.s. (6.13)

and

&U� n&Un &�(n+1)&1, a.s. (6.14)

Since Cn[Un*&E[Un*]] and - n[Un&E[Un]] weakly converge on
(D[0, 1], & }&) (see Shorack and Wellner, 1986, p. 109), by (A1), we have
that Wn=Cn[Un*&U*] and Vn=- n[Un&U� ] also weakly converge on
(D[0, 1], & }&). If we denote Zn=Cn(U� n*&U*, U� n&U� ), we easily see that
Zn # C[0, 1]_C[0, 1]. Note that

Zn=Cn(U� n*&U n*, U� n&Un)+Cn(Un*&U*, Un&U� ). (6.15)
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Hence, from (A2) and (6.13)�(6.15), we know that Cn[U� n*&U*] and
Cn[U� n&U� ] are relatively compact on C[0, 1]. Since, C[0, 1] is complete
and separable, by Prohorov's Theorem (Billingsley, 1968), we have that for
every =>0, there exist compact sets K1 and K2 in C(0, 1] such that

P[Zn # K]>1&=, all n�1, (6.16)

where K=K1_K2 is a compact set in C[0, 1]_C[0, 1]. For Q(G, H, t)=
Rem(tG, tH; {)�t with G, H # D[0, 1], the rest of the proof follows along
the lines of the proof of Theorem 3.1 by Ren and Sen (1991), and hence is
omitted.

The proof of (3.13) follows similarly by using Q(G, H, t)=Rem2(tG,
tH; {)�t2. K

Proof of Lemma 4.1. We will only prove (ii) since the proof of (i) is
quite similar. Note that the functional { can be expressed as a composition
of the following second-order Hadamard differentiable transformations:

#1 : D[0, 1]_D[0, 1] � D[0, 1]_D[0, 1] defined by #1(G, H)=
(G,(H), H), is, by Proposition 3.3, second-order Hadamard differentiable
at (G0 , H0) with derivatives

#$1(G0 , H0)
(G, H)=(G0,$(H0) H+,(H0) G, H),

and

#"1(G0 , H0)
(G, H)=(2,$(H0) GH+G0,"(H0) H2, 0),

where G, H # D[0, 1];

#2 : D[0, 1]_D[0, 1] � R defined by #2(G, H)=�1
0 G2 dH, is, by

Proposition 3.5, second-order Hadamard differentiable at (G0,(H0), H0)
with derivatives

#$2(G0,(H0), H0)
(G, H)=2 |

1

0
G0,(H0) G dH0+|

1

0
G2

0 ,2(H0) dH,

and

#"2(G0,(H0), H0)
(G, H)=2 |

1

0
G2 dH0+4 |

1

0
G0,(H0) G dH,

where G, H # D[0, 1].
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We have {=#2 b #1 . Hence, by Proposition 3.1. { is second-order
Hadamard differentiable at (G0 , H0) with derivatives given by (4.2) and
(4.3). K

Proof of Theorem 4.3. From Corollary 4.2 and Theorem 3.6, we
immediately have (4.7)�(4.9). For Wn given by (4.13), we have

E[Wn(t)]=0,

E[Wn(s) Wn(t)]=min[s, t]&st,

because we always have (4.6) and

:
n

i=1

c2
ni=1, n�1. (6.17)

For the special construction (Shorack and Wellner, 1986, p. 93), by
Theorem 3.7.1 of Shorack and Wellner (1986, p. 140), we have

} |
1

0
W 2

n�(U) dU&|
1

0
W2�(U) dU }

�|
1

0
|W 2

n&W2| �(U) dU

�&(W 2
n&W2)�(U(1&U))1�4& |

1

0
�(U)(U(1&U))1�4 dU

�&(Wn&W)�(U(1&U))1�4& [&Wn&W&+2 &W&]

_|
1

0
�(U)(U(1&U))1�4 dU

=op(1)(op(1)+Op(1)) |
1

0
�(U)(U(1&U))1�4 dU=op(1), (6.18)

where W is a Brownian bridge. Since for the special construction and Wn

given in (4.13), the distributions of �1
0 W 2

n �(U) dU are the same, we have
that

C 2
n {(Un* , Dn) w�D |

1

0
W2(t) �(t) dt, as n � �. (6.19)
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For the decomposition of �1
0 W2(t) �(t) dt in (4.10), one may see Anderson

and Darling (1952) or Shorack and Wellner (1986, Chap. 5). K

Proof of Lemma 4.4. Recall that we have

Un(t)=(n+1)&1 :
n

i=1

I[Yi�t],

where Yi 's are as those in (4.13). We notice that for the special con-
struction (Shorack and Wellner, 1986, p. 93) and for our Wn , Un , the dis-
tributions of �$

0 W 2
n�(Un) dUn , �1

1&$ W 2
n �(Un) dUn , �$

0 W 2
n�(U) dU and

�1
1&$ W 2

n�(U) dU are the same, respectively. Hence, it suffices to establish
(4.14)�(4.17) for the special construction, which will be also denoted by Wn

and Un .
Let Y(1) , ..., Y(n) be the order statistics of Y1 , ..., Yn . Note that for any

$>0,

|
$

0
W 2

n�(Un) dUn �M1 |
$

0
w2

n�Un dUn

=M1(n+1)&1 :
n

i=1

W 2
n(Y(i))

Un(Y(i))
I[Y(i)�$]

=M1(n+1)&1 :
n

i=1

W 2
n(Y(i))

i�(n+1)
I[Y(i)�$], (6.20)

and

(n+1)&1 :
n

i=1

W 2
n(Y(i))

i�(n+1)
I[Y(i)�$]

=(n+1)&1 :
n

i=1

W 2
n(Y(i))&W 2(Y(i))

i�(n+1)
I[Y(i)�$]

+(n+1)&1 :
n

i=1

W2(Y(i))
i�(n+1)

I[Y(i)�$], (6.21)

where W is a Brownian bridge. From Theorem 3.7.1 of Shorack and
Wellner (1986, p. 140), we know that

&(W 2
n&W 2)�(U(1&U))1�4&

�&(Wn&W)�(U(1&U))1�4& [&Wn&W&+2 &W&]

=op(1)(op(1)+Op(1))=op(1). (6.22)
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Hence, by - n &Un&U&=Op(1), we have

(n+1)&1 :
n

i=1

|W 2
n(Y (i))&W 2(Y(i))|

i�(n+1)
I[Y(i)�$]

�(n+1)&1 :
n

i=1
}W

2
n(Y(i))&W2(Y (i))

[Y(i)(1&Y(i))]1�4 } (Y(i))
1�4

i�(n+1)
I[Y(i)�$]

�&(W 2
n&W2)�[U(1&U)]1�4&

_{(n+1)&1 :
n

i=1

|Y (i)&i�(n+1)|1�4+[i�(n+1)]1�4

i�(n+1) =
�op(1) {(n+1)&1 :

n

i=1

&Un&U&1�4+[i�(n+1)]1�4

i�(n+1) =
�op(1) {n&1�8Op(1) :

n

i=1

1�i+(n+1)&1 :
n

i=1

[i�(n+1)]&3�4=
�op(1)[n&1�8Op(1)[log n+C0+o(1)]+O(1)]=op(1), (6.23)

where C0 is a constant. From Anderson and Darling (1952), we know that
with probability 1,

W2(t)�2t(1&t) log log
1&t

t
, for 0<t<t0 , (6.24)

where 0<t0<1. Since there exists 0<B<� such that - x log log 1&x
x �B

for x # (0, 1�2], we have

(n+1)&1 :
n

i=1

W2(Y(i))
i�(n+1)

I[Y(i)�$]

�
2

(n+1)
:
n

i=1

Y(i) log log((1&Y(i))�Y(i))
i�(n+1)

I[Y(i)�$]

�
2B

(n+1)
:
n

i=1

(Y(i))
1�2

i�(n+1)
I[Y(i)�$]

�
2B

(n+1)
:
n

i=1

|Y(i)&i�(n+1)|1�2+[i�(n+1)]1�2

i�(n+1)
I[Y(i)�$]

=
2B

(n+1)
:
n

i=1

n&1�2Op(1)+[i�(n+1)]1�2

i�(n+1)
I[Y(i)�$]
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�2BOp(1) n&1�2 :
n

i=1

1�i+
2B

n+1
:
n

i=1

I[Y(i)�$]
[i�(n+1)]1�2

=2BOp(1)
log n+C0+o(1)

- n
+2B :

n

i=1

I[Y (i)�$]

_|
i�(n+1)

(i&1)�(n+1) \
i

n+1+
&1�2

dt

�op(1)+2B :
n

i=1

I[Y(i)�$] |
i�(n+1)

(i&1)�(n+1)

dt

- t

=op(1)+2B |
j�(n+1)

0

dt

- t
, (6.25)

where

j=max[i; Y(i)�$]

Since

Y( j)�$<Y( j+1) ,

and with probability 1,

|Un(Y( j))&Y ( j) |=| j�(n+1)&Y( j) | � 0, as n � �, (6.26)

we have that for sufficiently large n,

1
(n+1)

:
n

i=1

W2(Y(i))
i�(n+1)

I[Y(i)�$]�op(1)+2B |
2$

0

dt

- t

=op(1)+4B - 2$, (6.27)

with probability 1. Therefore, (4.14) follows from (6.20), (6.21), (6.23) and
(6.27).

From (6.22) and (6.24), we have

|
$

0
W2

n �(U) dU�M1 |
$

0

W 2
n(t)
t

dt

=M1 |
$

0

W 2
n(t)&W2(t)

t
dt+M1 |

$

0

W 2(t)
t

dt

�op(1) M1 |
$

0

dt
t3�4+2M1 |

$

0
log log

1&t
t

dt. (6.28)
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Therefore, (4.16) follows from (6.28) and the fact:

|
1�2

0
log log

1&t
t

dt<�. (6.29)

Similarly, we can establish (4.15) and (4.17). K

Proof of Theorem 4.5. For any fixed $>0, consider a functional {$

given by

{$(G, H)=|
1&$

$
(G(x))2 �(H(x)) dH(x), G, H # D[0, 1]. (6.30)

From Theorem 4.3, we have

C 2
n{$(Un* , Un)=C 2

n |
1&$

$
U*2

n �(U) dU+op(1), as n � �. (6.31)

Hence, (4.18) follows from Lemma 4.4 and (6.31).
The proof of (4.19) follows from (6.18). For the decomposition of

�1
0 W 2(t) �(t) dt in (4.19), one may see Anderson and Darling (1952). K
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