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1. INTRODUCTION

Let X1 , ..., Xn be i.i.d.r.v.s with the Np(%, 7) d.f. (distribution function),
where 7 is positive definite (p.d.), and consider the hypotheses

H0 : %=0 vs H1 : % # 10=[% # R p; %�0, &%&>0]. (1.1)
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Various tests for this hypothesis have been considered under varying
generality on 7: (i) 7 completely specified; (ii) 7=_2 70 , 70 specified but
_2 unknown; and (iii) 7 is p.d. but completely unknown. Likelihood ratio
tests (LRT) in case (i), considered by a host of researchers, are known to
have some desirable properties; we refer the reader to Shapiro [12] for a
useful discussion. Roy's [11] union�intersection tests (UIT) are strong
competitors to the LRT, and often they are isomorphic. The projected tests
proposed by Cohen, Kemperman, and Sackrowitz [4] may also be viewed
as UIT.

Treating 7 as a p.d. nuisance matrix, Perlman [9] considered LRTs for
a comparatively more general class of alternatives. Unfortunately, the null
distribution of the LRT depends on the unknown 7, so that it is not a
similar test. He considered suitable upper and lower bounds for this null
distribution that may be used to prescribe some approximate or conser-
vative tests. However, such a test is not known to have the usual proper-
ties, unbiasedness, monotonicity of power, etc. leaving us wondering: On
what theoretical ground(s) may a LRT be advocated for such one-sided
alternatives in case (iii)? The union�intersection (UI) principle and suf-
ficient statistics are often used to yield alternative test criteria. In the next
section we consider a class of tests for H0 vs H1 in case (iii) wherein the
heuristic union�intersection (UI) principle of Roy [11] is incorporated in
formulating UITs which are quite comparable to LRTs. The null distribu-
tion of a UI-scores test statistic is also derived in this section. Power-
monotonicity and consistency of LRT and UIT are studied in Section 3.
The dependence of the distribution of the UIT or LRT on the unknown 7
has been a major concern for the adoption of these tests in practice.
Recently, Wang and McDermott [18] have considered a conditional
version of the LRT that has an exact size; however, the critical values for
such a conditional test are themselves random (they depend on the observed
covariance matrix), and for values of p (�4) their proposed algorithm
may require extensive numerical computations. The present authors are not
totally clear on the claimed unbiasedness property of the conditional LRT,
and a counterexample is cited later on. Our approach, formulated in Sec-
tion 4, is to extend the classical Stein [15] two-stage procedure to provide
a resolution to this problem, along with an isomorphism of the LRT and
UIT. Such two-stage LRT�UIT tests are shown to be similar, unbiased,
and to have monotonicity of power properties. The allied distributional
problems are also addressed. The concluding section is devoted to some
general remarks pertaining to this one-sided hypothesis testing problem in
case (iii) with some emphasis on power properties.

265TWO-STAGE LR AND UI TESTS



2. WHITHER UI-TESTS?

For every n (�2), we let

X� n=n&1 :
n

i=1

Xi and Sn= :
n

i=1

(Xi&X� n)(Xi&X� n)$. (2.1)

Note that (X� n , Sn) is (jointly) sufficient for (%, 7), so that a test statistic
may be based solely on this set. We formulate the UIT along the line of
Roy [11]. For each b # 10 , we define

H0, b : b$%=0 and H1, b : b$%>0, (2.2)

so that

H0= ,
[b # 10]

H0, b and H1= .
[b # 10]

H1, b . (2.3)

Now for a given b # 10 , a one-sided UMP similar test statistic for testing
H0, b vs H1, b is given by

Tn(b)=n1�2(b$X� n)�[b$Snb]1�2, (2.4)

and H0, b is rejected whenever Tn(b) exceeds a critical level, say, cn, : , where
: (0<:<1) stands for the level of significance of the test. From (2.3) and
(2.4), we obtain that the UIT for testing H0 vs H1 is based on the test
statistic

T*n=sup [Tn(b): b # 10]. (2.5)

Our task is to find a closed expression for T*n and to find its critical value,
say c*n, : , that satisfies

P[T*n�c*n, : | H0]=:. (2.6)

To obtain a closed expression for T*n , we proceed as follows. Let
P=[1, ..., p], and for every a: <�a�P, let a$ be its complement and |a|
its cardinality. Thus there are 2 p such possible subsets a: <�a�P and
0�|a|�p. For each a, we partition (following possible rearrangement) X� n

and Sn as

X� n=\X� na

X� na$ + and Sn=\Snaa

Sna$a

Snaa$

Sna$a$+ , (2.7)
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and write

X� na: a$ = X� na&Snaa$ S&1
na$a$ X� na$ , (2.8)

Snaa: a$= Snaa& Snaa$ S&1
na$a$ Sna$a . (2.9)

Further, let

Ina=1[ X� na: a$>0, S&1
na$a$ X� na$�0], (2.10)

for <�a�P, where 1[ } ] denotes the indicator function. Then using the
Kuhn�Tucker�Lagrange (KTL) point formula theorem (Hadley [5]), we
obtain that

T*n= :
<�a�P

[n X� $na: a$ S&1
naa: a$ X� na: a$] Ina . (2.11)

Side by side, we may express the LRT statistic L*n as

L*n= :
<�a�P {

n X� $na: a$ S&1
naa: a$ X� na: a$

1+n X� $na$ S&1
na$a$ X� na$ = Ina (2.12)

(see Section 7 of Perlman [9]). Note that only one of the Ina is nonzero,
so that both the LRT and the UIT involve the common (random) nonzero
Ina while the accompanying statistics are somewhat different. It is clear
from the above that

T*n�L*n , (2.13)

with probability one. It follows from Theorem 7.4 of Perlman [9] that for
every c>0,

P[L*n�c | H0 , 7]=P0, 7[L*n�c]

= :
p

k=1

w( p, k; 7) P[/2
k �/2

n& p�c], (2.14)

where the /2
m are independent r.v.s, /2

m has the central chi-square distribu-
tion with m (�0) degrees of freedom (DF), /2

0=0 with probability 1, and
for each k (=0, 1, ..., p),

w( p, k; 7)= :
[a�P: |a|=k]

P[Za: a$>0, 7&1
a$a$Za$�0], (2.15)
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ZtNp(0, 7), and the partitioning as in (2.8)�(2.9) (with Sn replaced by
7). Note that the dependence of (2.14) on 7 is only through the w( p, k; 7).
For this reason, Perlman [9] allowed 7 to vary over the entire class
[7>0] of p.d. matrices and obtain that for every c>0,

sup
[7>0]

P0, 7[L*n�c]= 1
2[P[/2

p�/2
n& p�c]+P[/2

p&1 �/2
n& p�c]]. (2.16)

if the right-hand side of (2.16) can be equated to :, yielding c=d*n, : , we
obtain that

P0, 7[L*n�d*n:]�:, \7>0, (2.17)

and hence the conservative character of the LRT based on the critical value
d*n, : (when 7 is fixed but unknown) becomes apparent from (2.17).

The derivation of the null distribution of the UIT-statistic T*n is a bit
more complex and it involves convolution of some independent chi-square
variables. Let /2

a and /2
b be independent chi-square r.v.s with a and b

degrees of freedom respectively. Let then

Ga, b(u)=P[/2
a �/2

b�u], u # R+, (2.18)

and let G� a, b(u)=1&Ga, b(u). Let

G� *n, a, p(u)=|
�

0
G� a, n& p \ u

1+t+ dGp&a, n& p+a(t), u # R+. (2.19)

Thus, G* is the convolution of the d.f.s of /2
a �/2

n& p and 1+/2
p&a �/2

n& p+a .
Then we have the following.

Theorem 2.1. For every c>0,

P0, 7[T*n�c]=P[T*n�c | H0 , 7]

= :
p

k=1

w( p, k; 7) G� *n, k, p (c), (2.20)

where the w( p, k; 7) are defined by (2.15).

Proof. For every a: <�a�P, we define Va=nX� $na: a$S
&1
naa: a$X� naa: a$ , Wa=

n1�2S&1
na$a$X� na$ , !a=W$a Sna$a$Wa , Ua=(1+!a)&1 Va , and (a=(1+!a)&1�2

- n X� na: a$ . Then defining the Ina as in (2.10) and proceeding as in the proof
of Theorem 7.2 of Perlman [9], we obtain that for every a: <�a�P and
c>0,
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E[InaI(Va�c) | H0 , 7]

=P[Va�c, (a>0, Wa�0 | H0 , 7]

=P[Ua(1+!a)�c, (a>0, Wa�0 | H0 , 7]

=P[Ua(1+!a)�c | H0 , 7] P[(a>0 | H0 , 7] P[Wa�0 | H0 , 7]

=P0, 7[Ua(1+!a)�c] P0, 7[(>0] P0, 7[Wa�0]. (2.21)

Next, note that under H0 , Ua and !a are independent, and Ua =
D /2

|a| �/
2
n& p

and !a =
D /2

|a$| �/
2
n&|a$| , where =

D
stands for the equality of distributions.

Thus, by (2.18), (2.19), and (2.21), for every c>0,

P0, 7[Ua(1+!a)�c]=G� *n, a, p(c). (2.22)

Note that for different a: <�a�P, |a$|= p&|a|, and further the G� *n are
all independent of 7. Finally,

:
[a�P: |a| =k]

P0, 7[(a>0] P0, 7[Wa�0]

=w( p, k; 7), \k=0, 1, ..., p. (2.23)

Therefore, (2.20) follows from (2.21), (2.22), and (2.23).

Note that in (2.14) the coefficient of w( p, k; 7) is G� k, n& p(c), whereas in
(2.20) it is the convolution G� *n, k, p(c). In this sense (2.20) differs from (2.14).
For k= p, /2

0=0 with probability 1, so that G� *n, p, p(c)=G� p, n& p(c), \c>0,
but for k<p, they are not the same. Nevertheless, (2.20), like (2.14),
depends on 7 (unknown) only through the w( p, k; 7), so that like the
LRT, the UIT is also not a similar test. As in (2.16), we may proceed to
maximize (2.20) over the class [7>0] of p.d. 7. We may virtually repeat
the proof of Theorem 6.2 of Perlman [9] but work with (2.11) instead of
(2.12) and conclude that for every c>0,

sup
[7>0]

P0, 7[T*n�c]= 1
2[G� p, n& p(c)+G� *n, p&1, p(c)], (2.24)

where the G� *n are defined by (2.19). We equate the right-hand side of (2.24)
to :, yielding c=c*n, : , and obtain that

P0, 7[T*n�c*n, :]�:, \7>0. (2.25)
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Like the LRT, the UIT based on the critical level c*n, : is conservative and
both of them are biased. In passing, we may note that the first term on the
right-hand side of (2.16) is also G� p, n& p(c), while by (2.19), G� n, p&1, p(c)�
Gp&1, n& p(c), \c>0. Therefore c*n, :�d*n, : for every :: 0<:<1.

Let R+
p =[x # R p | x�0] and ?A (x; 1) be the orthogonal projection of

x onto 1 with respect to the inner product ( , ) A . Then, by (2.11), we have

T*n=&?Sn(n
1�2 X� n ; R+

p )&2
Sn

, (2.26)

where &x&2
A is defined to be x$A&1x. For the LRT in (2.12), we have

L*n=&?Sn(n1�2 X� n ; R+
p )&2

Sn
[1+&n1�2X� n&?Sn(n1�2X� n ; R+

p )&2
Sn

]&1. (2.27)

This calls our attention to the structural difference between the LRT and
UIT. The UIT is a direct orthogonal projection onto R+

p while the LRT is
not so when |a|<p; T*n=L*n when |a|= p, otherwise T*n>L*n . Thus, if %
belongs to an edge of R+

p , |a|<p with a positive probability, and hence the
LRT may not perform as well as the UIT.

At this stage, we refer to a recent work by Wang and McDermott [18]
who considered a conditional version of the LRT and developed an algo-
rithm for the computation of the conditional critical values (which are
themselves stochastic in nature). In this context, we emphasize that the
same conditionality principle applies to the UIT as well. Their algorithm
can be modified to suit the computation of the conditional critical values
of the UIT, given the sample covariance matrix. Moreover, by virtue of the
ordering of the UIT and LIT, that is, the fact (as mentioned above) that,
for |a|<p, T*n>L*n and they are equal when |a|= p, we expect the critical
levels of the two tests to be close to each other, but that the UIT will have
power superiority to the LRT, especially when % belongs to an edge of R+

p .
We shall make some further comments on this in Section 4.

3. CONSISTENCY AND MONOTONICITY

The consistency of the LRT has already been established by Wang and
McDermott [18]. Their proof virtually goes over to the case of the UIT
after noting that T*n�L*n . Therefore, we omit the details. The ``mono-
tonicity of power'' property for the LRT for some one-sided alternatives
has been discussed by Perlman [9, Lemma 8.2]. However, his treatment
does not cover the general case of H0 vs H1 under our consideration. Hu
and Wright [7] studied this property for the LRT for testing of H0 vs H1

but only for the case (ii) but not (iii). The following theorem, also estab-
lished in a simpler manner than in Hu and Wright [7], provides the
desired result for both the LRT and UIT.

270 SEN AND TSAI



Theorem 3.1. Let %i # R+
p , i=1, 2. If %2&%1 # R+

p , i.e., %2�%1�0,
then for every c>0,

P%2, 7[T*n�c]�P%1, 7[T*n�c] (3.1)

and
P%2, 7[L*n�c]�P%1, 7[L*n�c]. (3.2)

Proof. Note that for any ' # R+
p , 1' =[x=u+'; u # R+

p ]�R+
p , and

hence

&?Sn(n
1�2X� n ; R+

p )&2
Sn

�&?Sn(n1�2X� n ; 1' )&2
Sn

, (3.3)

\' # R+
p respectively. Therefore, for every c>0, letting ' i=n1�2%i , i=1, 2,

'='2&'1 ,

P%2, 7[T*n�c]=P%2, 7[&?Sn(n1�2 X� n ; R+
p )&2

Sn
�c]

�P%2, 7[&?Sn(n1�2X� n ; 1' )&2
Sn

�c]

=P%2, 7[&?Sn(n1�2X� n&'; R+
p )&2

Sn
�c]

=P%1, 7[&?Sn(n1�2X� n&0; R+
p )&2

Sn
�c]

=P%1 , 7[T*n�c]. (3.4)

And (3.2) can then be proved similarly to (3.4) by noting the fact that

&?Sn(n
1�2X� n ; R+

p )&2
Sn

[1+&n1�2X� n&?Sn(n1�2X� n ; R+
p )&2

Sn
]&1

�&?Sn(n
1�2X� n ; 1' )&2

Sn
[1+&n1�2X� n&?Sn(n1�2X� n ; 1' )&2

Sn
]&1. (3.5)

These results ensure that as % moves in the interior of R+
p , the powers

of both the LRT and UIT increase. Moreover, we may remark that for the
case (i) the LRT and UIT are isomorphic and both statistics are exactly he
same as in (2.11) with Sn being replaced by the known covariance matrix
7. For the case (ii), both LRT and UIT statistics remain the same form as
in (2.26) and (2.27) respectively with Sn being replaced by s2

n70 , where s2
n

is the maximum likelihood estimator of _2. Hence by virtually repeating the
proof of Theorem 3.2 the power monotonicity property of LRT and UIT
for the problem H0 vs H1 is also true for cases (i) and (ii).

4. TWO-STAGE TESTS

The conservativeness of LRT and UIT studied in the preceding section
stems mainly from the adoption of the upper bounds in (2.16) and (2.24).
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Since the exact null distribution in (2.14) or (2.20) or their conditional
counterparts (given Sn) depend on the unknown 7, a fixed-sample size
solution to unbiasedness and attainment of the exact size of the LRT and
UIT may not exist. In order to attain the exact size, Wang and McDermott
[18] proposed a conditional LRT. However, their proof for the unbiased-
ness of their conditional LRT in Proposition 5 may not be totally correct;
for +, +0 # 3 with 3 being the positive orthant and 7 being positive
definite, their claim that +$7&1+0>0 may not be generally true. To stress
this point, we let +=(1�2, 1�10)$, 7&1=(_ij) with _11=_22=1 and
_12=_21=&1�2, and +0=(1�10, 9�10), then obviously we have +$7&1+0=
&9�100<0. Also note that 7 is unknown but fixed, while Sn is stochastic.
If 7 is an M-matrix, the sample covariance matrix Sn might not be an
M-matrix with a positive probability, and as such the conditional LRT by
conditioning on Sn might not have good power performance. The two-stage
procedure to be considered in this and the following sections is primarily
motivated by a desire to eliminate this shortcoming.

For the univariate normal mean testing problem, Stein [15] considered
a two-stage procedure which has a power function independent of the
nuisance parameter _2. Chatterjee [2, 3] considered various multivariate
extensions of the Stein procedure and exhibited the 7-freeness of the power
function. In all these cases, the singe-sample tests are similar and unbiased.
In the current context, the fact that LRT and UIT are not similar implies
that they cannot be unbiased at a given size. Therefore, we proceed to
adopt a suitable modification of the Stein procedure so as to induce
similarity as well as the unbiasedness of LRT and UIT in a simple way. In
the next section, we shall study the power function.

We start with a couple (n0 , D) where n0 (>p) is the first-stage sample
size and D is a given p.d. matrix. In view of the class of restricted alter-
natives (H1), we may choose D&1 to be an M-matrix; we may even allow
D to be diagonal with positive elements reflecting the relative importance
of the components of % with respect to H1 . Based on the first-stage sample
(X1 , ..., Xn0

), we compute X� n0
=n&1

0 �n0
i=1 Xi and an estimator of 7 by

Sn0
=(n0&1)&1 :

n0

i=1

(X i&X� n0
)(X i&X� n0

)$. (4.1)

Note that Sn0
is p.d. with probability one and is an unbiased estimator of

7. Then, we define a stopping variable N (=N(n0 , D)) by letting

N=max[n0+ p2, [tr(D&1Sn0
)]+1], (4.2)

where [s] denotes the integer part of s (>0) and tr(A) stands for the trace
A. Thus, N�n0+ p2 with probability 1, it is properly defined for all D p.d.,
and for D1�D2 (in the sense D1&D2 is positive semidefinite),
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N(n0 , D1)�N(n0 , D2). Finally, note that for every n�n0+ p2, [N=n] is
Sn0

-measurable and independent of X� n0
.

Having obtained N in (4.2), we draw N&n0 additional observations
Xn0+1 , ..., XN from the same distribution, and write

X� N =(X� n0
, Xn0+1 , ..., XN), N 0=N&n0+1, (4.3)

1$N0=(1, ..., 1) and L=diag(n&1
0 , 1, ..., 1). (4.4)

Define then A=(A$1 , ..., A$p)$, where

Ai=(ai1 , ..., aip)$, i=1, ..., p, (4.5)

and the aij are all N0-vectors, chosen so that

(A11, ..., Ap 1)=Ip and ALA$=D�S&1
n0

, (4.6)

where � stands for the Kronecker product. This is indeed feasible, as can
be verified by using the results in Chatterjee [2, 3]. Next, we define
ZN=(ZN1 , ..., ZNp)$ by letting

ZNi=tr(A i X� $N), i=1, ..., p. (4.7)

Now, given n0 and D, conditionally on Sn0
, N is fixed and so are the Ai .

Thus, proceeding as in Chatterjee [2, 3] we conclude that given Sn0
,

ZN tNp(%, `D); `=tr(S&1
n0

7). (4.8)

Further note that for any symmetric p.d. Q, `=tr(Q&1S&1
n0

Q&1Q7Q), so
that taking Q=7&1�2, we conclude that under 7, ` has the same distribu-
tion as `0=tr(S&1

n0
) under 7=Ip . Thus, the distribution of ` does not

depend on 7.
Based on the pair (ZN , D), in (2.10)�(2.11), replacing Sn by D, we define

the two-stage UIT statistic as

T V 0
N = :

<�a�P

[Z$Na: a$D
&1
aa: a$ZNa: a$] 1[ZNa: a$>0, D&1

a$a$ ZNa$�0]. (4.9)

Note that for the ZNa: a$ we use D instead of Sn . Moreover, we define the
w( p, k, D) as in (2.15) with the unknown 7 replaced by the given D, so
that they are all independent of 7. Also, they are all scale-invariant, so that

w( p, k; `D)=w( p, k; D), \0�k�p, `>0. (4.10)

We denote the distribution function (d.f.) of /2
k by Gk(x), k�0, and let

G� k(x)=1&Gk(x), x�0, k�0. Since (n0&1) 7&1Sn0 has the Wishart
( p, n0&1, Ip) d.f., we obtain that (n0&1)&1 S&1

n0
7 has the inverted Wishart
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( p, n0&1, Ip) d.f.; we may refer to Theorem 7.7.1 of Anderson [1]. There-
fore, `=tr(S&1

n0
7)=(n0&1) tr(W*), where W* has the inverted Wishart

( p, n0&1, Ip) d.f. We denote the d.f. of ` by 9n0
( y), y�0, and note that

9n0
is free from 7. Consider then the convolutions

G� *k, p(x)=|
�

0
G� k(x�y) d9n0

( y), x # R+, k�0. (4.11)

Since none of Gk and 9n0 depend on 7, we claim that the G� *k, p are all free
from 7. Our main result of this section is the following:

Theorem 4.1. For given (n0 , D), for every c>0,

P0, 7[T0 V
N �c]=P[T0 V

N �c | H0 , 7]

= :
p

k=1

w( p, k; D) G� *k, p(c), (4.12)

and hence, is independent of the unknown 7.

Proof. Note that given Sn0
, N and ` are also fixed, and `D is a scalar

multiplication of the given D. Thus, we may proceed as in the proof of
Theorem 2.1 and obtain that the conditional null distribution of T V 0

N ,
given Sn0

is given by

P0[T V 0
N �`�c | Sn0

]= :
p

k=1

w( p, k, D) G� k(c), c>0. (4.13)

Note that the right-hand side of (4.13) does not depend on 7. Therefore,
we have for every c>0,

P0, 7[T V 0
N �c]=E[P0, 7[T V 0

N �`�c�` | Sn0
]]

=|
�

0
P0[T V 0

N �y�c�y | Sn0
] d9n0

( y)

= :
p

k=1

w( p, k; D) |
�

0
G� k(c�y) d9n0

( y)

= :
p

k=1

w( p, k; D) G� *k, p(c). (4.14)

Next, we adopt the proof of Theorem 3.2, we take ZN and D instead of
- n X� n and Sn , thus we obtain that for every %2�%1�0 and c>0,

P%2, 7[T V 0
N �c | `]�P%1, 7[T V 0

N �c | `] a.a. `, (4.15)
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and as 9n0
, the d.f. of `, is free from 7 or %s, integrating both sides of

(4.15) with respect to 9n0
, we have

P%2, 7[T V 0
N �c]�P%1, 7[T V 0

N �c], \c>0, %1�%1�0. (4.16)

Thus, the two-stage UIT has a monotone power property. On the other
hand, equating (4.12) to :, we obtain a critical level c V 0

: which does not
depend on 7. Thus, the two-stage UIT based on the rejection region
T V 0

N �c V 0
: (and the stopping rule N in (4.2)) is a similar size-: test. Com-

bining this similarity along with the power monotonicity property in (4.16),
we obtain the following.

Theorem 4.2. The two-stage UIT is unbiased, similar, and has a
monotone power property.

We may note further that in (4.8) the dispersion matrix `D corresponds
to case (ii) (in Section 1), albeit in a conditional setup, given Sn0

. As such,
based on this conditional multinormal law, if we construct the LRT and
denote the statistic by L V 0

N , it follows readily that

L V 0
N #T V 0

N . (4.17)

Combining Theorems 4.1 and 4.2, and (4.17), we have the following.

Theorem 4.3. The two-stage LRT and UIT are isomorphic and share the
properties of similarity, unbiasedness and power monotonicity.

Let us conclude this section with some pertinent remarks on the d.f.s
G� *k, p in (4.11), and for this we need to took into 9n0

first. For p=2, 9n0

has a simple form and therefore for G� *1, p and G� *2, p workable forms are
available in the literature. For p�3, the situation is much more complex.
For G� *p, p , p�3, Chatterjee [2] has worked out some convenient
approximations, and similar ones can be obtained for G� *k, p , k�p, p�3. If
n0 is larger than p+2r, for some positive integer r, then we may use the
central moments (up to the order r) of ` to provide another approximation
in terms of G� k+2 j , j�0. Toward this ends, we note first that if k is even
(=2r, say), then for y>0, G� 0( y)=0 and

G� 2r( y)=2 :
r

j=1

g2 j ( y)= :
r&1

j=0

1
j ! \

1
2

y+
j

e&y�2. (4.18)
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For k=2r+1, odd,

G� 2r+1( y)=G� 1( y)+2 :
r

j=1

g2 j+1( y)

=G� 1( y)+ :
r

j=1

1
1( j+1�2) \

1
2

y+
j&1�2

e&y�2, (4.19)

where

G� 1( y)=
1

- 2? |
�

y
x&1�2e&(1�2) x dx, y�0. (4.20)

Further, note that

E(S&1
n0

|7=Ip)=
n0&1

n0& p&2
Ip , \n0>p+2, (4.21)

so that

E(`)=
(n0&1) p
n0& p&2

=`0, say, (4.22)

where `0>p. Also using the second order moment result on inverted
Wishart matrix (viz., Siskind [13]), we obtain in the following some
routine steps that for n0>p+4,

E(`&`0)2=Var(`)

=
p(n0&1)2

(n0& p&2)(n0& p&4) {
n0 p& p2&3p+2

n0& p&1 =
&

(n0&1)2 p2

(n0& p&2)2

=
2p(n0&1)2 (n0&2)

(n0& p&2)2 (n0& p&4)(n0& p&1)
. (4.23)

Higher order central moments of ` can also be obtained from the higher
order moments of inverted Wishart matrix (viz., von Rosen [10]), but they
require even larger values of n0 , for which the first order approximation
will be quite adequate. Hence we refrain from these additional computa-
tions.
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It follows from (4.11) and (4.18) that for k=2r, r�1, for every c>0,

G� *k, p(c)= :
r&1

j=0

1
j ! |

�

0 \ c
2y+

j

e&c�2y d9n0
( y)

= :
r&1

j=0

1
j !

E[hj (`; c)], (4.24)

where

hj (`; c)=\ c
2`+

j

e&c�2`, for j�0, `>0, c>0. (4.25)

Next note that

(���`) hj (`; c)=hj+1(`, c) _1
`

&
2 j
c & , j=0, 1, ..., (4.26)

so that recursively

(�2��`2) hj (`; c)=&
1
`2 hj+1(`; c)+h j+2(`; c) _1

`
&

2 j
c &_

1
`

&
2( j+1)

c & ,

(4.27)

for j=0, 1, ..., and higher order derivatives can be obtained recursively.
Moreover, using the harmonic mean-arithmetic mean inequality on the
characteristic roots of 7&1Sn0

, we obtain that

`&1�p&2 tr (7&1Sn0)

=[(n0&1) p2]&1 tr(W)n (4.28)

where W is a Wishart ( p, n0&1, Ip) matrix. Since the moment generating
function of tr(W) exists for all n0>p, there is no problem with the con-
vergence of the negative moments of ` of any order. Thus, writing

a0
j (c)=(���`) h j (`; c)| `=`0 (4.29)

b0
j (c)=(�2��`2) hj (`; c)| `=`0 , j�0, (4.30)

we have a valid Taylor's expansion

hj (`; c)=hj (`0; c)+(`&`0) a0
j (c)+ 1

2(`&`0)2 b0
j (c)+ } } } , (4.31)
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so that we consider the first order approximation

Ehj (`; c)=hj (`0; c)+
1
2

b0
j (c) E(`&`0)2+ } } }

=hj (`0; c)+
1
2

b0
j (c)

2p(n0&1)2 (n0&2)
(n0& p&2)2 (n0& p&4)(n0& p&1)

+o \ 1
n0& p+ . (4.32)

From (4.24), (4.27), and (4.32), we obtain that for k=2r, r�1, c>0,

G� *k, p(c)={1&
c(n0&2)(n0& p&2)

2p2(n0&1)(n0& p&1)(n0& p&4)= G� k \c(n0& p&2)
p(n0&1) +

+
c2(n0&2)

4p(n0& p&1)(n0& p&4)
:

n&1

j=0

1
j ! \

c(n0& p&2)
p(n0&1) +

j

__exp {&
c(n0& p&2)

2p(n0&1) =&_
n0& p&2
p(n0&1)

&
2 j
c &

__n0& p&2
p(n0&1)

&
2( j+1)

c &+o \ 1
n0& p+ . (4.33)

It is also clear from the above equation that G� *2r+2, p(c) can be recursively
computed form G� *2r, p(c) by adding the additional contributions of the r th
term in the right-hand side of (4.33) along with 2g2r+2(c(n0& p&2)�
p(n0 & 1))[1 & c(n0&2)(n0 & p & 2)�2p2(n0 &1)(n0 & p &1)(n0 & p &4)]
arising from the first term. A similar recursive scheme applies to G� *2r+1, p(c)
(by (4.19)), and hence it suffices to consider only the case of G� *1, p(c). By a
similar Taylor's expansion, we have

G� *1, p(c)=G� 1 \c(n0& p&2)
p(n0&1) +&

(n0&2)
2p(n0& p&4)(n0& p&1)

__exp {&
c(n0& p&2)

2p(n0&1) =&
1

1(1�2) \
c(n0& p&2)

p(n0&1) +
1�2

_{1+2
c(n0& p&2)

p(n0&1) =+o \ 1
n0& p+ . (4.34)
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For conformity with (4.33), we rewrite (4.34) as

G� *1, p(c)={1&
c(n0&2)(n0& p&2)

2p2(n0&1)(n0& p&1)(n0& p&4)=
_G� 1 \c(n0& p&2)

p(n0&1) ++
(n0&2)(n0& p&2)

2p(n0& p&4)(n0& p&1)

__ c
(n0&1) p

G� 1 \c(n0& p&2)
p(n0&1) +&

1
1(1�2)

_\c(n0& p&2)
p(n0&1) +

1�2

exp {&
c(n0& p&2)

2p(n0&1) =
_{1+

2c(n0& p&2)
p(n0&1) =&+o \ 1

n0& p+ . (4.35)

The similarity with the Bartlett adjustment for the LRT in the regular case
(viz., Anderson [1, Chap. 8]) can be noticed. For moderate to large values
of n0 (>>p), these approximations are quite adequate.

5. SOME GENERAL REMARKS

The stopping variable N, defined by (4.2), depends on the chosen pair
(n0 , D) and the stochastic matrix Sn0

. We have commented on the choice
of D&1 and advocated the use of an M-matrix. One of the main reasons for
this recommendation is that in the conditional setup of (4.8), the dispersion
matrix `D becomes an (unknown) scalar multiple of the inverse of an
M-matrix (D), and then the corresponding two-stage LRT�UIT have con-
vex acceptance regions. Ideally, n0 should be chosen to be large compared
to p. If this is the case, in the expressions for the G� *k, p(c) considered in
the preceding section, the remainder terms being typically O((n0& p)&2)
are very small, and the first-order approximations are quite adequate in
practice.

For the normal mean problem�global alternatives, it is known that the
Stein [15] two-stage procedure is generally not fully efficient, in the sense
that the ASN for this procedure is generally higher than the optimal value
if 7 were known. A multistage procedure eliminates this problem to a
greater extent (viz., Hall [6]). Alternatively, Mukhopadhyay [8] has
shown that in an asymptotic setup (where % � 0), choosing n0 large, but
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small compared to &%&&2, induces asymptotic efficiency of the Stein two-
stage procedure. We like to discuss such results in the present study of one-
sided alternatives. Motivated by this, we proceed as in Chatterjee [2, 3]
and consider a sequence of stopping variables [Nd , d>0], where

Nd=max[n0+ p2, [d &1 tr(D&1Sn0
)]+1], d>0. (5.1)

Then Nd is properly defined for every d>0, it is nonincreasing in d (>0),
and by definition

lim
d a 0

Nd=+� almost surely (a.s.) (5.2)

In the Stein�Chatterjee case, one has the global alternatives %{0, and the
choice of Nd was primarily made to make the power function of the test
independent of the nuisance parameter 7. On the other hand, in Section 4,
the two-stage procedure was primarily designed for establishing the
similarity, unbiasedness, and monotonicity of power function of the
LRT�UIT for such one-sided alternatives. Nevertheless, we may consider
the entire class C3 * of stopping rules

C3 =[Nd , d>0, D&1 M-matrix], (5.3)

and for any member of this class we may show that the corresponding two-
stage test (LRT�UIT) has the three desirable properties referred to earlier.
For a given D, using the monotonicity of Nd , it can be shown that the
smaller the value of d (>0) chosen in (5.1), the better the corresponding
test will be. However, varying D&1 over the class of all M-matrices, we
have a much more complex situation, and a parallel statement is hard to
make. The main complication arises due to the rather complex form of the
non-null distribution of a two-stage LRT�UIT, and we shall make more
comments on that later. Although the expected stopping time ENd may be
studied as in Chatterjee [2], the non-null distributions of different two-
stage LRT�UITs belonging to this class C3 *, for one-sided alternatives, may
not conform to a simple function of ENd . Much of this complexity is due
to the intractability of the power function of LRT�UITs for one-sided alter-
natives in a closed form (even for the one-sample setup). The independence
of the three stochastic elements ZNa: a$ , D&1

a$a$ZNa$ , and ZNa: a$D
&1
aa: a$ZNa: a$ ,

<�a�P, does not generally hold when H0 is not true. Thus, for the non-
null distribution, parallel to (4.12), we may not have a closed form where
the w( p, k; D) are there and the G� *k, p are replaced by appropriate non-cen-
tral forms. In fact, even if this were true, the w( p, k; D) would have
depended on % # R+

p as under the alternative, EZN=%�0. On top of that,
the LRT�UIT for one-sided alternatives are generally not invariant under
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affine transformations, so that analogues of non-central Hotelling T2 dis-
tributions may not exist for such UIT�LRTs. For the know 7 case, Tsai
[16] proved that LRT�UIT are power-superior to that of Hotelling T2

tests for some restricted alternatives, including the special case when 7&1

is a known M-matrix, and the results may be adopted in this conditional
setup as the (two-stage) LRT�UITs are shown to be the natural analogue
of (two-stage) Hotelling T2 tests. Since ` is a positive random variable, the
power of two-stage LRT�UIT should be at least as large as that of two-
stage Hotelling T2 test over the domain R+

p if D is in M, although the
opposite picture may hold for the complementary part Rp"R+

p .
Motivated by these factors, we may proceed as in Chatterjee [2, 3] and

choose Nd corresponding to a given d (>0) such that the power of the
two-stage Hotelling T2 test based on Nd has a minimum power (1&;) on
an ellipsoidal contour on Rp . If we confine ourselves to the segment of that
contour on R+

p , then the two-stage LRT�UIT based on the same stopping
rule Nd will not only be similar, unbiased, and a monotone power test, but
also will be expected to have the same minimum power 1&; outside this
contour in R+

p . This provides a basis for the choice of d (>0) in (5.1).
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