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loadings in factor analysis. We then derive the analytical formula for covariance
matrix of the covariance estimators of MLEs of factor loadings by obtaining the
matrix of partial derivatives, which maps the differential of sample covariance
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1. INTRODUCTION

The purpose of this paper is to report a matrix expression for the
covariance matrix of MLEs of factor loadings in factor analysis and the
formula for covariance matrix for the covariance estimators of MLEs of
factor loadings. For the coordinatewise expression for covariance matrix of
MLEs of factor loadings, see Lawley and Maxwell [6], with some correc-
tions by Jennrich and Thayer [5].

Consider a p_1 random vector of observations xi (i=1, ..., n) with
E(xi)=0. Let 4 be a p_m matrix of factor loadings, fi be a m_1 vector
of factor scores, and =i be a p_1 vector of unique factors. Then the factor
analysis model is written as xi=4fi+= i , i=1, ..., n, with the assumptions
E( fi)=0; E(= i)=0; Cov( f i , =i)=E( fi =$i)=0; and Cov(=i)=E(=i=$i)=9,
where 9 is a positive definite diagonal matrix. Assuming the orthogonal
model (where the factors are uncorrelated), the covariance matrix of xi is
expressed as 7=44$+9.

In maximum likelihood estimation, we further assume that xi 's are ran-
dom samples from the normal population Np(0, 7). To remove the indeter-
minacy regarding orthogonal rotations, the additional side condition that
4$9 &14 is diagonal is typically employed. By differentiating the log likeli-
hood function with respect to 4 and 9 and setting them to a null matrix,
with further algebra we obtain the two equations from which MLE 4� n of
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4 is computed numerically: 9=Diag(Sn&44$) and 4=91�20(3� &Im)1�2,
where Sn is the sample covariance matrix with sample size n; Diag(S)
denotes the diagonal matrix whose elements are the diagonal elements of
the square matrix S; 3� is the diagonal matrix whose elements are the first
m largest eigenvalues of 9 &1�2Sn9&1�2, and 0 is the p_m matrix whose
columns are the normalized eigenvectors corresponding to the diagonal
elements of 3� .

2. COVARIANCE MATRIX OF MLEs
OF FACTOR LOADINGS

Define a pm_pm matrix V=(n$) Cov(*� n), where n$=n&1, *� n=vec(4� n),
and vec(4� n) denotes the pm-dimensional column vector listing m columns
of 4� n starting from the first column. Then the formula for V is given by

V=A+2B$EB, (1)

where the matrix A is expressed as

A=A1&A2

=[M�7+(M�4M)(diag(Kmm#*))(Im �4$)]&[A21*A$21 *A22],

(2)

with

A21=(1m �4�1$p)&(diag(*))(Im �1p1$p), (3)

A22=(3(3*&Im) 3)�1p1$p (4)

#*=vec((3&Im)2 (3*&Im)&1m1$m+(1�2) Im), (=vec(1*)) (5)

M=3(3&Im)&1, (6)

3*=vec&1
m_m((Im �3&3�Im+diag(vec(Im)))&2 1m2), (7)

(i.e., vec(3*)=(Im �3&3�Im+diag(vec(Im)))&2 1m2), where � and *
denote the Kronecker and the Hadamard products, respectively; Kmm is a
m2_m2 matrix defined such that Kmmvec(G)=vec(G$) for any m_m
matrix G; diag(z) denotes the diagonal matrix whose diagonal elements are
vector z; and 3=4$9&14+Im is the diagonal matrix whose elements are
the first m largest eigenvalues of 9&1�279&1�2. Next, the matrix B is given
by

B=&B1*B2

=&[9&24(3&Im)&1�1$p]

*[1$m �9+(1$m 3�4)(diag(Kmm%*))(Im �4$)], (8)
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where

%*=(Im �3&3�Im&2diag(vec(3(3&Im))))&1 1m2

(=3*1m2). (9)

The matrix expression for E has already been given by Lawley and
Maxwell [6] and is

E=(8*8)&1, (10)

where 8=9&1&9 &14(3&Im)&1 4$9 &1.

3. ASYMPTOTIC NORMALITY OF COVARIANCE ESTIMATORS

Anderson and Rubin [1] established the asymptotic normality of MLEs
of factor loadings and unique variances. Their theorem holds under the
following two assumptions: (i) 8*8 is nonsingular, where 8 is defined in
(10); and (ii) 3 has ordered, distinct, diagonal elements. We state a theorem
regarding the asymptotic normality of covariance estimators of MLEs of
factor loadings which holds under the same set of assumptions. Let
vech(D) denote the column vector consisting of elements on and below the
diagonal of the square matrix D, starting with the first column (cf., e.g.,
Searle [8]).

Theorem 3.1. Let the above assumptions (i) and (ii) hold. Let
v=n$ } vech(Cov(*� n)) and let v̂n=n$ } vech(C� ov(*� n)) be the estimator of v.
Then, as n � �, v̂ � v a.s., and - n(v̂n&v) is asymptotically multinormal,
though singular.

Proof. By virtue of assumptions (i) and (ii), v is free from n. v̂n is a con-
tinuous function of Sn , and v is the same function of 7. Sn being a U-
statistic (matrix), by virtue of the reverse martingale property, Sn � 7 a.s.
as n � � (see, e.g., Sen and Singer [9]). The same U-statistic characteriza-
tion of Sn leads to asymptotic multinormality of - n(Sn&7). Furthermore,
we can express - n(v̂n&v) as

- n (v̂n&v)=\ �v
�_$+ vech(- n(Sn&7))+op(1) , (11)

where �v��_$ is the matrix of partial derivatives of v̂n with respect to
sn=vech(Sn) evaluated at Sn=7, and is a nonstochastic matrix depending
only on the population parameters. Thus the asymptotic normality of
- n(v̂n&v) follows from differentiability of v̂n in (11) and the asymptotic
normality of - n(sn&7). Q.E.D
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4. COVARIANCE MATRIX FOR COVARIANCE ESTIMATORS

In this section we give an explicit expression for the asymptotic
covariance matrix for v̂n . The asymptotic covariance matrix for v̂n is given
by

Cov(v̂n)=\ �v
�_$+ (Cov(sn)) \ �v

�_$+
$
, (12)

where �v��_$ is a (1�2) pm( pm+1)_(1�2) p( p+1) matrix of partial
derivatives connecting the differential of v̂n and the differential of sn such
that dv̂n=(�v��_$)(dsn). Note also that �v��_$ in (12) is evaluated at Sn=7,
and we will omit it thereafter for notational simplicity. In the case of normal
sampling, the formula for Cov(sn) is (1�(n$)) Hp(Ip2+Kpp)(7�7) H$p ,
where Kpp is defined such that Kppvec(S)=vec(S$) for any p_p matrix S;
Hp=(G$pGp)&1 G$p and Gp is defined such that vec(S)=Gp vech(S) for any
p_p matrix S.

4.1. Matrix of Partial Derivatives of v̂n

Our main task remaining is to report the expression for �v��_$ in (12).
The actual derivation of the expression for �v��_$ is given in Hayashi and
Sen [2]. We simply show the final results here. First let a=vech(A),
b=vec(B), and e=vech(E). Then by the chain rule, the expression for
�v��_$ is

�v
�_$

=\ �v
�a$+\

�a
�_$++\ �v

�b$+\
�b
�_$++\ �v

�e$+\
�e
�_$+ , (13)

where

�v
�a$

=Ipm( pm+1)�2 ,

�v
�b$

=2Hpm(Ip2m2+Kpm, pm)(Ipm �B$E), (14)

�v
�e$

=2Hpm(B$�B$) Gp ,

and Kp, pm is defined such that vec(B$)=Kp, pmvec(B); and Hpm is defined
such that Hpm=(G$pmGpm)&1 G$pm , where Gpm is defined such that
vec(R)=Gpm vech(R) for any pm_pm matrix R.
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4.2. Matrices of Partial Derivatives of â, b� , and ê

In Section 2, we gave the matrix expressions for A, B, and E. Now, we
give the expressions for the matrices of partial derivatives of these matrices.
Let a1=vech(A1), a2=vech(A2), b1=vec(B1), b2=vec(B2), ,=vech(8),
+=vec(M), %=vec(3), *=vec(4), and 9=vec(9). First, the matrix of
partial derivatives of â is obtained immediately from Eq. (2) and is of the
form

�a
�_$

=
�a1

�_$
&

�a2

�_$
, (15)

where the matrix of partial derivatives of â1 is

�a1

�_$
=A1(1) \ �+

�_$++A1(2) \�#*
�_$++A1(3) \ �*

�_$++A1(4) , (16)

with

A1(1)=Hpm[(Im �Kpm �Ip)(Im2 �vec(7))

+((Im �4)(diag(Kmm#*))�Ipm)(Im �Kmm �Ip)

_(Im2 �vec(4M)+(+�Ipm)(Im �4))],

A1(2)=Hpm(Im �4�M�4M) K*m2 Kmm ,

A1(3)=Hpm[((Im �4)(diag(Kmm#*))�Ipm)(Im �Kmm �Ip)

_(+�Ipm)(M�Ip)

+(Ipm � (M�4M)(diag(Kmm #*)))

_(Im �Kpm �Im)(vec(Im)�Ipm) Kpm],

A(1(4)=Hpm(Im �Kpm �Ip)(+�Ip2) Gp ,

and K*m2=�m2

i=1 (Jm2, iJ$m2, i �Jm2, i) with a m2-dimensional unit vector Jm2, i

whose i th element is 1 and the rest are 0's. Next, the matrix of partial
derivatives of â2 is

�a2

�_$
=A2(1) A21(1) \ �*

�_$++A2(2) A22(1) \ �%
�_$+ , (17)

where

A2(1)=(diag(HpmKpm, pma21*a22)) Hpm

+(diag(Hpma21*a22)) HpmKpm, pm ,

A2(2)=diag(Hpm a21*HpmKpm, pma21),
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A21(1)=(Im �Kp, pm)(Ipm2 �1p)(Kmm �Ip)(1m �Ipm)

&(Im �1p1$p �Ipm) K*pm ,

A22(1)=Hpm(Im �Kpm �Ip)(Im2 �1p2)

_[3(3*&Im)�Im+Im �3(3*&Im)+(3�3) T*m2],

T*m2= 2(1$m2(Im �3&3�Im+diag(vec(Im)))&3 �Im2)(Im �Kmm �Im)

_(Im2 �vec(Im)&vec(Im)�Im2),

with a21=vec(A21), a22=vech(A22), and K*pm=� pm
i=1 (Jpm, iJ$pm, i �Jpm, i).

Next, from (8), the matrix of partial derivatives of b� is derived as

�b
�_$

=&(diag(b2)) \�b1

�_$+&(diag(b1)) \�b2

�_$+ , (18)

where

�b1

�_$
=B1(1) \ �%

�_$++B1(2) \ �*
�_$++B1(3) \��

�_$+ , (19)

�b2

�_$
=B2(1) \ �%

�_$++B2(2) \ �*
�_$++B2(3) \��

�_$+ , (20)

with

B1(1)=&(Im �Kpp)(Ipm �1p)((3&Im)&1 �9&24(3&Im)&1),

B1(2)=(Im �Kpp)(Ipm �1p)((3&Im)&1�9 &2),

B1(3)=&(Im �Kpp)(Ipm �1p)((3&Im)&1 4$�Ip)

_(9 &1�9&2+9 &2 �9&1),

B2(1)=[(Im �4)(diag(Kmm %*))�Ip](Im �*1$m)

+(Im �4�1$m3�4) Tm2 ,

B2(2)=[(Im �4)(diag(Kmm %*))�Ip](31m �Ipm)

+[Ipm � ((1$m3�4)(diag(Kmm %*)))]

_(Im �Kpm �Im)(vec(Im)�Ipm) Kpm ,

B2(3)=1m �Ip2 ,

Tm2=K*m2 Kmm(1$m2 3*�3*)

_[2K*m2(Im � (23&Im))+(Im �Kmm �Im)

_(Im2 �vec(Im)&vec(Im)�Im2)].
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Finally, the matrix of partial derivatives of ê is obtained from (10) and is

�e
�_$

=&2Hp(E�E) Gp(diag(,)) \ �,
�_$+ , (21)

where

�,
�_$

=P1 \ �%
�_$++P2 \ �*

�_$++P3 \��
�_$+ , (22)

with

P1=Hp(9 &14(3&Im)&1�9&14(3&Im)&1),

P2=&Hp(Ip2+Kpp)(9&14(3&Im)&1�9&1),

P3=Hp(9 &14(3&Im)&1 4$9&1�9&1

+9&1�9 &14(3&Im)&1 4$9&1&9&1 �9 &1).

4.3. Matrices of Partial Derivatives of #̂*, +̂, %� , *� n , and �� n

The matrices of partial derivatives in Section 4.2 are expressed in terms
of the matrices of partial derivatives of #̂*, +̂, %� , *� n , and �� n . Thus we need
to obtain the expressions for these. First, the matrices of partial derivatives
of #̂*, +̂, and %� are obtained from (5), (6), and 3=4$9&14+Im , respec-
tively, and are as follows:

�#*
�_$

=(2(3*&Im)$� (3&Im)+(Im � (3&Im)2) T*m2) \ �%
�_$+ , (23)

�+
�_$

=((3&Im)&1�Im&(3&Im)&1�3(3&Im)&1) \ �%
�_$+ , (24)

�%
�_$

=(Im2+Kmm)(Im �4$9 &1) \ �*
�_$+&(4$9 &1�4$9 &1) \��

�_$+ . (25)

Jennrich and Clarkson's [4] Eqs. (23), (24), (26), and (27) give the for-
mulas that connect the differential of 4� n with the differentials of 9� n and Sn ,
and the differential of vdg(9� n) with the differential of Sn , where vdg(9� n)
denotes the diagonal elements of 9� n arranged as a vector. From these equa-
tions, we derive the matrices of partial derivatives of *� n and �� n , which are

�*
�_$

=(W&1Z�Ip) \Gp&\��
�_$++&(W&1�4)(Y1+Y2), (26)

��
�_$

=K*p (Q*Q)&1 Kp*$(Q�Q) Gp , (27)
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where

W=4$7&14, Z=4$7&1, Q=Ip&4W&1Z, K*p= :
p

i=1

(Jp, iJ$p, i �Jp, i),

and

Y1=\1
2+ (diag(vec(W&1)))(Z�Z) \Gp&\��

�_$++ , (28)

Y2=(Im�W&W�Im)+ [((Im&W) Z�Z) Gp&(Z�Z) \��
�_$+= , (29)

with the Moore�Penrose inverse +. Essentially the identical expression to
(27), using 8, instead of Q, is obtained by Ihara and Kano [3]. [Note that an
alternative matrix formula for Cov(*� n) is given by (�*��_$)(Cov(sn))(�*��_$)$.]
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