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In a multiparameter estimation problem, for first-order efficient estimators,
second-order Pitman admissibility, and Pitman closeness properties are studied.
Bearing in mind the dominant role of Stein-rule estimators in multiparameter
estimation theory, such second-order properties are also studied for shrinkage
maximum likelihood estimators. � 1996 Academic Press, Inc.

1. Introduction

The classical maximum likelihood estimators (MLE) are generally best
asymptotically normal (BAN) and are known to be asymptotically first-
order efficient (FOE) in the light of conventional quadratic risk functions as
well as the generalized Pitman closeness criterion (GPCC). In this charac-
terization, an asymptotic representation for BAN estimators in terms of an
average of independent summands plus a remainder term converging to
zero at a faster rate plays the basic role; we may refer to Keating, Mason,
and Sen [7, Chap. 6] for some systematic exposition of this feature, mostly,
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dealing with the single parameter situation. This FOE-isomorphism of
quadratic risk and GPCC remains in tact in the general multiparameter
case as well (viz., Sen [13]).

The past three decades have witnessed a phenomenal growth of research
literature on higher order asymptotic efficiency of FOE estimators. In this
context, quadratic and other conventional loss functions and concentration
probabilities have been used extensively. The recent monograph of Ghosh
[4] provides an up to date account of the developments in this broad and
active area of research wherein the multiparameter estimation problems
have also been treated adequately.

Recently, Rao [9] has revived interest in comparing estimates through
PCC, which shows that the marginal distribution of estimators or their
risk functions in their usual sense do not capture all that is relevant in
comparing them. The present authors [5] studied the second-order Pitman
admissibility and second-order Pitman closeness of BAN (FOE) estimators
in the single parameter case. There remains a natural need to comprehend
the general multiparameter case with respect to both of these second-order
efficiency criteria, and the current study is primarily geared towards this
basic objective.

In the multiparameter case, the classical MLE may not be generally
admissible (relative to a chosen quadratic risk), and some alternative ver-
sions, known as the Stein-rule (SR) or shrinkage estimators, dominate the
MLE, often, in a finite sample setup, and more generally, in a well-defined
asymptotic setup. Stein [15] initiated this line of research for the simple
multinormal mean vector estimation problem when the covariance matrix
is specified. During the past 40 years, the dominance of Stein-rule versions
over the classical MLE and other conventional estimators in the multi-
parameter case has been studied extensively, covering some finite sample
results for suitable exponential families of distributions and extending the
findings to suitable asymptotic setups for a much wider class; we may refer
to Sen [11] for some relevant first-order asymptotics for SRMLEs.
Dominance of the SR-estimators in the light of the GPCC has been studied
in a finite sample setup by Sen, Kubokawa, and Saleh [14], where the
asymptotic case has also been treated briefly. However, all these studies
relate to the (asymptotic) dominance with respect to suitable FOE criteria.
From an asymptotic perspective (as relevant to FOE�BAN estimators),
there is a basic feature of multiparameter estimation problems with special
emphasis on Stein-rule estimators which merits a critical appraisal. The
SR-estimators are generally adapted to a chosen pivot (say, %0). For every
%{%0 , a MLE %� n and its plausible Stein-rule versions are asymptotically
PC-equivalent in the sense that they share the FOE property in the
conventional asymptotic setups; the asymptotic PC-dominance of SRMLE
over the classical MLE studied by Sen, Kubokawa, and Saleh [14] pertains
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only to a Pitman-neighborhood of the pivot %0 , beyond which the dominance
becomes asymptotically imperceptible. Therefore, it is of natural interest to
compare a MLE and its SR versions in the light of second-order efficiency
properties. This is one of the basic objectives of the current study.

A general second-order PC result in the multiparameter case is presented
in Section 2. In this context, special attention is paid to the multivariate
location model. This provides a natural motivation for SR estimators
which are then treated in Section 3, covering location, scale as well as
location-scale models. An extension of the main theorem (in Section 2),
having some interest on its own, is presented in the concluding section.

2. A General Result

Consider a sequence [Xi ; i�1] of independent and identically dis-
tributed (i.i.d.) random variables or vectors (r.v.) with a common density
f (x; %), where %=(%1 , ..., %p)$ is an unknown vector parameter belonging to
a parametric space 3 which R p or some open subset thereof, and p is
a positive integer. We adopt the same regularity assumptions as in
Bhattacharya and Ghosh [2, p. 439] with s=3 (in their notation), and
f ( } ; %) and g( } ; %) in their notation interpreted respectively as ln f ( } ; %) and
f ( } ; %) in our notation. Let I=((Iij)) be the p_p per observation Fisher
information matrix which is assumed to be positive definite (p.d.) at each
% # 3. Let I&1=((Iij)), and for each 1�i, j, u�p, let

Si } j } u=E%[Di ln f (X1; %))(Dj ln f (X1 ; %))(Du ln f (X1 ; %))]; (2.1)

Si } ju=E%[Di ln f (X1 ; %))(DjDj ln f (X1 ; %))]; (2.2)

Siju=E%[DiDjDu ln f (X1; %)]; (2.3)

S� iju=Siju&Si } j } u , (2.4)

where Di stands for the partial differentiation operator with respect to %i

(1�i�p). Note that for each i, j, u, Iij , Iij, Si } j } u , Siju , and S� iju are
generally functions of %; for notational simplicity, this dependence is,
however, suppressed.

Base on a sample X1 , ..., Xn of size n, let %� (=%� n)=(%� 1 , ..., %� p)$ be MLE
of %, defined in the sense of Theorem 3 of Bhattacharya and Ghosh [2];
again for notational simplicity, the subscript n is dropped. Along the lines
of Ghosh and Sinha [6] and Pfanzagl and Wefelmeyer [8], who studied
in detail the second-order efficiency properties of adjusted MLEs under
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conventional quadratic and other convex risk functions, we consider here
a class C of estimators of % of the form

%� +n&1d(%� ), (2.5)

where the components of d(%� ) are sufficiently smooth and have functional
forms free from n (see Theorem 2.1 below). As seen later, consideration of
such estimators will enable us to improve upon %� in many models of inter-
est with regard to second-order Pitman closeness. The following theorem
plays a crucial role in this context.

Theorem 2.1. Let Tn*=%� +n&1d*(%� ) and Tn=%� +n&1d(%� ) be
estimators of %, where d*(%)=(d 1*(%), ..., d p*(%))$, d(%)=(d1(%), ..., dp(%))$,
and for each i, d i*(%) and di (%) are continuously differentiable over 3, with
functional forms free from n, such that their partial derivatives fulfil the local
Lipschitz conditions. Then for each % at which ,(%)=(,1(%), ..., ,p(%))$=
d(%)&d*(%){0,

2n(%)=P%[(Tn*&%)$ I(Tn*&%)<(Tn&%)$ I(Tn&%)]

= 1
2+(2?n)&1�2 [,(%)$ I,(%)]&3�2 _ 1

2 [,(%)$ I ,(%)]2

+,(%)$ I ,(%) _,(%)$ I d*(%)+tr[B(%)]

+ :
p

i=1

:
p

j=1

:
p

u=1

,i(%) I ju(Su } ij+
1
2Siju)&

& 1
6 :

p

i=1

:
p

j=1

:
p

u=1

,i(%) ,j (%) ,u(%) S� iju&,(%)$ IB(%) ,(%)&
+o(n&1�2), (2.6)

where B(%) is a p_p matrix with (i, j ) th element Dj,i (%), for i, j=1, ..., p.

Proof. Observe that for each % with ,(%){0, we may write equivalently

2n(%)=P%(Vn>0), (2.7)

where

Vn=[,(%)$ I,(%)]&1�2[,(%� )$ I[n1�2(Tn*&%)]+ 1
2 n&1�2,(%� )$ I,(%� )].

(2.8)

Let R=(R1 , ..., Rp)$=n1�2I(%� &%). Note that for each i (=1, ..., p),
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Ri=H1i+n&1�2 _ :
p

j=1

:
p

u=1

I juH2ijH1u

+ 1
2 :

p

j=1

:
p

u=1

:
p

s=1

:
p

t=1

SijsI juIstH1u H1t&+o(n&1�2), (2.9)

where

H1i=n&1�2 :
p

u=1

Di ln f (Xu ; %), i=1, ..., p; (2.10)

H2ij=n&1�2 :
p

u=1

(DiDj ln f (Xu ; %)+Iij), i, j=1, ..., p. (2.11)

Therefore, the approximate cumulants of R under % are given by

}1n(Ri)=n&1�2 :
p

j=1

:
p

u=1

I ju(Su } ju+ 1
2Suji)+o(n&1�2),

}2n(Ri , Rj)=Iij+o(n&1�2), (2.12)

}3n(Ri , Rj , Ru)=n&1�2S� iju+o(n&1�2), i, j, u=1, ..., p.

The fourth and higher order cumulants of R under % are o(n&1�2). Since,

I[n1�2(Tn*&%)]=R+n&1�2Id*(%)+o(n&1�2); (2.13)

,(%� )=,(%)+n&1�2 B(%) I&1 R+o(n&1�2), (2.14)

it follows from (2.8) and (2.12) that for each % with ,(%){0, the
approximate cumulants of Vn under % are given by

}*1n(Vn)=n&1�2[,(%)$ I ,(%)]&1�2 _ 1
2 ,(%)$ I,(%)+,(%)$ I d*(%)

+tr[B(%)]+ :
p

i=1

:
p

j=1

:
p

u=1

,i (%) I ju(Su } ij+
1
2Suij)&+o(n&1�2),

}*2n(Vn)=1+o(n&1�2), (2.15)

}*3n(Vn)=n&1�2[,(%)$ I ,(%)]&3�2 _ :
p

i=1

:
p

j=1

:
p

u=1

,i (%) ,j (%) ,u(%) S� iju

+6,(%)$ IB(%) ,(%)&+o(n&1�2).
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The fourth and higher order cumulants of Vn under % are of order o(n&1�2).
The proof can now be completed by using (2.7) and an Edgeworth expan-
sion for the distribution of Vn under %. K

The stochastic expansions used in the above proof are over a set with P%-
probability 1&o(n&1�2). Note that in Theorem 2.1, I=I(%) has been
used as a Riemannian metric in the fashion of Amari [1] and Sen [10],
among others. Since we have essentially used a quadratic norm (reducible
to the conventional Euclidean distance by suitable linear transformation),
this sophistication could have been avoided by an appeal to simpler
Euclidean distances. However, the transformation leading to such a
Euclidean norm may generally depend on the unknown %, except in the
particular case of some location-scale models. As such, we prefer to
proceed in the manner outlined before. Along the line of Ghosh, Sen, and
Mukerjee [5] we present here the notion of second-order Pitman closeness
in a multiparameter setting, which will be helpful in exploiting the implica-
tions of this theorem, and we intend to discuss them as well.

With estimators Tn and Tn* of %, let

:n1(%)=P%[Tn*&%)$ I(Tn*&%)<(Tn&%)$ I(Tn&%)]& 1
2 ;

(2.16)
:n2(%)=n1�2:n1(%).

Then, Tn* will be superior to Tn with regard to second-order Pitman close-
ness if

(a) limn � � :n2(%)�0, for each % for which a finite limit exists,

(b) limn � � :n1(%) exists and limn � � :n1(%)�0, for each % for which
limn � � :n2(%) does not exist finitely,

the inequality being strict for some % ( # 3) either in (a) or (b).
With reference to a class, C, of estimators of %, Tn ( # C) will be called

second-order Pitman-inadmissible in C if there exists some other estimator
Tn* ( # C), such that Tn and Tn* are not one-to-one functionally related to
each other, and Tn* is superior to Tn with regard to the second-order
Pitman closeness definition given above. Otherwise, Tn will be called
second-order Pitman admissible in C.

In the light of the above definitions and Theorem 2.1, we consider the
following important class of multiparameter estimation problems.

Location Models. Here f (x; %) is assumed to be of the form

f (x; %)= f *(x(1)&%1 , ..., x( p)&%p), (2.17)

where x=(x(1), ..., x( p))$ # R p, %=(%1 , ..., %p)$ # 3/R p, and the functional
form of the density f * is free from % and is assumed to be given. Then, it
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can be seen that I=((Iij)) and Si } ju , Si } j } u , S� iju (1�i, j, u�p) are all free
from %. Hence, under the setup of Theorem 2.1, we have

,(%)$ I,(%) :
p

i=1

:
p

j=1

:
p

u=1

,i(%) I ju(Su } ij+
1
2 Siju)

& 1
6 :

p

i=1

:
p

j=1

:
p

u=1

,i (%) ,j (%) ,u(%) S� iju

= :
p

i=1

:
p

j=1

:
p

u=1

*iju,i (%) ,j (%) ,u(%)

= :
p

i=1

:
p

j=1

:
p

u=1

*� iju,i (%) ,j (%) ,u(%), (2.18)

where

*iju=Iij :
p

v=1

:
p

w=1

Ivw(Sw } uv+ 1
2Suvw)& 1

6S� iju (2.19)

and

*� iju= 1
6 (*iju+*iuj+*uij+*uji+*jiu+*jui), 1�i, j, u� p, (2.20)

are constants, free from %. Having these simplifications at hand, we con-
sider first the special case:

*� iju=0 \ i, j, u=1, ..., p. (2.21)

Note that if the location model exhibits sufficient symmetry so as to ensure
Si } j } u=Si } ju=Siju=0 \i, j, u=1, ..., p, then (2.21) follows from (2.19) and
(2.20); we refer to the multivariate normal and multivariate Cauchy loca-
tion models for some easy verification of these symmetry conditions. In this
setup, we denote the MLE of % by %� and take

Tn=%� ; Tn*=%� [1&n&1(1+%� $I %� )&1 h], (2.22)

where h ({0) is a constant (free from n). Then applying Theorem 2.1 with

&d*(%)=,(%)=[1+%$I%]&1 h%,
(2.23)

B(%)=[1+%$I%]&1 h[Ip&2[1+%$I%]&1 %%$I],

where Ip is the p_p identity matrix, and using (2.18) and (2.21), we arrive
at the following result for %{0.
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P%[(Tn*&%)$ I(Tn*&%)<(Tn&%)$ I(Tn&%)]

= 1
2+(2?n%$I %)&1�2 sgn(h)[( p&1)&(h�2)(1+%$I%)&1 %$I %]

+o(n&1�2). (2.24)

Also, for %=0, by (2.22),

P0[Tn*$ITn*<T$n ITn]=P0[[h2&2hn(1+%� $I %� )] %� $I%� <0], (2.25)

so that

lim
n � �

P0[Tn*$I Tn*<T$n I Tn]=[1+sgn(h)]�2. (2.26)

For p>2, by (2.24) and (2.26), Tn* will be superior to Tn=%� with regard
to second-order Pitman closeness if and only if

0<h�2( p&1). (2.27)

It is easy to see that with h as in (2.27), Tn* will dominate Tn not only at
%=0 but also for every % # 3=R p. Thus with location models satisfying
(2.21) and for p�2, it is possible to improve upon the MLE under the
criterion of second-order Pitman closeness.

Continuing with the setup given by (2.21) and for p�2, it may be of
interest to compare various choices of h wihtin the range given by (2.27).
This, in turn, calls for a study of second-order Pitman admissibility with
reference to the class, C1 , of estimators Tn* given by (2.22) wherein h is
chosen to be free from n, satisfying (2.27). To that effect, consider two
estimators

Tnj=%� [1&n&1hj (1+%� $I%� )&1], j=1, 2, (2.28)

where h1({)h2 are constants, free from n, satisfying (2.27). Analogously to
(2.24) and (2.26), it can be seen that for %{0,

P%[(Tn2&%)$ I(Tn2&%)<(Tn1&%)$ I(Tn1&%)]

= 1
2+(2?n%$I %)&1�2 sgn(h2&h1)

_[( p&1)& 1
2 (h1+h2)[1+%$I %]&1 %$I %]+o(n&1�2), (2.29)

and at %=0,

lim
n � �

P0[T$n2 ITn2<T$n1 ITn1]=[1+sgn(h2&h1)]�2. (2.30)
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From (2.29) and (2.30), one can check easily that an estimator
Tn*=%� [1&n&1h[1+%� $I%� ]&1 ( # C1) is second-order Pitman admissible in
the class C1 if

p&1�h�2( p&1), p�2. (2.31)

On the other hand, if 0<h< p&1, then Tn* can be shown to be dominated
by another estimator Tn**=%� [1&n&1ho(1+%� $I %� )&1] ( # C1) whenever h0,
free from n, is so chosen that h<ho<2p&2&h, and, hence, Tn* is second-
order Pitman inadmissible in C1 .

Next, we consider location models for which (2.21) may not hold, i.e.,

*� iju{0 for some i, j, u (=1, ..., p). (2.32)

Although it is difficult to find natural examples of such location models, for
the sake of completeness, we briefly discuss this case as well. With Tn=%�
and Tn*=%� &n&1!, where !=(!1 , ..., !p)$, !1 , ..., !p are constants (free from
n), and !{0, it is easily seen from Theorem 2.1 and (2.18) that for every
% # R p,

P%[(Tn*&%)$ I(Tn*&%)<(Tn&%)$ I(Tn&%)]& 1
2

=(2?n)&1�2 (!$I !)&3�2 _ :
p

i=1

:
p

j=1

:
p

u=1

*� iju!i!j!u& 1
2(!$I!)2&

+o(n&1�2). (2.33)

Hence, Tn* is superior to Tn with regard to second-order Pitman closeness
if ! is so chosen that

:
p

i=1

:
p

j=1

:
p

u=1

*� iju!i!j!u> 1
2 (*� $I *� )2. (2.34)

Under (2.32), it can be shown that such a choice of ! is always possible.
For example, if *� 111{0 then !$=(I&2

11 *� 111 , 0$) satisfies (2.34). Estimators
corresponding to different choices of ! satisfying (2.34) can be compared,
under the criterion of second-order Pitman closeness, in a straightforward
manner using Theorem 2.1.

3. Stein-Rule Estimators

To motivate our general results, we look back into the location models
satisfying (2.21) and note that Tn*, as given by (2.22), is quite similar in
form to a conventional Stein-Rule estimator which in an asymptotic setup
has captured a much wider domain of estimation problems including the
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location models as special cases; for such asymptotics, we may refer to Sen
[11], where the details for SRMLE are given in a broader setup. For allied
second-order efficiency properties in a conventional risk formulation we
may refer to Ghosh [4]. As such, for such models too, one may as well be
interested in examining the behavior of SR-estimators vis-a� -vis the MLE
Tn=%� . Hence, we consider an estimator of the form

T� n=%� [1&n&1(%� $I %� )&1 h], (3.1)

which is well defined, provided P%[%� =0] \% # 3. Here also, the constant
h is assumed to be free from n. In this formulation, (3.1) resembles the
usual Stein-rule estimators, albeit the latter may be of more general form
than in (3.1). Although the pair (T� n , Tn) does not exactly satisfy the condi-
tions of Theorem 2.1, virtually repeating the same line of attack, it can be
shown that for %{0, the proof and conclusion of Theorem 2.1 remain valid
with this pair. Towards this formulation, we denote the median of a central
chi square distribution with p degrees of freedom (DF) by �p . Then, it will
be proved in the Appendix that

p&1<�p<2( p&1) \p�2. (3.2)

With the help of this inequality, analogously to (2.27), it can be shown that
T� n is superior to Tn=%� with regard to the second-order Pitman closeness
if and only if

0<h�2( p&1). (3.3)

Also, denoting by C2 the class of estimators T� n given by (3.1) with h, free
from n, satisfying (3.3), it can be shown, analogously to (2.31), that T� n

( # C2) is second-order Pitman admissible if and only if

p&1�h��p . (3.4)

Therefore, the first-order Pitman closeness properties of SRMLEs studied
earlier by a host of researchers can be extended to the second-order
case by imposing additional regularity conditions, as needed to justify
(3.1)�(3.3).

Let us next consider the multiparameter scale models. Here f (x; %) is of
the form

f (x; %)=(%1 } } } %p)&1 f *(x(1)�%1 , ..., x( p)�%p), (3.5)
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where x$=(x(1), ..., x( p)), %$=(%1 , ..., %p), the %j are all positive, i.e., %>0,
and the functional form of the density f * is assumed to be known and free
from the unknown parameter vector %. Then

Iij=(%i%j)
&1 qij , I ij=%i%jqij, i, j=1, ..., p;

Si } j } u=(%i%j%u)&1 qi } j } u , Si } ju=(%i%j%u)&1 qi } ju ; (3.6)

Siju=(%i%j %u)&1 qiju , S� iju=(%i %j%u)&1 q� iju , i, j, u=1, ..., p,

where qij , qij, qi } j } u , qi } ju , qiju , and q� iju are constants free from %, and
Q=((qij)) is p.d.

Let Tn=%� =(%� 1 , ..., %� p)$ be the MLE of %, and as a rival estimator, we
consider

Tn*=%� &n&1(!1 %� 1 , ..., !p%� p)$, (3.7)

where the !j are constants free from n, and !=(!1 , ..., !p)${0. We apply
Theorem 2.1 to the pair (Tn*, Tn) with

,(%)=&d*(%)=(!1 %1 , ..., !p %p)$; B(%)=diag(!1 , ..., !p) (3.8)

and use (3.6) to obtain, for each % (>0),

P%[(Tn*&%)$ I(Tn*&%)<(Tn&%)$ I(Tn&%)]

= 1
2+(2?n)&1�2 (!$Q!)&3�2 _ :

p

i=1

:
p

j=1

:
p

u=1

;� iju!i!j!u& 1
2 (!$Q!)2&

+o(n&1�2), (3.9)

where

;� iju=[;iju+;iuj+;uij+;uji+;jiu+;jui]�6, i, j, u=1, ..., p, (3.10)

with

;iju=qij (1&$ju+lu)& 1
6 q� iju , i, j, u=1, ..., p, (3.11)

where $ju is the usual Kronecker delta, and

lu= :
p

w=1

:
p

v=1

qvw(qw } uv+ 1
2 quvw), u=1, ..., p. (3.12)
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By (3.9), Tn* will be superior to Tn=%� with regards to the second-order
Pitman closeness criterion if and only if ! is such that

:
p

i=1

:
p

j=1

:
p

u=1

;� iju!i!j !u> 1
2(!$Q!)2. (3.13)

It may be noted that such a choice of ! is possible whenever

;� iju{0 for some i, j, u=1, ..., p; (3.14)

and this condition holds in many models of interest. Example 1 cited below
is an illustration. Under (3.14), estimators corresponding to different
choices of ! satisfying (3.13) can then be compared in a straightforward
way using Theorem 2.1.

Example 1. Let f (x; %) be given by a product of p gamma densities
with known shape parameters ri (>0) and unknown scale parameters %i

(>0), i=1, ..., p. Then we have the following simplifications:

qii=ri , qii=r&1
i , qiii=4ri ;

qi } i } i=&qi } ii=q� iii=2ri , i=1, ..., p;
(3.15)

qij=qij=0 \i{ j=1, ..., p;

qiju=qi } j } u=qi } ju=q� iju=0, unless i, j, u are all equal.

Hence, by (3.10) through (3.12), we obtain that

;� iii=& 1
3ri , i=1, ..., p,

;� iij=;� iji=;� jii=
1
3 ri \i{ j=1, ..., p; (3.16)

;� iju=0 whenever i, j, u are all distinct.

Therefore (3.14) holds, and it may be seen that (3.13) is satisfied if, in
particular, !=(& 1

3r&1
1 , 0$)$.

Remark. Motivated by Dasgupta [3], one may also wish to compare,
in a scale model, Tn=%� with

T� n=%� &n&1 _`
p

i=1

%� i&
1�p

!, (3.17)

where !{0, and the coordinate elements !i are constants, free from n. By
(3.6) and Theorem 2.1, after some simplifications, it can be shown that for
each % (>0),
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P%[(T� n&%) I(T� n&%)<(Tn&%) I(Tn&%)]& 1
2

=(2?n)&1�2 _ :
p

i=1

:
p

j=1

(%i%j)
&1 !i!j qij&

&3�2

__ :
p

i=1

:
p

j=1

:
p

u=1

(%i%j %u)&1 #iju!i!j!u

&(1�2) _`
p

i=1

%i&
1�p

{ :
p

i=1

:
p

j=1

(%i%j)
&1 !i!jqij=

2

&+o(n&1�2),

(3.18)

where #iju=qij lu& 1
6 q� iju (i, j, u=1, ..., p) with lu given by (3.12). Hence if T� n

is superior to Tn with regard to second-order Pitman closeness, then we
must have \%>0

:
p

i=1

:
p

j=1

:
p

u=1

(%i%j%u)&1 #iju!i!j !u

� 1
2 {`

p

i=1

%i=
1�p

_ :
p

i=1

:
p

j=1

(%i%j)
&1 !i !jqij&

2

. (3.19)

The case of p=1 has been treated in [5], so we let p�2. Then multiplying both
sides of (3.19) by %3

1[> p
i=1 (%1�%i)]1�p and keeping %1 (>0) fixed while allowing

%2 , ..., %p � �, we get that 0� 1
2(q11!2

1)2. Since Q is p.d., this yields !1=0.
Similarly, !2= } } } =!p=0, i.e., !=0, which is a contradiction. Hence, for
p�2, no choice of !{0 can ensure the superiority of T� n to Tn=%� under the
criterion of second-order Pitman closeness. This may be contrasted with the
findings in Dasgupta [3] who worked with quadratic type loss.

Finally, we consider the location-scale models in a univariate setup where
p=2, %=(%1 , %2)$, %1 # R, %2>0, and the density f (x; %) is of the form

f (x; %)=%&1
2 f *((x&%1)�%2), x # R, (3.20)

where the form of f * is free from %. Then we have

Iij=%&2
2 qij , I ij=%2

2qij \i, j=1, 2;

Si } j } u=%&3
2 qi } j } u , Si } ju=%&3

2 qi } ju ; (3.21)

Siju=%&3
2 qiju , S� iju=%&3

2 q� iju \i, j, u=1, 2,

where the qij , qij, qi } j } u , qi } ju , qiju , and q� iju are constants free from % and
Q=((qij)) is p.d. We apply Theorem 2.1 to the pair: (Tn* , Tn), where Tn=%�
is the MLE and

Tn*=%� &n&1%� 2 !, !=(!1 , !2)${0, (3.22)
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the constants !1 , !2 being free from n. Then analogously to (3.13), it can
be shown that Tn* is superior to Tn with regard to second-order Pitman
closeness if and only if ! is such that

:
2

i=1

:
2

j=1

:
2

u=1

#� iju!i!j!u> 1
2(!$Q!)2, (3.23)

where

#� iju=[#iju+#iuj+#uij+#uji+#jiu+#jui]�6; #iju=qij lu& 1
6q� iju , (3.24)

and lu is defined as in (3.12) with p=2. A choice of ! satisfying (3.23) is
possible whenever #� iju{0, for some i, j, u (=1, 2)��a condition which holds
in many models arising in practice. For example, under the univariate nor-
mal or Cauchy location-scale models, it can be shown that #� 222{0, so that
(3.23) holds, in particular, if !2 equals #� 222 �q2

22 and !1 is sufficiently close
to 0. Extensions to multivariate location-scale models can be treated in a
similar but admittedly more complex manner.

4. An Extension of Theorem 2.1

For our study of second-order Pitman closeness, instead of using the per
observation Fisher information matrix I(%) (#I) as a Riemannian
metric, we may as well use a p_p matrix M (%) (#M ) which is p.d. for
each % # 3. Then, under the setup of Theorem 2.1 and with the same
notational system, one can show that for each % with ,(%){0,

P%[(Tn*&%)$ M (Tn*&%)<(Tn&%)$ M (Tn&%)]

= 1
2+(2?n)&1�2 [,� (%)$ I,� (%)]&3�2 _ 1

2 [,� (%)$ I,� (%)][,(%)$ M ,(%)]

+,� (%)$ I,(%)[,(%)$ M d*(%)+tr(I&1M B(%))

+ :
p

i=1

:
p

j=1

:
p

u=1

,� i (%) I ju(Su } ij+(1�2) Siju)]

& 1
6 :

p

i=1

:
p

j=1

:
p

u=1

,� i (%) ,� j (%) ,� u(%) S� iju&,� (%)$ M B(%) ,� (%)&
+o(n&1�2), (4.1)

where ,� (%)=(,� 1(%), ..., ,� p(%))$=I&1M ,(%).
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As before, under the formulated criterion of second-order Pitman close-
ness and for a given M, this generalized version of Theorem 2.1 can be
useful in comparing estimators as well as in finding estimators superior to
the MLE %� , which is, generally, only first-order efficient with reference to
specific models. Thus, under a symmetric location model (e.g., the multi-
variate normal or Cauchy location models), where I is free from the
location parameter % and

Si } j } u(%)#Si } ju(%)#Siju(%)#0 \i, j, u=1, ..., p, (4.2)

if M is taken as the p_p identity matrix I, then proceeding as in the
derivation of (2.24) and (2.26), it can be shown from the above generalized
version that Tn*=%� &n&1h[1+%� $II%� ]&1 I %� will be superior to Tn=%�
with regard to second-order Pitman closeness provided p�2 and the con-
stant h, free from n, satisfies: 0<h�2( p&1). Of course, with reference to
the first order Pitman closeness, this dominance holds even for a bigger
class of SR estimators; we may refer to Sen [13] for some details.

Appendix: Bounds for the Chi Square Median

Our main interest centers around the inequalities in (3.2), and we estab-
lish these bounds by invoking some simple properties of the chi square
density. First, by an appeal to the mean-median-mode (MMM)-inequality
for (noncentral) chi square distributions (viz., Sen [12] it follows in par-
ticular that

�p<E(/2
p)= p for every p�2. (5.1)

Let Gp(x)=P[/2
p�x]=�x

0 gp( y) dy, x�0, where gp( } ) stands for the
density function of /2

p . Then, by partial integration, we have

Gp(x)=Gp+2(x)+2gp+2(x) for every p�1, x�0. (5.2)

Therefore,

Gp+2( p+1)=[Gp+2( p+1)&Gp+2( p&1)]+Gp( p&1)&2gp+2( p&1)

=Gp( p&1)+ gp+2( p&1)

_{|
p+1

p&1
[ gp+2(x)�gp+2( p&1)&1] dx= . (5.3)
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Note that gp+2( } ), for p�1, is strongly unimodal with mode equal to p, and
hence, writing x= p+u, u # (&1, +1), we have

gp+2( p+u)�gp+2( p&u)=exp {&u&
p
2

ln(( p&u)�( p+u))

=exp[Ap(u)], say. (5.4)

Then Ap(0)=0, and for every u # (&1, +1), (d�du) Ap(u)=u2( p2&u2)&1

�0. Therefore, Ap(u) is positive for every u # (0, 1), and hence, for every
x # ( p&1, p+1),

gp+2(x)�gp+2( p&1)= gp+2( p+(x& p))�gp+2( p&1)>1, (5.5)

so that from (5.3) and (5.5), we have

Gp+2( p+1)>Gp( p&1) for every p�1. (5.6)

On the other hand, by virtue of the reproductive property of /2
p (in terms

of independent /2
1 variables), we have by the central limit theorem,

lim
p � �

Gp+2( p+1)= 1
2 . (5.7)

Therefore, the monotonicity in (5.6) and the limit in (5.7) imply that

Gp( p&1)� 1
2 for every p�1. (5.8)

Note that for p=1, Gp( p&1)=G1(0)=0, so that we have a strict
inequality in (5.8). Since for every p�2, p�2( p&1) and Gp( } ) is
absolutely continuous, we conclude from (5.8) and (5.1) that (3.2) holds.
This completes the proof of (3.2). In passing, we may note that if �p(*)
stands for the median of a noncentral chi square distribution with p DF
and noncentrality parameter *�0, then by the subadditive property of
�p(*) (viz., Sen [12]), we have

�p(*)��p+* \*�0, p�1. (5.9)

Thus, the upper bound in (3.2) extends directly to the noncentral case.
However, it remains open to resolve whether

�p(*) is �p&1+* \*�0, p�1; (5.10)

the bounds given in Sen [12] may not suffice for the last inequality.
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