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For a scale mixture of normal vector, X=A1�2G, where X, G # Rn and A is a
positive variable, independent of the normal vector G, we obtain that the condi-
tional variance covariance, Cov(X2 | X1), is always finite a.s. for m�2, where
X1 # Rn and m<n, and remains a.s. finite even for m=1, if and only if the square
root moment of the scale factor is finite. It is shown that the variance is not
degenerate as in the Gaussian case, but depends upon a function SA, m ( } ) for which
various properties are derived. Application to a uniform and stable scale of normal
distributions are also given. � 2000 Academic Press

AMS 1991 subject classifications: 60E07, 60E10, 62B20, 62J05.
Key words and phrases: heteroscedasticity, stable random vectors, marginal

densities.

1. INTRODUCTION

The distribution of an n-dimensional random vector (column) X is a
scale mixture of a normal distribution, if X :=

d A1�2G, where A is a positive
random variable independent of the n-dimensional Gaussian random
(column) vector G with mean 0 and positive definite covariance matrix 7,
and the equality is in distribution.
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Gupta and Huang (1981) characterized scale mixtures (variance
mixtures) of normal distributions by showing an equivalence of this class
and complete monotonicity property on (0, �). Bearing this property, it
was found that this family includes the Cauchy, Laplace, student's t, sym-
metric stable (these were also found by Kelker, 1971), logistic, and double
exponential distributions (Andrews and Mallows, 1974). Schoenberg
(1938), Crawford (1977), and Miciewicz and Scheffer (1990) characterized
this family by showing that if X(X # Rn, n�2) is scale mixture of multi-
variate normal distribution, then its characteristic function, .X (t), t # Rn,
has the representation .X (t)=�(&t2&), where & }& denotes the Euclidean
distance, and � denotes some function on (0, �). It should be added here
that the family discussed by Schoenberg (1938), Crawford (1977), and
Miciewicz and Scheffer (1990) is much broader than the family of scale
mixtures of normal distributions. Keilson and Steutel (1974) characterized
this family in terms of moment existence. It can be shown that E[A p]<�,
if and only if E[&X& p]<� for some p>0; for example, if A is distributed
as gamma, beta, or uniform then E[&X& p]<�, \p>0. However, if A is totally
right skewed :�2-stable, 0<:<2, with Laplace transform E[exp(&uA)]
=exp(&ua�2), u�0 then E [A p]<�, if and only if p<a�2. In this case,
X has a multivariate symmetric a-stable distribution, and E[>n

i=1 |Xi | pi]
< �, for pi � 0, i = 1, ..., n, and �n

i=1 pi = p < a (Samorodnitsky and
Taqqu, 1990). Thus, their second moment is always infinite and so is their
first absolute moment when 0<:�1.

Here, we are interested in conditional variances, and these may exist and
be finite even when their unconditional counterparts are infinite. For
1�m<n, we will write X=(X1 , X2), G=(G1 , G2) and

7=\711

721

712

722+ ,

where X1 and G1 are m-dimensional and 711 is m_m-dimensional, i.e., 711

is the covariance matrix of G1 , etc. The conditional distribution of G2

given G1 is normal with mean 721 7&1
11 G1 and covariance matrix

722&7217&1
11 712 ; i.e., the conditional mean of G2 given G1 depends

linearly on G1 and the conditional variance�covariance of G2 given G1 is
constant (degenerate, non random) and does not depend on the value of
G1 :

E[G2 | G1]=7217&1
11 G1 , Cov(G2 | G1)=722&721 7&1

11 712 :=72 | 1 .

(1.1)

This is the archetypical homoscedastic example, where regressions are
linear and conditional variances constant. The regression theory has been
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extended beyond the normal theory. Hardin (1982) considers that X is a
symmetric stable random vector, and he claims that X is spherically
generated if and only if X is a scale mixture of multivariate normal, where
the scale random variable is stable totally skewed to the right (sub-
Gaussian). He continued in showing that a symmetric stable random vec-
tor X, with dim(sp(X))�3, having the linear regression property must be
a sub-Gaussian vector. This result, coupled with the fact that any stable
random vector with dim(sp(X))<3, has the linear regression property.
This property agrees with (1.1), which is related to the normal theory. The
disagreement, however, occurs when one looks at how the conditional
variance�covariance behaves. It will be shown that scale mixtures of nor-
mal distributions do not have constant conditional variances, so they
provide heteroscedastic examples, and we will examine these non-linear
conditional functions.

This article is structured as follows. Section 2 presents the main results
with their proofs. Section 3 demonstrates how to apply some of these
results to uniform and stable cases. Section 4 gives the proofs of some of
the secondary results. The auxiliary results are displayed in Section 5.

2. THE RESULTS

Our first result shows that the conditional second moment of each com-
ponent of X2 given X1 is always finite when the dimensionality of X1 is two
or more. Furthermore, we find a necessary and sufficient condition when
X1 is univariate, and we express the conditional covariance matrix of X2

given X1 (under appropriate conditions) in terms of the distribution and
the Laplace transform of A.

Theorem 1. I. The conditional second moment of the components of X2

given X1 is finite a.s. always when m�2 and if and only if E[A1�2]<�
when m=1.

II. If m�2, or if m=1 and E[A1�2]<�, then

Cov(X2 | X1)=72 | 1S 2
A, m((X$17&1

11 X1)1�2) a.s. (2.1)

where

S 2
A, m(x)=

|
[0, �)

u&m�2+1 exp \&
x2

2u+ dFA (u)

|
[0, �)

u&m�2 exp \&
x2

2u+ dFA (u)
, x�0. (2.2)
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III. If the Laplace transform LA of A satisfies

|
[0, �)

um�2&1LA (u) du<� and |
[0, �)

um�2&1L$A (u) du<�, (2.3)

then (2.2) holds and S 2
A, m(x), x�0, can be expressed as

S 2
A, 1(x)=

&��
0 L$A (r2) cos(- 2 xr) dr

��
0 LA (r2) cos(- 2 xr) dr

(2.4)

and, for m�2,

S 2
A, m(x)=

��
0 rm�2L$A (r2) J(m&2)�2 (- 2 xr) dr

��
0 rm�2LA (r2) J(m&2)�2 (- 2 xr) dr

, (2.5)

where J& ( } ) is the Bessel function of the first kind with &>0.

Proof. I. To demonstrate the proof of this theorem, we reiterate some
of the classical results of normal theory. For simplicity of notation, it suf-
fices to consider the case where n=m+1, so X2 , 722 are scalar. Then

E[X 2
2 | X1]=E[E[AG2

2 | A, G1] | X1]=E[AE[G2
2 | G1] | X1],

and since

E[G2
2 | G1]=_2

2&7217&1
11 712+E 2[G2 | G1]=s2

2+(7217&1
11 G1)2,

where s2
2=_2

2&721 7&1
11 712 , we have

E[X 2
2 | X1=x1]=s2

2 E[A | X1=x1]+(721 7&1
11 x1)2. (2.6)

It follows that E[X 2
2 | X1]<� a.s. if and only if E[A | X1]<� a.s. and

by Proposition 1 in Section 4, if and only if

|
[0, �)

u&m�2+1 exp \&
1

2u
X$1711X1 + dFA (u)<� a.s. (2.7)

Note that for each fixed value of X1 , the integrand is a continuous function
of u over (0, �), and tends to 0 as u a 0 and as u A � if m�2 and is
bounded by u1�2 if m=1. Hence the conditional second moment is finite
when m�2 and when m=1 is finite if and only if

|
�

0
u1�2 dFA (u)<� or E[A1�2]<�.
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II. We have

E[X2X$2 | X1]=E[E[AG2 G$2 | A, G1] | X1]=E[AE[G2 G$2 | G1] | X1],

and since

E [G2G$2 | G1]=72 | 1+E[G2 | G1] E[G$2 | G1]

=72 | 1+7217&1
11 G1G$17&1

11 7$21 , (2.8)

and using the conditional expectation it follows that

E[X2X$2 | X1]=72|1E[A|X1]+721 7&1
11 X1X$17&1

11 7$21

=72 | 1E[A | X1]+E[X2 | X1] E[X$2 | X1].

Thus the covariance is given by

Cov(X2 | X1)=E[X2 X$2 | X1]

&E[X2 | X1] E[X$2 | X1]=72 | 1E[A | X1],

and by Proposition 1, E[A | X1]=S 2
A, m((X$17&1

11 X1)1�2) with S 2
A, m(x) as

in Theorem 1.II.

III. For every u�0 and (column) vector t # Rm, we have

E[exp(&uA+it$X1)]=E [E[exp(&uA+iA1�2t$G1) | A]]

=E[exp(&uA& 1
2At$711t)]=LA (u+ 1

2 t$711 t). (2.9)

Putting u=0 we obtain

E[exp(it$X1)]=LA ( 1
2 t$711 t),

and since the right-hand side is an integrable function of t over Rm, in view
of (2.4) we obtain

|
Rm

LA ( 1
2 t$711 t) dt=(det 711)&1�2 |

Rm
LA ( 1

2s$s) ds) ds, (s=71�2
11 t)

=const |
�

0
LA ( 1

2 r2) rm&1 dr (in polar coordinates)

=const |
�

0
LA (u) um�2&1 du<�. (2.10)
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By the inversion of the Fourier transform, we conclude that

fx1
(x1)=

1
(2?)m |

Rm
eit$x1LA\1

2
t$711 t+ dt. (2.11)

Now differentiating both sides of (2.9) with respect to u>0, we obtain

&E[E[Ae&uA | X1=x1] eit$x1]=L$A (u+ 1
2 t$711 t).

Since LA ( } ) is completely monotone on (0, �), i.e., (&1)n L (n)
A (u)�0, for

u>0, it follows that &L$A (u+ 1
2 t$711t)� &L$A ( 1

2 t$711t) # L1 (Rm). By
(2.10) and (2.2), inversion of the Fourier transform yields

&E[Ae&uA | X1=x1] fX1
(x1)

=
1

(2?)m |
Rm

eit$x1L$A \u+
1
2

t$711 t+ dt, a.e. in x1 # Rm, (2.12)

for each fixed u>0. Since fX1
(x1) and the right-hand side are continuous

functions of x1 by III., and in (1.4) we consider the regular version of
E[Ae&uA | X1=x1], which is defined by (2.12) for all u>0 and x1 # Rm.
Now, letting u a 0 in (2.12) we obtain

E[A | X1=x1] fx1
(x1)=

1
(2?)m |

Rm
eit$x1L$A \1

2
t$711 t+ dt, (2.13)

since the left-hand side of (2.12) converges pointwise to the left hand side
of (2.13), and likewise for the right-hand side by dominated convergence
theorem, since LA (u)=E[e&uA] implies L$A (u)=&E[Ae&uA] and for all
&>0, &L$A (u+&)=E[Ae&(u+&) A] � E[Ae&&A]=&L$A (&), as u a 0, and
L$A ( 1

2 t$711 t) # L1 (Rm) by (1.4) and (2.10). From (2.11) and (2.13) we obtain

S 2
A, m((x$17&1

11 x1)1�2)=E[A | X1=x1]=
&�Rm e&it$x1L$A ( 1

2 t$711 t) dt
�Rm eit$x1LA ( 1

2 t$711t) dt
. (2.14)

We will now evaluate more explicitly the integrals appearing in the
numerator and denominator. Putting B=2&1�271�2

11 and y=Bt, We have
1
2 t$711t=t$B$=y$y=&y&2 and

Fm ((x$1711x1)1�2) :=|
Rm

e&it$x1f ( 1
2 t$711 t) dt

=(det B)&1 |
Rm

eix$1B&1yf (&y&2) dy. (2.15)
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Going to polar coordinates y=rs, r�0, s # Um=[s # Rm : &s&=1], we
have, with #m being the surface measure on Um ,

Fm ((x$1 7&1
11 x1)1�2)=( 1

2det 711)&1�2 |
�

0
f (r2) rm&1 dr |

Um

#m (ds) e&rx$
1B&1s.

Putting y1=rB&1x1 we have &y1&2=r2x$1 B&1x1=2r2x$1711 x1 , and for
m=1

|
U1

e&iy1s #1 (ds)=cos( | y1| ),

and for m�2

|
Um

e&iy$1s #m (ds)=|
?

0
e&i &y1& cos % (sin %)m&2 d%

=
?1�21((m&1)�2)
(&y1&�2) (m&2)�2 J(m&2)�2 (&y1&).

where J& ( } ) is the Bessel function of the first kind with &>0.
It follows that

F1 ( |x1| _&1
1 )=( 1

2_2
1)&1�2 |

�

0
f (r2) cos(- 2 r |x1| _&1

1 ) dr

Fm ((x$1 7&1
11 x1)1�2)=

( 1
2det 711)&1�2 ?1�21((m&1)�2)

( 1
2x17&1

11 x1) (m&2)�4

_|
�

0
rm�2f (r2) J (m&2)�2 (- 2 r(x$17&1

11 x1)1�2) dr. (2.16)

The final expression for S 2
A, m(x) now follows from (2.14)�(2.16).

It is clear from (2.1) that the conditional variance�covariance of X2 given
X1 is proportional to its Gaussian counterpart, the constant conditional
covariance matrix of G2 given G1 , times a function S 2

A, m( } ), depending on
the dimensionality m of X1 and the distribution of A and evaluated at
(X$17&1

11 X1)1�2. Thus, the heteroscedasticity of all conditional variances and
covariances has a common functional form determined by the ``conditional
standard deviation factor'' SA, m (x).

The expression in (2.2) is useful for evaluation when the distribution
function of A is known explicitly. When this is not the case, but its Laplace
transform is explicitly known, then the expressions in (2.4)�(2.5) are useful
as illustrated below for the stable case.
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Condition (2.3) can be expressed in terms of moments, by using

|
�

0
u p&1E[Ake&uA] du=E _Ak |

�

0
u p&1e&uA du&=E[Ak& p] 1( p).

Thus, condition (2.3) is equivalent to

E[A&1�2]<� and E[A1�2]<� for m=1,
(2.17)

and E[A&m�2]<� for m�2.

A useful alternative expression for S 2
A, m(x) can be obtained in terms of

the marginal density of the first component of the random vector X1 under
the conditions in part (c) of Theorem 1.

Corollary 1. Let f1 ( |x|�_11) be the density of the first component of
the random vector X (i.e., the density of X1 when m=1) where _2

11 is the
(1, 1) element of the covariance matrix 7. Under the condition in Theorem
1.III., or (2.17), we have for x>0,

S 2
A, 1(x)=

��
x 2 f1 (u) du
2f1 (x2)

(2.18.1)

S 2
A, 2k+1(x)=&

f (k&1)
1 (x2)

2f (k)
1 (x2)

, k�1 (2.18.2)

S 2
A, 2(x)=

��
0 u1�2f (1)

1 (x2+u) du
��

0 u&1�2f (1)
1 (x2+u) du

(2.18.3)

S 2
A, 2k+2(x)=&

1
2

��
0 u&1�2f (k)

1 (x2+u) du
��

0 u&1�2f (k+1)
1 (x2+u) du

, k�1. (2.18.4)

Proof. It is known that (Kelker, 1970) since X1 is scale mixture of
Normal distribution, i.e., has a spherical distribution, then the density fX1

can be expressed as fX1
(x1)=cm gm ((x$17&1

11 x1)1�2) for all x1 {0, m�1,
where gm is a function on (0, �), and cm=(2?)&m�2 |711|&1�2. Clearly
(2?_11)&1�2 g1 ( |x|�_11) is the density of the first component of X1 . Since
the integrand in (2.7) vanishes at 0, and A is assumed nondegenerate:
P(A=0)<1, we have 0<gm (x)<� for all x>0 and m�1. Thus

S 2
A, m(x)=

gm&2 (x)
gm (x)

x>0, m�1. (2.19)
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Note that since (2.17) is satisfied, gm&2 (x) is continuously differentiable
over x>0 for m�1, with

g$m&2 (x)
gm (x)

=
&x |

[0, �)
u&m�2 exp \&

x2

2u+ dFA (u)

gm (x)
=&x. (2.20)

It follows from (2.19) and (2.20) that for x>0, m�1,

[S 2
A, m(x) gm (x)]$

gm (x)
=&x,

and thus S 2
A, m(x) gm (x)=��

x ugm (u) du. Hence (2.19) can be expressed as

S 2
A, m(x)=

��
x ugm (u) du

gm (x)
, x>0, m�1,

from which follows

S 2
A, m(x)=

��
x2 gm (u1�2) du

2gm (x)
. (2.21)

We will now express all gm 's in terms of g1 . From the definition of gm and
(2.19), it follows

g (k)
1 (x2)=

(&1)k

2k g2k+1 (x2)

and g (k)
2 (x2)=

(&1)k

2k g2k+2 (x2), k�1,

and thus from (2.21)

S 2
A, 2k+1(x)=&

1
2

g (k&1)
1 (x2)
g (k)

1 (x2)
, k�1

and S 2
A, 2k+2(x)=&

1
2

g (k&1)
2 (x2)
g (k)

2 (x2)
, k�1. (2.22)

It is easily checked that

g2 (x2)=&\2
?+

1�2

|
�

0
u&1�2g (1)

1 (x2+u) du, (2.23)
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from which it follows that

S 2
A, 2k+2(x)=&

1
2

��
0 u&1�2g (k)

1 (x2+u) du
��

0 u&1�2g (k+1)
1 (x2+u) du

, k�1. (2.24)

Thus (2.22) and (2.24) imply (2.18.2) and (2.18.4). These expressions of
gm , m�2, in terms of g1 , in the more general setup of spherical distribu-
tions, are derived in Zolotarev, p. 286 (1981). Szablowski (1987) has
obtained similar expressions for elliptically contoured measures. Also,
(2.18.1) follows directly from (2.21) for m=1 and (2.18.3) follows from
(2.21) and (2.23). Note that g is a functions of both m and the density of
A. However, the subscript of A is omitted for easing the reading of the
content, since this does not change for different values of m.

Corollary 1 ties with the methods of Zolotarev (1981) and Szablowski
(1986, 1987). In their studies they evaluated elliptically contoured measures
with respect to suitable chosen marginal densities or conditional variances
and the distribution of X$17&1

11 X1 , which is the case here, where the condi-
tional variance is expressed with respect to the first component of the
vector X1 .

We now consider in more detail the types of heteroscedasticity provided
by this model by examining the universal standard deviation function
SA, m (x). We first show that under assumptions even more restrictive than
those in part (c) of Theorem 1, the value of SA, m (x) at x=0, as given by
the expressions (2.2) or (2.4)�(2.5), exists and is finite, SA, m (x) is con-
tinuous, differentiable, and is approximately quadratic around zero.

Corollary 2. If the equivalent assumptions (2.3) in Theorem 1.III. or
(2.17) hold for m+2, then we have

SA, m (x)=SA, m (0)+CA, mx2+o(x2) as x a 0, (2.25)

where 0<SA, m (0)<� and SA, m (0), CA, m are given in terms of moments of
A: +A, p=E[A p]&�<p<� as follows

SA, m (0)=
+1�2

A, &m�2+1

+1�2
A, &m�2

, CA, m=
+A, &m�2+1 +A, &m�2&1&+2

A, &m�2

4+3�2
A, &m�2+1�2

A, &m�2+1

(2.26)

and in terms of the Laplace transform of A by using

+A, &k�2=
2Mk (LA)

1(k�2)
, k=1, 2, ..., m+2 +A, 1�2=

2

- ?
M1 (&L$A), (2.27)

where Mk ( f )=��
0 rk&1f (r2) dr.
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Proof. From (2.19) we can write

S 2
A, m(x)&S 2

A, m(0)

=
gm&2 (x)

gm (x)
&

gm&2 (0)
gm (0)

=
[ gm&2 (x)& gm&2 (0)] gm (0)& gm&2 (0)[ gm (x)& gm (0)]

gm (x) gm (0)

=
1

gm (x) gm (0) {gm (0) |
x

0
g$m&2 ( y) dy& gm&2 (0) |

x

0
g$m ( y) dy=

=
1

gm (x) gm (0) {& gm (0) |
x

0
ygm ( y) dy+ gm&2 (0) |

x

0
ygm+2 ( y) dy=

and using

lim
x a 0

1
x2 |

x

0
ygm ( y) dy=lim

x a 0

xgm (x)
2x

=
1
2

gm (0)

we obtain

lim
x a 0

1
x2 [S 2

A, m(x)&S 2
A, m(0)]=

1
2g2

m(0)
[gm&2 (0) gm+2 (0)& g2

m(0)].

But the left-hand side is also

lim
x a 0

2
x2 [SA, m (x)&SA, m (0)] SA, m (0),

and thus

lim
x a 0

1
x2 [SA, m (x)&SA, m (0)]=

gm&2 (0) gm+2 (0)& g2
m(0)

4g3�2
m (0) g1�2

m&2(0)
.

The expression in Corollary 2 follows by using gm (0)=E[A&m�2]=+A, &m�2 .
To express SA, m (0) and CA, m in terms of the Laplace transform of A, we

could use the expressions (2.4)�(2.5) instead of (2.2) and follow a similar
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line of argument, or equivalently, we could express the moments +A, p in
terms of the Laplace transform LA . This is accomplished by evaluating

Mm (LA)=E _|
�

0
rm&1e&r2A dr&=

1
2

E _|
�

0
xm�2&1e&xA dx&

=
1
2

1 \m
2 + E[A&m�2]

for m�1, so that +A, &m�2=2Mm (LA)�1(m�2), m�1. This works for all the
moments required in (2.25), with the exception of +A, 1�2 and +0=1. This
+A, 1�2 , along with all +A, &m�2 , can be expressed using

Mm (&L$A)=&|
�

0
rm&1L$A (r2) dr=|

�

0
rm&1E[Ae&r2A] dr

=
1
2

E _A |
�

0
xm�2&1e&xA dx&=

1
2

1 \m
2 + E[A1&m�2]

=
1
2

1 \m
2 + +A, 1&m�2 ,

for m=1, leading to +A, 1�2=(2�- ?) M1(&L$A).
When the assumption in Corollary 2 is not satisfied, i.e., when

E[A&m�2+1]=�, a wide variety of (non-quadratic) asymptotic behavior
at zero and at infinity is still possible. This results in a wide variety of
heteroscedastic models illustrated in two examples in Section 3.

The following corollary describes the behavior of the factor SA, m (x) with
respect to x for a given dimensionality. Furthermore, it shows how the
higher the dimension we condition on, the lower the value of SA, m (x)
becomes, for a given value of x # R.

Corollary 3. If FA (0)=0, then (i) for any m�1, SA, m (x) is non-
decreasing in x>0, and (ii) for any x�0, SA, m (x) is non-increasing in
m�1.

Proof. (i) Since

d
dx

S 2
A, m(x)=

d
dx \

gm&2 (x)
gm (x) +=

g$m&2 (x) gm (x)& gm&2 (x) g$m (x)
g2

m(x)

=
x

g2
m(x)

[gm&2 (x) gm+2(x)& g2
m(x)], x>0.
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It follows that SA, m (x) is nondecreasing if and only if the within the
brackets quantity is greater or equal to zero, or

gm&2 (x) gm+2 (x)�g2
m(x). (2.28)

To show this, we proceed as follows. Let Ax>0 denote the random
variable associated with the random variable A, via the probability
measure relationship

&A, x(du)=
u&(m+2)�2e&x2�2u dFA (u)

�[0, �) u&(m+2)�2e&x2�2u dFA (u)
.

Assume FA (0)=0 to avoid some trivial difficulties.
Hence the necessary and sufficient condition (2.28) may be expressed in

the form

|
[0, �)

u2&A, x(du)�\|[0, �)
u&A, x(du)+

2

,

or equivalently, E[A2
x]�E[Ax]2,

which is always true.

(ii) To show that S 2
A, m(x) is non-increasing with respect to

m=1, 2, ... for fixed value of x # R+, it is necessary and sufficient to show
that S 2

A, m+1(x)�S 2
A, m(x), m=1, 2, ..., for fixed x>0, or equivalently from

(2.19), we need to show that gm+1 (x) gm&2 (x)�gm (x) gm&1 (x).

As in part (i), let Ax, 1>0 denote the random variable associated with
the random variable A, and let %A, x(du) be modified version of &A, x(du)
defined as follows:

%A, x(du)=
u&(m+1)�2e&x2�2u dFA (u)

�[0, �) u&(m+1)�2e&x2�2u dFA (u)
.

Once again, the necessary and sufficient condition that the last inequality
holds is to show that

|
[0, �)

u%A, x(du) |
[0, �)

u1�2%A, x(du)�|
[0, �)

u3�2%A, x(du),

or equivalently,

E[Ax, 1] E [A1�2
x, 1]�E[A3�2

x, 1]. (2.29)
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However, the last inequality is always true, since E[A p
x]1�p is a non-

decreasing function of p>0, and E[A1�2
x, 1]�E[A3�2

x, 1]1�3, and E[Ax, 1]�
E[A3�2

x, 1]2�3. Thus, by multiplying the last two inequalities, (2.29) is now
evident. This completes the proof of Corollary 3.

3. EXAMPLES

In this section we analyze the behavior of SA, m (x) in two specific cases,
(1) when the random variable A is uniform and (2) when it is a positive
stable. All the proofs of the following results will be deferred to Section 4.

1. Uniformly Distributed A. Here A is uniformly distributed over
[a, b], 0�a<b<�.

First let a>0. Then, E[A p]<� for all &�<p<�, so by
Corollary 1, all SA, m (x) are approximately quadratic around zero, i.e.,
(1.9) and (1.10) hold with

+A, p=
b p+1&a p+1

( p+1)(b&a)
for all p # (&�, �) except p=&1,

+A, &1=
1

b&a
ln \b

a+ .

It is not hard to see that

a1�2�SA, m (x)�b1�2, for all m=1, 2, ... . (3.1)

And at infinity all Sm (x) tend to the same constant:

lim
x � �

SA, m (x)=b1�2, for all m=1, 2, ... . (3.2)

Specifically, it is shown that for sufficiently large x,

SA, m (x)={
b1�2 \1&

b
2x2++o(x&2) for m{4

b1�2 \1&
b
x2++o(x&2) for m=4.

(3.3)

Also from Corollary 3, SA, m (x), m�1, increases from SA, m (0) to b1�2.
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Let a=0. Then, E[A p]<� only for &1<p<� and thus
E[A&m�2&1]=� for all m�1, so Corollary 1 never applies. In this case,
the limiting value of SA, m (x) at zero vanishes except when m=1:

lim
x � 0

SA, 1 (x)=\b
3+

1�2

and lim
x � 0

SA, m (x)=0, m�2. (3.4)

The limiting value at infinity is as (2.25). Around zero, SA, m (x) is
approximately linear for m�5, whereas for smaller values of m it rises
faster from its value at zero, the precise asymptotic expressions are
presented as follows,

SA, 1 (x)=\b
3+

1�2

+o(x2), (3.5.1)

SA, 2 (x)=b1�2 \ln
2b
x2+

&1�2

\1+
#
2 \ln

2b
x2+

&1�2

++o \\ln
1
x+

3�2

+ , (3.5.2)

SA, 3 (x)=\ b
2?+

1�2

x \1+
x

- 2b++o(x2), (3.5.3)

SA, 4 (x)=
x

- 2 \&#+ln
2b
x2++o \x ln

1
x+ , (3.5.4)

SA, m (x)=
x

- m&4 \1&
xm&1

2(2b)m�2&2 1 \m
2

&1+++o(xm), m�5,

(3.5.5)

where #=0.57721, is the Euler's constant.

2. Stable Distributed A. Here AtS:�2 (cos( ?:
4 ), 1, 0), 0<:<2, i.e., A

is stable totally skewed to the right with E[e&sA]=e&s:�2
. It will be

shown that the scale factor, SA, m (x), which determines the shape of
heteroscedasticity, can be expressed in an additive form with the dominant
term being exactly the one we have achieved at infinity. On the other hand,
the other term can be shown to explode to infinity with respect to x, except
at :=1, which is constant. This result supports Cioczek-Georges and
Taqqu's (1993) arguments for m=1.

It can be shown that the scale factor associated with the variance-
covariance matrix, Cov(X2 | X1), X1 # Rm, m�2 has the following proper-
ties:

lim
x � �

S 2
A, m(x)

x2 =
1

m+:&2
. (3.6)
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The following result connects (3.6) by proving an additive relation, where
the limiting term showing in (3.6) is one of the two terms.

S 2
A, m(x)=

C(x; :, m)
4(m+:&2)(m&1)

+
x2

m+:&2
, (3.7)

where

C(x; :, m)=
:2 (m&1) �[0, �) e&r :rm�2+2(:&1)J(m&2)�2 (- 2 xr) dr

�[0, �) e&r:rm�2J(m&2)�2 (- 2 xr) dr

and J& (x) is the Bessel function of the first kind. It is also shown that

lim
x � � }S 2

A, m(x)&
x2

m+:&2 }={
� for :{1

(3.8)1
4(m&1)

for :=1

Remarks. When :=1, the functional form of S 2
A, m(x), for m�2,

becomes a pure quadratic function. This was also noticed by Cioczek-
Georges and Taqqu (1993) for m=1 when they studied the behavior of
their stable conditional variance. Therefore, for :=1, the form is deduced
to be

S 2
A, m(x)=

1
m&1 _x2+

1
4& , m�2. (3.9)

For completeness, we shall state the case m=1. This was approached by
both Wu and Cambanis (1991) and Cioczek-Georges and Taqqu (1993)
for the stable case. Here, it will be presented in the sub-Gaussian case.
For m=1 the scale factor associated with the conditional variance,
Var(X2 | X1), has the properties

lim
x � �

S 2
A, 1(x)
x2 =

1
:&1

,
(3.10)

S 2
A, 1(x)=

C(x; :, 1)
2(:&1)

+
x2

:&1
, and lim

x � � }S 2
A, 1(x)&

x2

:&1}=�,

where

C(x; :, 1)=
: �[0, �) e&r:r2(:&1) cos(- 2 xr) dr

�[0, �) e&r :
cos(- 2 xr) dr

.
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4. PROOFS OF SECONDARY RESULTS

In the proof of Theorem 1, we use the following form of the regular
conditional distribution of A given X1 .

Proposition 1. For each non-negative measurable function g( } ) we have

E[ g(A) | X1=x1]=
|

[0, �)
g(u) u&m�2 exp \&

1
2u

x$17&1
11 x1+ dFA (u)

|
[0, �)

u&m�2 exp \&
1

2u
x$17&1

11 x1+ dFA (u)
, (4.1)

for almost every x1 # Rm, where FA ( } ) is the distribution function of A.

Proof. It is well known that the joint density function of X1 # Rm with
X1 =

d A1�2G1 , where G1 is a symmetric Gaussian random vector with
covariance matrix 711 is of the form

fX1
(x1)=

(det 711)&1�2

(2?)m�2 |
[0, �)

u&m�2 exp \&
1
2u

x$1 7&1
11 x1+ dFA (u). (4.2)

The rest of the proof is a simple consequence of the conditional expectation
and the formula of the joint distribution of X1 and A.

Proof of (3.1). The proof of this follows by just noting that

�b
�x2�2a

x2�2b e&yym�2&2 dy

�x2�2a
x2�2b e&yym�2&2 dy

=b

S 2
A, m(x)=

x2

2 |
x2�2a

x2�2b
e&yym�2&3 dy

|
x2�2a

x2�2b
e&yym�2&2 dy {�a

x2�2a
x2�2b e&yym�2&2 dy

�x2�2a
x2�2b e&yym�2&2 dy

=a.

Proof of (3.2), (3.3), and (3.4). It is known (see, e.g., Gradshteyn and
Ryzhik, 1980, p. 943) that for sufficiently large values of x and for any
a # R,

x&(a&1)ex1(a, x)=1&
a&1

x
+

(a&1)(a&2)
x2 +o(x&2),
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where 1(a, x)=��
x e&yya&1 dy, is the incomplete gamma function. Hence,

for any m except m=4, 2 we have

S2
A, m(x)

=_b \x2

2b+
&(m&6)�2

ex2�2b1 \m&4
2

,
x2

2b+
\x2

2b+
(m&4)�2

ex2�2b

&
a \x2

2a+
&(m&6)�2

ex2�2b1 \m&4
2

,
x2

2b+
\x2

2a+
&(m&4)�2

ex2�2b &
__1 \m&4

2
,
x2

2b+&1 \m&4
2

,
x2

2a+&
&1

=
b _1+

b(m&6)
x2 +o(x&2)&

1+
b(m&4)

x2 +\a
b+

&(m&4)�2

e&(x2�2)(1�a&1�b)+o(1)

&
a _1+

a(m&6)
x2 +o(x&2)&

\b
a+

&(m&4)�2

e(x2�2)(1�a&1�b)&1&
a(m&4)

x2 +o(1)

=b \1&
b
x2++o(x2).

Taking the square root in both sides, the answer follows immediately.

Proof for m=4. Call 1(0, x)=��
x (eu�u) du. Hence, via Lemma 1

S 2
A, 4(x)=

b
x2

2b
ex2�2a1 \0,

x2

2b+
ex2�2a _1 \1,

x2

2b+&1 \1,
x2

2a+&
+o(x&2)

=
b \1&

2b
x2+

1&e&(x2�2)(1�a&1�b)
+o(x&2)=b \1&

2b
x2++o(x&2).

This completes the proof for m=4.
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Proof for m=2. In exactly the same fashion as above, we note that

S 2
A, 2(x)=

x2

2 _1 \&1,
x2

2b+&1 \&1,
x2

2a+&
1 \0,

x2

2b+&1 \0,
x2

2a+

=
b(1+

b
x2+o(x&2)+

1+
2b2

x2 +o(x&2)
=b \1&

b
x2++o(x&2).

Proof of (3.5.1). If m=1, it can be seen that

S 2
A, 1(x)=

x2

2 |
�

x2�2b

e&y

y5�2 dy

|
�

x2�2b

e&y

y3�2 dy
.

Now using integration by parts we have that

|
�

x

e&y

ya+1 dy=
1
a _

e&x

xa &|
�

x
e&yy&a dy&

and Lemma 2, and it follows that the expression above may be written

S 2
A, 1(x)=

2b
3 {

1

\x2

2b+
1�2

ex2�2b |
�

x2�2b

e&y

y3�2 dy
&

x2

2b=
=

b
3 {

1

1&
x2

b
+o(x2)

&
x2

b ==
b
3

[1+o(x2)].

Proof of (3.5.2). Repeating the same arguments, we may also have that

S 2
A, 2(x)=

x2

2 |
�

x2�2b
y&2e&y dy

|
�

x2�2b
y&1e&y dy

=b {
1

ex2�2b |
�

x2�2b
e&yy&1 dy

+
x2

b = .

Thus, since

|
�

x

e&u

u
du=&#+ln

1
x

+x+o(x), x>0, (4.3)
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(Hardy, 1949, p. 27), and ex=1+x+o(x), it implies that

S 2
A, 2(x)=

b

\1+
x2

2b
+(x2)+ ln(2b�x2) \1&

#
ln(2b�x2)

+o \ 1
ln(2b�x2)++

+
x2

2

=
b

ln(2b�x2) {1+
#

ln(2b�x2)
+o \ 1

ln(2b�x2)+= ,

where #=.57721, is the Euler's constant.

Proof of (3.5.3). Since

1(a, x)=1(a)& :
�

n=0

(&1)n xa+n

n!(a+n)
, for a>0 (4.4)

(Gradshteyn and Ryzhik, 1980, p. 941) and since ex=1+x+o(x) around
the origin, for small argument of x we obtain that

S 2
A, 3(x)=b { \x2

2b+
1�2

e&x2�2b

|
�

x2�2b
e&yy&1�2 dy

&
x2

b =
=b1�2 x

- 2

1
1(1�2) {1+2

x

- 2b
+o(x)= .

Proof of (3.5.4). In connection with Lemma 3, it follows that

S 2
A, 4(x)=

x2�2b ��
x2�2b e&yy&1 dy

��
x2�2b e&y dy

=
x2

2 {&#+ln
2b
x2=+o \x2 ln

1
x+ .

Proof of (3.5.5). For m�5, we just utilize (4.4),

S 2
A, m(x)=

x2�2b ��
x2�2b e&yy(m&6)�2 dy

��
x2�2b e&yy(m&4)�2 dy

=
x2

2

1 \m&4
2 +

1 \m&2
2 +

1&
(x2�2b) (m&4)�2

1 ((m&2)�2)
+o(xm&1)

1&
(x2�2b) (m&2)�2

1 (m�2)
+o(xm)

=
x2

m&4 {1&
xm&1

(2b)m�2&2 1(m�2&1)
+o(xm&1)= .

This completes the proof of (3.5.5).
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In establishing Theorem 2, we are aided by using some ideas from
the Tauberian Theorem (see, e.g., Bingham et al., 1987). We incorporate
relations and identities given in Cambanis and Fotopoulos (1995), and
we utilize various properties of the Bessel family. We continue by first
resolving Theorem 1 and then Lemma 3.

Proof of (3.6). Since the choice of A is such that AtS:�2 (_, 1, 0),
0<:<2, _>0, we have that

P(A>x)t
_:�2

1(1&:�2) cos ?:�4
x&:�2=c_, : x&:�2 as x � �. (4.5)

At this point we are interested to know the behavior of gm (x) as x � �
occurred in (3.14) with the scalar being stable, and consequently to deter-
mine the behavior of S 2

A, m(x) for large arguments of x. We shall cover both
cases m�2 with : # (0, 2), and m=1 with : # (1, 2). Using integration by
parts, it follows that

gm (x)=&|
[0, �

u&m�2e&x2�2u dP(A>u) (4.6)

=&u&m�2e&x2�2uP(A>u) | �
0 +|

[0, �)
P(A>u) d[u&m�2e&x2�2u]

=|
[0, �)

e&x2�2u _&
m
2

u&(m+2)�2+
x2

2
u&(m+4)�2& P(A>u) du

=\x2

2 +
&m�2

|
[0, �)

e&x2�2u _&
m
2 \

x2

2u+
(m+2)�2

& P \A>
2u
x2

x2

2 + d \2u
x2+

=\x2

2 +
&(m&2)�2

|
[0, �)

e&y _&
m
2

y(m&2)�2+ ym�2& P \A>
x2

2y+ dy.

In connection (3.27), it follows that for m�2, : # (0, 2) and m=1,
: # (1, 2) and for x � �,

gm (x)tc_, : \x2

2 +
(m&2+:)�2

|
[0, �)

e&y {&
m
2

y (m+:&2)�2= dy (4.7)

=c_, : \x2

2 +
(m&2+:)�2

1 \m+:
2 + :

2
,
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which leads to

S 2
A, m(x)=

gm&2 (x)
gm (x)

t

c_, :
:
2 \

x2

2 +
&(m&4+:)�2

1 \m&2+:
2 +

c_, :
:
2 \

x2

2 +
&(m&2+:)�2

1 \m+:
2 +

=
x2

m+:&2
(4.8)

This completes the proof of part (3.6).

Remark. Obviously, if m=1 and : # (0, 1), then E[A1�2]=�[0, �) u1�2

exp(&x2

2u) dFA (u)=�. This follows from the fact that u1�2P(A>u) A � as
u � �, this is true, because u1�2P(A>u)tc_, : u(1&:)�2 � �, as u � � for
: # (0, 1). This concludes that E[A1�2]=�.

Proof of (3.7). For simplicity, we set

:=\
_

cos
?:
4 +

2�:

=1.

Call

A(x; :, m)=
�[0, �) e&r:r(m+:)�2J (m&2)�2 (- 2 xr) dr

�[0, �) e&r :rm�2J(m&2)�2 (- 2 xr) dr
, (4.9)

B(x; :, m)=:(m+:&2)
m
2

- 2 x
�[0, �) e&r :r(m+:&4)�2J(m&2)�2 (- 2 xr) dr

�[0, �) e&r :rm�2J(m&2)�2 (- 2 xr) dr
(4.10)

=(m+:&2) m - 2 xS 2
A, m(x), (4.11)

and

C(x; :, m)=:2 m
2

- 2 x
�[0, �) e&r :r(m+:&4)�2J(m&2)�2 (- 2 xr) dr

�[0, �) e&r:rm�2J (m&2)�2 (- 2 xr) dr
. (4.12)

Hence, from Lemma 3, we obtain that

(m+:&2) m - 2 xS 2
A, m(x)=&A(x; :, m)+B(x; :, m)+

m
2

(- 2 x)3

=C(x; :, m)&B(x; :, m)+B(x; :, m)

+
m
2

(- 2 x)3=C(x; :, m)+2(m&1) x2.

(4.13)

This completes the proof of part (3.7).
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Proof of (3.8). For convenience, set *=- 2 x. From (4.13), it follows
that

m
2*

C(x; :, m)=:2 �[0, �) e&r:r(m+4:&4)�2J(m&2)�2 (*r) dr
�[0, �) e&r :rm�2J(m&2)�2 (*r) dr

=
:2

*2(:&1)

�[0, �) e&(u�*):u(m+2:&4)�2J(m&2)�2 (u) du
�[0, �) e&(u�*):um�2J(m&2)�2 (u) du

=
:2

*2(:&1)

N(x; :, m)
D(x; :, m)

. (4.14)

We first examine N(x; :, m). It is clear that

N(x; :, m)=|
[0, 2)

+|
[2, �)

=I1+I2 , for 2=2(*). (4.15)

We take 2�*<1, 2�* � 0, as * A � and both 2 and * tend to infinity. It can
be checked that

I1=
1
* |

[0, 2)

e&(u�*):
&1

1�*
u(m+4(:&1))�2J(m&2)�2 (u) du

+|
[2, �)

u(m+4(:&1))�2J(m&2)�2(u) du

t&
1
*: |

[0, 2)
u(m+6:&4)�2J(m&2)�2(u) du+|

[2, �)
u(m+4(:&1))�2J(m&2)�2 (u) du,

(4.16)

since as x a 0, e&x:
&1

x =x:&1+O(x2:&1).
Obviously, the members on the right-hand side of (4.16) are in form of

Lemma 5. From Lemmas 7 and 8 it can be seen that the dominant con-
tribution of the right hand side of Lemma 6 is emanating from
``aJ&&1 (a) S+, & (a)''.

From Lemma 6 and 8, we have that as x � �,

J& (x)=� 2
?x

cos \x&
2&+1

4
?++o(x&1�2)

and S+, & (x)=x+&1+O(x+&2) for p=1. (4.17)

In conjunction with Lemma 5 and (4.16), (4.17) becomes

I1 t�2
?

cos \2&
m&1

4
?+ _2(m&6:&5)�2

*: &2(m&6:&5)�2& . (4.18)
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Next, we consider I2 . By Lemma 6

I2=|
[2, �)

e&(u�*):u2(:&1)um�2J(m&2)�2(u) du

=|
[2, �)

e&(u�*):u2(:&1) d |
[0, u)

ym�2J(m&2)�2( y) dy

=&e&(2�*): 22(:&1)+m�2Jm�2(2)&|
[2, �)

um�2Jm�2(u) d[e&(u�*):u2(:&1)]

=&e&(2�*): 22(:&1)+m�2Jm�2(2)+
:
*: |

[2, �)
e&(u�*):u3(:&1)+m�2Jm�2(u) du

=&2(:&1)|
[2, �)

e&(u�*):u2:&3+m�2Jm�2(u) du

=I21+:I22&2(:&1) I23 , say. (4.19)

In view of (4.16) and (4.17), we obtain

I21 t�2
?

cos \2&
m+1

4
?+ 2(m+4:&5)�2. (4.20)

To obtain I22 , some additional algebra is needed. From (4.16)

I22=�2
?

*&: |
[2, �)

e&(u�*):u(m&6:&7)�2 du

t
1
: �

2
?

*(m&6:&5)�2

*: |
[(2�*):, �)

y(m&4:&5)�2:e&y dy

t
1
: �

2
?

*(m+6:&5)�2

*: e&(2�*): \2
*+

(m+4:&5)�2

t
1
: �

2
?

2(m+4:&5)�2. (4.21)

In exactly the same way we continue for I23 ,

I23 t
1
: �

2
?

*(m+4:&5)�2 |
[(2�*):, �)

y (m+2:&5)�2:e&y dyt
1
: �

2
?

*: 2(m+2:&5)�2.

(4.22)

Combining (4.16), (4.18)�(4.22), (4.15) becomes

|N(*; :, m)|=�2
?

2(m&1)�2 _c1

23:&2

*: +c2 22(:&1)+c3*: 2:&2& , (4.23)

where c1 , c2 and c3 are positive suitable constants.
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We proceed by investigating the behavior of the denominator.

D(*; :, m)=|
[0, 2)

+|
[2, �)

=I$1+I$2 , say. (4.24)

Using identical arguments as before and Lemma 6, we have that

I$1=
1
*: |

[0, 2)

e&(u�*):
&1

1�*
um�2J(m&2)�2(u) du+|

[0, 2)
um�2J(m&2)�2(u) du

t�2
?

1
*: cos \2&

m&1
4

?+ 2(m+2:&1)�2+�2
?

cos \2&
m+1

4
?+ 2(m&1)�2.

(4.25)

Applying similar ideas as in (4.19), it follows that

I$2=&e&(2�*): 2m�2Jm�2(2)+
:
*: |

[2, �)
e&(u�*):u(m+2:&2)�2Jm�2(u) du

t&I$21+:I$22 , say. (4.26)

Clearly,

I$21 t�2
?

cos \2&
m+1

4
?+ 2(m&1)�2 (4.27)

and

I$22 t
1
*: |

[2, �)
e&(u�*):u(m+2:&3)�2 dut�2

?
cos \2&

m+1
4

?+ 2(m&1)�2.

(4.28)

Combining (4.25)�(4.28), (4.24) becomes

D(*; :, m)t�2
?

2(m&1)�2 _ 1
*: cos \2&

m&1
4

?+ 2:+:& . (4.29)

In connection with (3.44) and (3.50), (3.35) becomes

m
2*

C(x; :, m)tC1 \2
*+

2(:&1)

+c2 \2
*+

:&2

+c3 \2
*+

2

, (4.30)

where c1 , c2 , and c3 are positive constants. This completes the proof
of (3.8).
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5. AUXILIARY RESULTS

Lemma 1. For sufficiently large x,

ex |
�

x

e&u

u
du=

1
x

:
m

j=0

(&1) j j !
x j+o(x&m).

Proof. Note that

ex |
�

x

e&u

u
du=|

�

0

e&&

&+x
d&=

1
x |

�

0

e&&

1+&�x
d&=

1
x \|

x

0
+|

�

x +
=

1
x

:
m

j=0

(&1) j 1
x j |

x

0
e&&& j d&+o(x&m)+O(e&x)

=
1
x

:
m

j=0

(&1) j j !
x j+o(x&m).

This completes the proof of the lemma.

Lemma 2. For a<1,

xaex |
�

x

e&y

ya+1 dy=
1
a

&
x

a(1&a)
+o(x2) as x a 0.

Proof. This is an outcome of a simple integration by parts arguments.

Lemma 3. For any k=0, 1, 2, ... the following recurrent relations are
true:

(i) \1
r

d
dr+

k

(r&J&(r))=r&&kJ&&k(r)

and

(ii) \1
r

d
dr+

k

(r&&J&(r))=(&1)k r&(&+k)J&+k(r).

Lemma 4. Let I(*; m, a)=�[0, �) e&rarm+a&1 �[0, �) cos(*r cos %)_
sinm % d%dr. Then
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(i) a
\*

2+
m�2

- ? 1 \m+1
2 +

I(*; m, a)=* |
[0, �)

e&rarm�2J(m&2)�2(*r) dr

(ii) *
\*

2+
m�2

- ? 1 \m+1
2 +

I(*; m, a)

=(m+a&2) |
[0, �)

e&r ar(m+2a&4)�2J(m&2)�2(*r) dr

&a |
[0, �)

e&rar(m+4(a&1))�2J(m&2)�2(*r) dr.

Proof. (i) Via Lemma 2(i), and a simple integration by parts, we
proceed as follows:

a
\*

2+
m�2

- ? 1 \m+1
2 +

I(*; a, m)=a |
[0, �)

e&rar(m+2a&2)�2Jm�2(*r) dr

=&|
[0, �)

rm�2Jm�2(*r) de&ra

=|
[0, �)

e&rar \1
r

drm�2Jm�2(*r)+
=* |

[0, �)
e&rarm�2Jm�2(*r) dr. (5.1)

This completes the proof of (i).

(ii) using Lemma 2(ii), we have that

*
\*

2+
m�2

- ? 1 \(m+1)
2 +

I(*; a, m)

=* |
[0, �)

e&rarm+a&1*m�2((*r)&m�2Jm�2(*r)) dr
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=&|
[0, �)

e&rarm+a&2*m�2 d
d*r

((*r)&(m&2)�2J(m&2)�2(*r)) dr

=
m&2

2 |
[0, �)

e&rarm+a&2*m�2(*r)&m�2J(m&2)�2(*r) dr

&|
[0, �)

e&rarm+a&2*m�2 (*r)&(m&2)�2

*
dJ(m&2)�2(*r)

=
m&2

2 |
[0, �)

e&rar(m+2a&4)�2J(m&2)�2(*r) dr

&|
[0, �)

e&rar(m+2a&2)�2 dJ(m&2)�2(*r)

=
m&2

2 |
[0, �)

e&rar(m+2a&4)�2J(m&2)�2(*r) dr

+|
[0, �)

J(m&2)�2(*r) d[e&rar(m+2a&2)�2]

=
m&2

2 |
[0, �)

e&rar(m+2a&4)�2J(m&2)�2(*r) dr

&a |
[0, �)

e&r ar(m+4(a&1))�2J(m&2)�2(*r) dr

+\m
2

+a&1+ Am�2(*) |
[0, �)

e&rar(m�2+a&2)J(m&2)�2(*r) dr

=(m+a&2) |
[0, �)

e&rar(m+2a&2)�2J(m&2)�2(*r) dr

&a |
[0, �)

e&r ar(m+4(a&1))�2J(m&2)�2(*r) dr.

This completes the proof of Lemma 3.

Lemma 5 (Gradsteyn and Ryzhik, 1980, p. 684, Eq. 6.56.13). For a>0
and ++&>0,

a++1 |
[0, 1)

x+J&(ax) dx=|
[0, �)

x+J&(x) dx

=(&++&1) aJ&(a)+S+&1, &&1(a)&aJ&&1(a) S+, &(a)

+2+1((1+++&)�2)
1((1+&&+)�2)

is always true, where S+, &(x) is Lommel 's function.
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Lemma 6 (Gradsteyn and Ryzhik, 1980, p. 683, Eq. 6.56.5). For &>0,
the following equality holds:

a& |
[0, 1)

x&J&&1(a, x) dx=|
[0, a)

x&J&&1(x) dx=a&J&(a).

Lemma 7 (Abramowitz and Stegun, 1972, p. 364). When & is fixed and
x � �,

J&(x)=� 2
?x

[P(&, x) cos /&/(&, x) sin /],

where

/=x&\1
2

&+
1
4+ ?, +=4&2,

P(&, x)=1&
(+&1)(+&9)

2!(8x)2 +
(+&1)(+&9)(+&25)(+&49)

4!(8x)4 & } } }

and

Q(&, x)=
+&1

8x
&

(+&1)(+&9)(+&25)
3!(8x)3 + } } } .

Lemma 8 (Gradsteyn and Ryzhik, 1980, p. 986, Eq. 8.576). If +\& is
not a positive odd integer, then

S+, &(x)=x+&1 :
p&1

m=0

(&1)m 1( 1
2& 1

2 ++ 1
2 &+m) 1( 1

2& 1
2 +& 1

2 &+m)
(x�2)m 1( 1

2& 1
2 ++ 1

2 &) 1( 1
2& 1

2 +& 1
2 &)

+O(x+&2p).
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