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In this paper we are concerned with Bayesian statistical inference for a class of
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1. INTRODUCTION

Statistical decision theory and Bayesian statistical inference are related at
a number of levels. Many statistical decision problems can be successfully
solved by Bayesian methods (see Berger, 1985). In classical multivariate
analysis, Bayesian methods are often adapted to prove the admissibility,
minimaxicity and invariance of estimators. Press (1982) systematically
applied the Bayesian methods to classical multivariate analysis. However,
it is valuable to implement Bayesian methods to generalized multivariate
analysis, multivariate analysis based on elliptical matrix distributions
(Fang and Zhang, 1990). Bayesian statistical inference in generalized multi-
variate analysis will be developed in this paper.
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There are many references on Bayesian inference for linear and nonlinear
regression models with non-normal error terms. Zellner (1976) considered
the Bayesian analysis of regression models with multivariate Student-t
error terms, and Singh, Misra and Pandey (1995) studied a generalized
class of estimators in linear regression models with multivariate Student-t
distributed error term. Jammalamadaka, Tiwari and Chib (1987) and Chib,
Tiwari, and Jammalamadaka (1988) studied this model with errors being
distributed according to a scale mixtures of normal distribution. Osiewalski
(1991) and Chib, Osiewalski, and Steel (1991) investigated Bayesian
inference for nonlinear regression models with scale mixtures of normally
distributed errors. Osiewalski and Steel (1993a) gave a generalization to
linear regression model whose error terms have a multivariate elliptical dis-
tribution. Later Osiewalski and Steel (1993b) studied robust Bayesian
statistical inference for lq-spherical models. When q=2, the lq-spherical dis-
tribution reduces to a spherical distribution. Ferna� ndez, Osiewalski and
Steel (1994) investigated the robustness of Bayesian estimators of location
parameters in continuous multivariate location-scale models. Their study
contains the case of the multivariate spherical distributions with unknown
location parameters.

Let X be an n_p random matrix, which can be expressed in terms of its
elements, columns and rows as

X=(xij)=(x1 , ..., xp)=(x(1) , ..., x(n))$. (1.1)

Here x(1) , ..., x(n) can be regarded as a sample of size n from a
p-dimensional population. When x(1) , ..., x(n) are independently and identi-
cally distributed according to Np (+, 7), the matrix X is called to have
a matrix variate normal distribution and is denoted by Xt

Nn_p (1n+$, In�7). In this paper we always assume that the first two
moments of X exist. Denote

x� =
1
n

:
n

i=1

x(i) , (1.2)

and

S= :
n

i=1

(x(i)&x� )(x(i)&x� )$. (1.3)

In the context of classical multivariate analysis, the samples are inde-
pendently and identically distributed according to a normal distribution.
However the covariance of samples may be different in heteroscedastic
models. In this situation, we may assume that given _, the samples are
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independently and identically distributed according to Np (+, _27) and
regard _ as a nuisance parameter. In Bayesian context, we may further
assume that _ has a prior distribution H(_), and consequently x(1) , ..., x(n)

have the joint density

| (2?_2)&(np�2) |7| &n�2 exp {&
1

2_2 tr 7&1(X&1+$)$ (X&1+$)= dH(_)

which is a scale mixtures of normal distributions. The class of matrix
Student-t distributions is a subclass of scale mixtures of normal distribu-
tions, in which 1�_2 is distributed according to a Gamma distribution.
Although x(1) , ..., x(n) are independent samples for given _, statistical
inference in fact is based on the (marginal) distribution of the random
matrix X, whose rows are not independent. From this point of view, we
may assume that the samples, the rows of the random matrix X, are
dependent in the context of generalized multivariate analysis. There are
studies on the topic of statistical inference based on independently and
identially distributed samples from a multivariate elliptical distribution.
The derived results are usually large sample properties. In practice, when
a large samples cannot be obtained, statistical inference based on elliptical
matrix distributions would be preferred (cf. Dawid, 1977, and Anderson,
1993).

Based on multivariate normal samples, one can easily construct a ran-
dom matrix having a spherical matrix distribution. Indeed, if the rows x(i)

of X are independent samples from a normal distribution Np (0, 7), and
D(X$X) is a p_q projection direction matrix uniquely determined by X$X,
then XD(X$X) has a left-spherical distribution, as X is left-spherical (see
below for definition). On the other hand, if XtNn_p (1n+$, In�7), we can
choose a row-orthogonal (n&1)_n constant matrix A such that A1n=0,
and Y=AX is distributed according to N(n&1)_p (0, In&1�7). As a result
YD(Y$Y) has a left-spherical distribution. La� uter (1996) and La� uter,
Glimm and Kropf (1996) pioneered the use of these facts and constructed
some powerful exact t- and F-tests for normal means. Later Fang, Li and
Liang (1998) and Liang (1998) proposed some tests for multinormality
based on these facts. From the references mentioned above, it can be seen
that the theory of spherical and elliptical matrix distributions is useful in
both distribution theory and other statistical branches.

There are several ways to define elliptical matrix distributions. Four
classes of elliptical matrix distributions are defined and discussed by Dawid
(1977) and Anderson and Fang (1990a, 1990b). Let us start with left-
spherical matrix distributions LSn_p (+, 7, g), the largest class of elliptical
matrix distributions among the four classes of elliptical matrix distributions
studied in Fang and Zhang (1990). The notation XtLSn_p (+, 7, g)
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means that X is distributed according to an elliptical matrix distribution
with the probability density function (pdf)

dn, p |7|&n�2 g(7&1�2(X&1+$)$ (X&1+$) 7&1�2),

where g is a real function. Throughout this exposition dn, p will denote the
normalizing constant, and 1$=(1, ..., 1)1_n . When implementing Bayesian
methods for LSn_p (+, 7, g), one may be interested in situations where X
has a pdf of the form

dn, p |7|&n�2 g(7&1(X&1+$)$ (X&1+$)).

This is equivalent to impose the following condition on g : g(AB)=g(BA)
for any p_p positive definite symmetric matrices A and B. Through
straightforward linear algebra calculations, it can be proved that this con-
dition is equivalent to that g(A) depends on A only through its eigen-
values, and therefore Herz (1955) called this class of functions as symmetric
functions. In this case the function g(A) can be expressed as g(*(A)), where
*(A)=diag(*1 , ..., *p) are the eigenvalues of A, and the density of X
becomes

dn, p |7|&n�2 g(*(7&1(X&1+$)$ (X&1+$))). (1.4)

For convenience, we write XtSSn_p (+, 7, g), where g is a real function
and does not depend on n in the rest of the paper. For simplicity, we shall
use the notation g* (}) to replace g(*(})). If XtSSn_p (+, 7, g), then the
characteristic function of X has the form exp(iT$1+$) ,(*(7&1T$T)), where
,(}) is called the characteristic generator of X.

Let

F=[ |7|&n�2 g* (7&1 (X&1+$)$ (X&1+$)) | g* (X$X)

is a density and + # Rp, 7>0]

be a class of densities. It is known that (x� , S) is a complete sufficient
statistic for the family F, and S is positive definite with probability one if
and only if n>p (see Fang and Zhang, 1990, Sections 4.1 and 4.3). There-
fore, throughout this paper we assume that n>p.

In this paper we take a noninformative prior distribution for
(+, 7) : ?(+, 7) B |7|&(p+1)�2. In Section 2, the posterior distribution and
marginal distributions of (+, 7), the posterior mean and generalized maxi-
mum likelihood estimators (GMLE) of + and 7, the value which maxi-
mizes the posterior distribution ?(+, 7 | X) with respect to + and 7, are
derived. The confidence regions for + are obtained. In Section 3, the best
Bayesian estimators of 7 under both entropy and quadratic losses are
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studied. Section 4 gives applications of the theory developed in previous
sections.

In the following sections, |A| , tr(A) and *(A)=diag(*1 , ..., *p), where
*1� } } } �*p will denote the determinant, trace and eigenvalues of A,
respectively. The t-distribution with m degrees of freedom is denoted by tm ,
and the F-distribution with n and m degrees of freedom is denoted by Fn, m .
A multivariate gamma function will be denoted by 1p (}), where
1p (n�2)=?(p&1)p�2 >n

i=1 1((n&i+1)�2).

2. THE BAYESIAN STATISTICAL INFERENCE FOR +

In this section we will derive the posterior distribution and marginal
distributions of (+, 7). The posterior means of + and 7 will be obtained as
well.

Suppose that XtSSn_p (+, 7, g). It follows from Theorem 4.2.1 of Fang
and Zhang (1990) that the conditional pdf of (x� , S) given + and 7 is

f (x� , S | +, 7)=cn, p |S| (n&p)�2&1 |7|&n�2 g* (7&1(S+n(x� &+)(x� &+)$)),

(2.1)

where cn, p=np�2?(n&1) p�2[1p((n&1)�2)]&1 dn, p . The choice for the prior
distribution of (+, 7) will be the noninformative prior distribution, i.e.,

?(+, 7) B |7|&(p+1)�2 (d+)(d7), (2.2)

where the notation B means ``to be proportional to.''

Theorem 2.1. Suppose that XtSSn_p (+, 7, g) and the prior distribu-
tion of (+, 7) is (2.2). Then

(a) The posterior pdf of (+, 7) is

f (+, 7 | x� , S)=*n, p \n
?+

p�2

1(n�2)[1((n&p)�2)]&1 |S| (n&1)�2 |7|&(n+p+1)�2

_g* (7&1(S+n(x� &+)(x� &+)$)), (2.3)

where *n, p=?np�2[1p (n�2)]&1 dn, p .

(b) The posterior density of + is

f (+ | x� , S)=
1(n�2)

?p�21((n&p)�2) }
1
n

S }
&1�2

\1+(x� &+)$ \1
n

S+
&1

(x� &+)+
&n�2

(2.4)
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which is a multivariate Pearson type VII distribution MPVIIp (x� ,
(1�n)S, gN, m) with N=n�2 and m=1 (see Fang, Kotz, and Ng, 1990,
p. 83).

(c) The posterior means of + and 7&1 are

E(+ | x� , S)=x� ,

E(7&1 | x� , S)=
n&p&1

n&p
n(&2,$(0)) S&1, (2.5)

respectively, where ,(}) is the characteristic generator of X.

Remark 2.1. As mentioned in the previous section, S is positive definite
with probability one if and only if n>p, which is also a necessary and suf-
ficient condition for the existence of the posterior density in (2.4). The class
of multivariate Pearson VII distributions has been studied in detail in
Fang, Kotz, and Ng (1990). Comparing (2.4) to the multivariate Students-t
distribution, one can easily deduce that (2.4) only has moments up to order
n&p exclusively.

Before proving this theorem we need two lemmas which are also useful
for other results considered in this paper.

Lemma 2.1. Let

h(7)=|
G>0

|G| (n&p&1)�2 g* (7&1G)) dG, (2.6)

where g* is given by (1.4) and G>0 means that G is positive definite. Then

h(7)=*&1
n, p |7|n�2, (2.7)

where *n, p is given in Theorem 2.1.

Proof. Suppose that X has a density of the form (1.4). Let
G � (X&1+$)$ (X&1+$). Then the pdf of G is

*n, p |7|&n�2 |G| (n&p&1)�2 g* (7&1G)

and (2.7) follows. K
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Lemma 2.2. In the previous notation we have that

| (1+n(x� &+)$ S&1(x� &+))&n�2 d+=|S|1�2 ? p�21((n&p)�2)
n p�21(n�2)

, (2.8)

and

| |S+n(x� &+)(x� &+)$| &n�2 d+=|S|&(n&1)�2 ? p�21((n&p)�2)
np�21(n�2)

. (2.9)

Proof. Let y=+&x� . The left hand side of (2.8) becomes

| (1+ny$S&1y)&n�2 dy=|S|1�2 | (1+nz$z)&n�2 dz

=
|S|1�2

n p�2 | (1+u$u)&n�2 du.

By formula (1.32) of Fang, Kotz, and Ng (1990), the latter becomes

|S|1�2 ? p�2

n p�21(p�2) |
�

0
y p�2&1(1+y)&n�2 dy=

|S| 1�2 ? p�2

n p�21(p�2)
B \ p

2
,

n&p
2 +

which implies (2.8). The formula (2.9) is a consequence of (2.8). K

Proof of Theorem 2.1. By the Bayes formula we have that

f (+, 7 | x� , S)=
f (x� , S | +, 7) ?(+, 7)

� f (x� , S | +, 7) ?(+, 7) d+ d7
(2.10)

whose denominator can be simplified as

| f (x� , S | +, 7) ?(+, 7) d+ d7

=cn, p |S| (n&p)�2&1 | d+ | |7|&(n+p+1)�2 g* (7&1(S+n(x� &+)(x� &+)$)) d7

(let Y=7&1)

=cn, p |S| (n&p)�2&1 | d+ | |Y| (n&p&1)�2 g* (Y(S+n(x� &+)(x� &+)$)) dY.
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By Lemmas 2.1 and 2.2, the latter becomes

cn, p |S| (n&p)�2&1 | *&1
n, p |S+n(x� &+)(x� &+)$|&n�2 d+

=cn, p |S| (n&p)�2&1 *&1
n, p |S|&(n&1) ? p�21((n&p)�2)

n p�21(n�2)

=
cn, p? p�21((n&p)2)

*n, pn p�21(n�2)
|S| &(p+1)�2.

Using (2.3), (2.9), and (2.10), assertion (a) follows from the above result.
From (a), assertion (b) follows by

|
7>0

|7|&(n+p+1)�2 g* (7&1(S+n(x� &+)(x� &+)$)) d7 (let Y=7&1)

=|
Y>0

|Y| (n&p&1)�2 g* (Y(S+n(x� &+)(x� &+)$)) dY

=
1p (n�2)

?np�2 |S+n(x� &+)(x� &+)$|&n�2

=
1p (n�2)

?np�2 |S|&n�2 (1+n(x� &+)$ S&1(x� &+))&n�2.

For proving (c), write ln, p=*n, p (n�?) p�2 1(n�2)[1((n&p)�2)]&1 |S| (n&1)�2.
It follows from (a) that

E(+ | x� , S)=ln, p | + |7|&(n+p+1)�2 g* (7&1(S+n(x� &+)(x� &+)$)) d+ d7

(let Y=7&1)

=ln, p | (x� +(+&x� )) |Y| (n&p&1)�2

_g* (Y(S+n(x� &+)(x� &+)$)) d+ dY

(let a=+&x� )

=ln, px� | |Y|n&p&1)�2 g* (Y(S+n(x� &+)(x� &+)$)) d+ dY

+ln, p | a |Y|n&p&1 g* (Y(S+naa$)) da dY

�I1+I2 .
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By Lemma 2.1, it follows that

I1=ln, p*&1
n, px� | |S+n(x� &+)(x� &+)$|&n�2 d+=x� .

Let b=S&1�2a, then Lemma 2.1 implies that

I2=ln, p*&1
n, p |S| (n+1)�2 S1�2 | b(1+nb$b)&n�2 db=0.

So we have E(+ | x� , S)=x� . Finally, we derive the posterior mean of 7&1:

E(7&1 | x� , S)=ln, p | 7&1 |7| &(n+p+1)�2

_g(*(7&1(S+n(x� &+)(x� &+)$))) d+ d7

=ln, p | Y |Y| (n&p&1)�2 g(*(Y(S+n(x� &+)(x� &+)$)) d+ dY

=ln, p*&1
n, p | |S+n(x� &+)(x� &+)$| &n�2 d+

_| *n, p Y |S+n(x� &+)(x� &+)$|n�2

_|Y| (n&p&1)�2 g* (Y(S+n(x� &+)(x� &+)$)) dY

=ln, p*&1
n, p | n(&2,$(0))(S+n(x� &+)(x� &+)$)&1

_|S+n(x� &+)(x� &+)$|&n�2 d+

=\n
?+

n�2

1(n�2)[1((n&p)�2)]&1 } n(&2,$(0)) S&1

_| (I+nS&1�2(x� &+)(x� &+)$ S&1�2)&1

_|I+nS&1�2(x� &+)(x� &+)$ S&1�2| &n�2 |S|&1�2 d+

=(?)&p�2 1(n�2)[1((n&p)�2)]&1 n(&2,$(0) S&1

_| (I+aa$)(1+a$a)&n�2 da
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((I+aa$)&1=I&(1+a$a)&1 aa$)

=?&p�21(n�2)[1((n&p)�2)]&1 } n(&2,$(0)) S&1

_\| I(1+a$a)&n�2 da&| aa$(1+a$a) (n+2)�2 da

=(&2,$(0)) S&1&n(n&p)&1 (&2,$(0)) S&1

=n(n&p&1)(n&p)&1 (&2,$(0)) S&1. K

Theorem 2.2. Suppose that XtSSn_p (+, 7, g), the prior distribution on
(+, 7) is (2.2), and g satisfies the following conditions :

(i) nonincreasing, i.e., 71�72�0 implies g* (71)�g* (72);

(ii) continuous, i.e., g* (7) � g* (70) as 7 � 70 along nonnegative
definite matrices 70 � 0. Then the GMLE of (+, 7) is (+̂, 7� ) =
(x� , S1�2(7*)&1 S1�2), where the value 7* maximizes

|W| (n+p+1)�2 g* (W), (2.11)

with respect to W(>0).

Proof. Since g is nonincreasing in the sense of condition (i), for any
given 7>0, the generalized likelihood function L(+, 7), which is
f (+, 7 | x� , S) in (2.3), as a function of +, arrives at its maximum at +=x�
and the concentrated likelihood is

L(x� , 7)B|S| (n&1)�2 |7|&(n+p+1)�2 g* (7&1�2S7&1�2)

=|S| (n&1)�2 |7|&(n+p+1)�2 g* (S1�27&1S1�2).

Write W=S1�27&1S1�2. Then

L(x� , 7) B |W| (n+p+1)�2 g* (W).

By Lemma 4.1.4 of Fang and Zhang (1990), |W| (n+p+1)�2 g* (W) attains its
maximum at some positive definite matrix, say, 7*. K

For the purpose of constructing the confidence regions for +, we present
the following results:
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Theorem 2.3. Suppose that XtSSn_p (+, 7, g) and the prior distribu-
tion on (+, 7) is (2.2). Then

L { (+j&x� j)

- sjj �n(n&p) } x, S==tn&p , j=1, ..., p,

where L[y | z] denotes the conditional distribution of y for given z, S=(sij),
+=(+1 , ..., +p)$, and x$=(x� 1 , ..., x� p)$. Furthermore

L {n&p
p

(+&x� )$ \1
n

S+
&1

(+&x� ) | x� , S==Fp, n&p .

It is noted by Theorems 2.1 and 2.2 that the Bayesian estimators of 7
are dependent on g* or equivalently on the characteristic generator of the
random matrix X, we will discuss this matter at the end of next section. On
the other hand, it can be found from Theorems 2.1, 2.2 and 2.3 that the
posterior distribution of +, and therefore Bayesian inference for +, is not
dependent on the distribution of X as long as XtSSn_p (+, 7, g). We may
regard this property as the robustness of estimators of + and it can be
extended to more general classes of distributions. This robustness property
has been found in Osiewalski and his co-authors' work. Under a prior
which is the counterpart of (2.2) for 7=_2Ip , Osiewalski and Steel (1993a)
studied multivariate elliptical regression models and obtained the posterior
density of slope parameters, which is similar to that in (2.4). Osiewalski
and Steel (1993b) further studied robust Bayesian inference for lq-spherical
models. The related arguments for multivariate location-scale models were
developed in Ferna� ndez, Osiewalski and Steel (1994). The extension from
multivariate elliptical distributions to the class of vector-spherical matrix
distributions (cf. Fang and Zhang, 1990, Sect. 3.1.4) is trivial, but the exten-
sion to SSn_p (+, 7, g) is technical and of interest.

3. THE BAYESIAN STATISTICAL INFERENCE OF 7

Two loss functions which have been suggested and considered in the
literature by James and Stein (1961), Olkin and Selliah (1977), Haff (1980),
and Dey and Srinivasan (1985) are

L1 (7, D)=tr(7&1D)&log |7&1D|&p, (3.1)

L2 (7, D)=tr(7&1D&I)2 (3.2)

which are entropy loss and quadratic loss, respectively. The estimation of the
scatter matrix 7 based on multivariate normal distribution has been well
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studied (see, e.g., Section 4.3 of Muirhead 1982), and the corresponding
results based on elliptical matrix distributions are considered in Section
4.4.2 of Fang and Zhang (1990). In this section, we consider Bayesian
estimation for 7 under the entropy loss and the quadratic loss.

Consider the estimator of the form :S. Since

E(S | +, 7)=(n&1)(&2,$(0))7,

where ,(}) is the characteristic generator of X, the statistic
(1�(n&1)(&2,$(0)))S is an unbiased estimator of 7. However, it is inad-
missible under the loss function L1 (cf. Corollary 2 on p. 150 of Fang and
Zhang, 1990), and it is not the best Bayesian estimator of 7, having the
form :S, from the following theorem.

Theorem 3.1. Suppose that XtSSn_p (+, 7, g) with the finite second
moment, and the prior distribution of (+, 7) is given by (2.2). Then under the
entropy loss (3.1), the best Bayesian linear estimator is

7� 0=(n&p)[(n&p&1) n(&2,$(0))]&1 S, (3.3)

where ,(}) is the characteristic generator of X.

Proof. Assume D=:S, :>0. Then under entropy loss L1 , the posterior
risk of D by Theorem 2.1 is

R1 (7, D)=E[L1 (7, D) | x� , S]

=E[tr(7&1:S) | x� , S]&E[log( |7&1:S| ) | x� , S]&p

=tr(:E[7&1 | x� , S]S)&E[log( |7&1:S| ) | x� , S]&p

=: tr[[(n&p&1) n(&2,$(0))](n&p)&1 S&1S

&p log :&E[log( |7&1S| ) | x� , S]&p

=:p[(n&p&1) n(&2,$(0))](n&p)&1&p log :

&E[log( |7&1S) | x� , S)&p. (3.4)

The proof is completed by noting that the value of : which minimizes the
right-hand of (3.4) is :0=(n&p)[(n&p&1) n(&2,$(0))]&1. K

It is easy to obtain the best Bayesian linear estimator of 7 under the
entropy loss by Theorem 3.1. Now we consider a nonlinear estimator of 7.
For instance, consider estimator h1 (S) satisfying

Lh1 (B)L$=h1 (LBL$)
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for each L # LT+(p)=[A | A is a p_p lower triangle matrix with positive
diagonal elements].

Let S=TT$, where T # LT+(p). By the discussion of Section 4.3 of
Muirhead (1982), it suffices to consider only

h1 (S)=T2T$, (3.5)

where 2=diag($1 , ..., $p)>0. Let

M=T$7&1T=L$L, where L=(l(1) , ..., l(p))$ # LT+(p). (3.6)

Theorem 3.2. Suppose that XtSSn_p (+, 7, g) with the finite second
moment, and the prior distribution of (+, 7) is given by (2.2). Then under the
entropy loss, the best Bayesian estimator having the form (3.5) is

h1*(S)=T2*T$, (3.7)

where S=TT$, T # LT+(p), 2*=diag($1 , ..., $p), $&1
i =El$(i) l(i) , and

L=(l(1) , ..., l(p))$ is defined by (3.6) and M has a pdf

kn, p |M| (n&p)�2&1 |
Rp

g* (M+n&&$)) d&, (3.8)

where kn, p is the normalizing constant.

Before proving the theorem we need the following lemma.

Lemma 3.1. Let X and Y be two random matrices. Let p(X, Y), h(Y),
and p(X | Y) be the joint density of X and Y , the marginal density of Y and
the conditional density of X given Y, respectively. Let Z=t(Y) be a transfor-
mation where Z has the same number of independent variables as Y. Then the
conditional distribution of X given Z is

p(X | Z)=
p(X, t(Y))

h(t(Y))
. (3.9)

Proof. It is known that the conditional distribution of X given Z can be
expressed as

p(X | Z)=
p(X, Z)

h(Z)
. (3.10)

Let J be the Jacobian determinant of the transformation t. Then the joint
density of X and Z is p(X, t(Y)) |J| and the density of Z is h(t(Y)) |J|. Put
them into (3.10) and the assertion (3.9) follows. K
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Proof of Theorem 3.2. We derive the pdf of M defined in (3.6) first.
From (2.3) we can find the conditional pdf of 7 given x� and S as

f (7 | x� , S)=c |S| (n&1)�2 |7|&(n+p+1)�2 | g* (7&1(S+n(x� &+)(x� &+)$)) d+

=c |S| (n&1)�2 |7|&(n+p+1)�2 | g* (7&1(S+nuu$)) du, (3.11)

where c is the normalizing constant and is not always the same in the
proof. The pdf f (7 | x� , S) is independent of x� and (3.11) gives f (7 | S). By
Lemma 3.1 we have

f (7 | T)=c |TT$| (n&1)�2 |7| &(n+p+1)�2 | g* (7&1(TT$+nuu$)) du.

Let A=7&1 and &=T&1u. The pdf of A given T is

f (A | T)=c |T$T|n�2 |A| (n&p&1)�2 | g* (T$AT(I+n&&$)) d&.

Let M=T$AT=T$7&1T. The pdf of M given T is

f (M | T)=c |M| (n&p&1)�2 | g* (M(I+n&&$)) d&

=c |M| (n&p)�2&1 | g* (M+n&&$) d&

which is independent of T and (3.8) follows. From the above proof we find
that f (M | x� , 7)= f (M). Therefore,

R1 (7, h1 (S))=E[[tr(7&1h1 (S))&log( |7&1h1 (S)| )&p] | x� , S]

=E[[tr(T$7&1T2)&log( |T$7&1T2| )&p] | x� , S]

=E[tr(M2)&log( |M2| )&p]

= :
p

i=1

[$i E(l$(i) l(i))&log $i]&E(log |M| )&p.

Note that R1 (7, h1 (S)) attains its minimum at $i=(E(l$(i) l(i)))&1,
i=1, ..., p. The proof is completed. K

Now let us consider the best Bayesian estimator of the form (3.5) under
the quadratic loss.
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Theorem 3.3. Suppose that XtSSn_p (+, 7, g) with the finite second
moment, and the prior distribution on (+, 7) is given by (2.2). Then, under the
quadratic loss (3.2), the best Bayesian estimator of 7 if the form (3.5) is

h2*(S)=T2*T$, (3.12)

where T is given in Theorem 3.2 and 2*=diag($1 , ..., $p), and ($1 , ..., $p)$ is
the solution of the equation

B$=g, (3.13)

where g=(E(l$(1) l(1)), ..., E(l$(p) l(p)))$, B=(E(l$(i) l( j))
2)p_p , and L=(l(1) , ..., l(p))$

is defined in (3.6).

Proof. We have

R2 (7, h1 (S))=E[tr(7&1h1 (S)&I)2 | x� , S]

=E[tr(7&1T2T$&I)2 | x� , S]

=E[tr(T$7&1T2&I)2 |x� , S]

=E[tr(M2&I)2]

=E tr(L2L$&I)2

=$B$&2$$g+p,

As �R2 (7, h1(S))��$=2B$&2g=0, 2* should satisfy (3.13). Since
R2 (7, h1 (S)) is a quadratic form of $ and R2 (7, h1 (S))�0, i.e., it has a
lower bound, Eq. (3.13) is consistent. Moreover R2 (7, h1 (S)) can attain its
minimum value. K

From the derived Bayesian estimators of 7, it can be found that these
estimators depend on g* or equivalently on the characteristic generator of
the random matrix X. Hence unlike the Bayesian estimators of +, the
Bayesian estimators of 7 are not invariant among the elliptical matrix
distributions. Now let us compare these Bayesian estimators of 7 with the
classical ones obtained in Section 4.4.2 of Fang and Zhang (1990).

The best classical estimator of 7, having the form :S, is
[(n&1)[&2,$(0)]]&1 S, under the loss L1 , while the corresponding
Bayesian estimator is (n&p)[(n&p&1) n[&2,$(0)]]&1 S. For normal
distribution Nn_p (1+$, In�7), the classical one is (n&1)&1 S, while the
Bayesian one is (n&p)[(n&p&1)n]&1 S. Note that p�1 and n>p, we
have n&1<(n&p)&1, and 1�(n&1)<(n&p)�(n&p&1)n. The inequality
implies that the Bayesian estimator of 7 is greater than the classical one in
that sense that A>B if A&B is positive definite. From the form of the
estimator, we find that the magnitude of the deviation from multinormality
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on the estimator of 7, having the form :S, is only a multiple of ,$(0).
Severe deviation from multinormality may lead to an estimator of 7 which
is quite different from the sample covariance matrix.

Comparing Theorem 4.4.5 in Fang and Zhang (1990) with Theorem 3.2
of this paper, it can be found that the estimators of 7 have a close
form, but they are different. For the classical estimators, 2*=
diag([E(l$1 l1)]&1, ..., [E(l$p lp)]&1), where l1 , ..., lp are the columns of L,
defined in (3.6) (cf. Theorem 4.2.1 of Fang and Zhang (1990)), while for the
Bayesian estimator, 2*=diag([E(l$(1) l(1))]&1, ..., [E(l$(p)l(p))]&1), where
l(1) , ..., l(p) are the rows of L. For the normal distribution Nn_p (1+$,
In�7), we can obtain the distributions of elements of L (see, e.g., Theorem
3.2.4 of Muirhead (1982)). Further we can derive that 2*=diag($1 , ..., $p),
with $i=(n+p&2i)&1 for the classical estimator, while $i=(n&p+2i)&1

for the Bayesian counterpart.
The difference between the Bayesian estimator and the classical one

under the loss L2 is similar to that under the loss L1 . The estimators
depends on the density of X through the distribution of M, which is more
complicated than that in Theorem 3.1. Except normal distribution case, it
may involve numerical integration methods to compute $i in Theorem 3.2
and B and g in Theorem 3.3.

4. SOME EXAMPLES

In this section we apply the theory developed in the previous sections to
several subclasses of elliptical matrix distributions.

Example 4.1 (Kotz's Type Elliptical Matrix Distributions). If the pdf
of X is of the form

f (X | +, 7)=dn, p |7|&n�2 |7&1(X&1+$)$ (X&1+$)|N&(p+1)�2

_exp[&r[tr(7&1(X&1+$)$ (X&1+$))]s], (4.1)

where N, r, s are known parameters satisfying 2N+n>p+1, and s, r>0,
X is said to have a Kotz's type elliptical matrix distribution.

By a direct calculation, it follows from Theorem 2.1 that

f (+, 7 | x� , S)=*n, p \n
?+

p�2 1(n�2)
1((n&p)�2)

|S| (n&1)�2 |7|&(N+n�2+p+1)

_|S+n(x� &+)(x� &+)$|N&(p+1)�2

_exp[&r tr[7&1(S+n(x� &+)(x� &+)$)]s],
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and E(+ | x� , S)=x� . To calculate E(7&1 | x, S), it is necessary to compute
,$(0). By Theorem 4 of Li (1993), when s>1�2,

,(x)= :
�

k=1

1[[(2N+n&p&1) p�2+k]�s]
((2N+n&p&1) p�2)[k] 1((2N+n&p&1) p�2s)

_
1
k!

}
((2N+n&p&1)�2)[k]

(n�2)[k] \&
1

4rs+
k

} xk,

where a[k]=a(a+1) } } } (a+k&1). Therefore

,$(0)=
1[[(2N+n&p&1) p�2+1]�s]

[(2N+n&p&1) p�2] 1((2N+n&p&1) p�2s)

}
(2N+n&p&1)�2

n�2
} \&

1
4rs+

and

E(7&1 | x� , S)=
(n&p&1)

(n&p)
}
1[[(2N+n&p&1) p�2+1]�s]

1[(2N+n&p) p�2s] prs S&1.

In particular, when s=1

E(7&1 | x� , S)=
(n&p&1)

(n&p)
}
(2N+n&p&1)

2r
S&1.

When X has a matrix normal distribution (N=(p+1)�2, r=1�2 and
s=1), we have

E(7&1 | x� , S)=
n&p&1

n&p
nS&1.

Next we will find the generalized maximum likelihood estimate of (+, 7).
Since

|W| (n+p+1)�2 g* (W))=|W| (2N+n+p+1)�2 exp(&r(tr(W))s)

=(w1 } } } wp)(2N+n+p+1)�2 exp(&r(w1+ } } } +wp)s),

(4.2)

where (w1 , ..., wp) are the eigenvalues of W. To maximize (4.2) with respect
to wi$s, (w1 , ..., wp) should satisfy the equations

w&1
i =

2rs
2N+n+p+1

(w1+ } } } +wp)s&1, i=1, ..., p. (4.3)
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It can be shown that

w1=w2= } } } =wp=\ 2rs
ps&1(2N+n+p+1)+

&1�s

is a solution of (4.3). So the GMLE of (+, 7) is

(+̂, 7� )=\x� , _ 2rs
ps&1(2N+n+p+1)&

1�s

S+ .

In particular, when s=1, N=(p+1)�2 and r=1�2 (normal case),

7� =
1

n+2(p+1)
S.

By Theorem 3.1, under the entropy loss the best Bayesian linear estimator
of 7, having of the form :S, is

7� 0=
n&p

n&p&1
}

1[(2N+n&p) p�2s] prs

1[[(2N+n&p&1) p�2+1]�s]
S, for s>1�2.

Example 4.2 (Pearson Type II Elliptical Matrix Distributions). If the
pdf of X is of the form

f (X | +, 7)=dn, p |7|&n�2 |Ip&7&1(X&1+$)$ (X&1+$)|m&(p+1)�2,

where 0�7&1�2(X&1+$)$ (X&1+$)7&1�2�Ip in the nonnegative definite
sense, and m>(p+1)�2. It is follows from Theorem 2.1 that

f (+, 7 | x� , S)=*n, p \n
?+

p�2 1(n�2)
1[(n&p)�2]

|S| (n&1)�2

_|7|&(n+p+1)�2 |I&7&1(S+n(x� &+)(x� &+)$)|m&(p+1)�2.

Then by Theorem 3.3 of Li (1992),

E(+ | x� , S)=x� ,

E(7&1 | x� , S)=
n&p&1

n&p
}

n
n+2m

S&1

and the GMLE of (+, 7) is

(+̂, 7� )=\x� ,
n+2m

n+p+1
S+ .
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Under the entropy loss, the best Bayesian linear estimate of 7, having of
the form :S, is

7� 0=
n&p

n&p&1
}
n+2m

n
S.
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