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As restricted canonical correlation with a nonnegativity condition on the coef-
ficients depend only on the covariance matrix, their sample counterparts can be
obtained from the sample covariance matrix. For such estimators, asymptotic nor-
mality results are established, and the role of resampling methods in this context is
critically examined. The effectiveness of the usual jackknife and bootstrap methods
is studied analytically, and the findings are supplemented by numerical studies.
� 1996 Academic Press, Inc.

1. Introduction and Preliminary Notions

For a random vector Y$=(Y(1)$, Y(1)$), with a finite covariance matrix
7=((7ij)) i, j=1, 2 , the first canonical correlation (CC) between Y(1)

( p-variate) and Y(2) (q-variate) is defined as

max[:$712; : :$711:=1=;$722;],

or, it is the maximum correlation between any representative linear com-
binations :$Y(1) and ;$Y(2), when the domains of the coefficients or the
weights :=((:i)) and ;=((;j)) are the entire Rp ( p-dimensional Euclidean
space) and Rq , respectively. However, in many practical situations (e.g.,
educational testing problems, neural networks) (Das and Sen [3, 4]), some
natural restrictions on the coefficients : and ; may arise which should be
incorporated in this maximization procedure. The maximum correlation
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subject to such constraints is referred to as the first restricted canonical
correlation (RCC). In many cases some inequality restrictions can be
reduced by simple transformations to a nonnegativity restriction on the
coefficients, which we define as follows.

Definition. The RCC between random vectors Y(1) and Y(2) is defined
to be the maximum correlation between nonnegative linear combinations
of the two sets of component variables (:$Y(1) and ;$Y(2)); i.e.,

RCC=max[:$712 ; : :$711:=1=;$722;, : # R+
p , ; # R+

q ],

where R+
p denotes the nonnegative orthant of Rp .

The nonnegativity restriction is important primarily because it enables
one to obtain both canonical variables as convex combinations of original
random variables, and we shall mostly follow this case in detail.

It may be emphasized here that the interpretation of the coefficients is a
chief motivation for the general study of RCC. In the usual CC analysis,
often one can obtain very different sets of coefficients which lead to (at
least approximately) maximal correlations. This is much less likely to hap-
pen with RCC. Also, if it does, it should not bother the experimenter,
because, all the candidate coefficients must be satisfying the reasonable con-
straints that have been built into the problem. Toward this end, we con-
sider couple of illustrative examples.

Example 1. Suppose we are interested in studying the relationship�
dependence of a group of students' performances in two different subjects,
say mathematics and French. One solution is to assign reasonable weights
(as is usually done) to the different examinations�assignments and compute
the composite scores in the two subjects. Then the correlation between the
mathematics and French composite scores would be a measure of such
dependence. However, such an approach can be questioned because of the
arbitrariness of the weights, and alternatively one may look for those
weights which maximize the correlation between the two composite scores.
The latter is precisely the traditional CC approach. RCC fits somewhere in
the middle. It also maximizes the correlation between possible composite
scores; but instead of allowing these weights to be totally flexible, one may
force them to be more reflective of their individual importance. For
instance, if for the mathematics course, the students had scores (say, for
convenience, out of 100) in each of the categories: homework (hw), quiz,
midterm (mt) and final, then one may like to place the restriction

0�:quiz�:hw�:mt�:final . (1)

2 das and sen
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If the French course had only three tests, then a reasonable restriction on
the weights may be that they all be nonnegative, i.e.,

;i�0, i=1, 2, 3. (2)

Since correlation is scale-invariant, the optimal coefficients in each group
can be rescaled to enforce the sum to be 1 (so that the composite score is
out of 100). It has been shown in Das and Sen [3], how a RCC problem
with restrictions (1) and (2) (or, a more general mixture of equality and
inequality restrictions) can be transformed to a RCC problem with non-
negative restriction.

Example 2. Timm [10] has a data set for two dependent variables��
time on target in seconds and the number of hits on target (average out-
comes using two hands). For each variable, five repeated measures were
obtained using 16 subjects. Naturally, CC analysis can be done to study the
dependence between the two (groups of ) variables. But, it is possible to
obtain convex linear combinations of the five measurements (in each
variable) which are almost as much dependent on each other as the canoni-
cal variables, and they are more intuitively appealing (because of the con-
vexity). We defer numerical illustrations to Section 4.

To present the solution under the nonnegativity restriction on : and ;,
we need to introduce some notations. Let p and q be fixed integers as
denoted previously. Also, define

Nk=[1, 2, ..., k], Wk=[a : ,{a�Nk], k�1;

with elements of a (#Wk) written in natural order. Further, let |a| denote
the cardinality of a. For a p-component vector X, and a # Wp , let aX stand
for the |a|-component vector consisting of those components of X whose
indices belong to a. Similarly, for a ( p_q)-dimensional matrix S, a # Wp ,
b # Wq , let a :bS represent the ( |a|_|b| )-dimensional submatrix of S, con-
sisting of those rows whose indices are in a and those collumns whose
indices are in b. So if

X=(X1 , ..., Xp)$, S=((sij)), a=(i1 , ..., il), b=( j1 , ..., jk),

then

Xi1 si1 j1
} } } si1 jk

aX=\ b + ; a :bS=_ b b b & .

Xil sil j1
} } } sil jk

Then Das and Sen [3] have proved the following.

3restricted canonical correlation
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Lemma 1. If the set of squared CC's corresponding to 7=( 711 712
721 722

) is
represented by setcc2(711 , 712 , 722), then

RCC2(711 , 712 , 722) # .
a # Wp, b # Wq

[setcc2( a :a711 , a :b712 , b :b722)].

Or, equivalently, the squared RCC between Y(1) and Y(2) is equal to one of
the squared CC's between aY(1) and bY(2) for some a # Wp , b # Wq .

More precisely, the squared RCC is the largest squared CC (first or
higher) between subvectors of the two groups, for which the canonical coef-
ficients satisfy the nonnegativity condition.

Let us illustrate Lemma 1 with a simple numerical example. Suppose,

711=\ 1
0.5

0.5
1 +=722 , 712=\0.1

0
0

&0.05+ .

It can be easily verified that, the first CC and the canonical coefficients are
given by:

CCr0.1215, :=;r\ 0.9426
&0.3340+ ;

the second CC is r0.0548. Since the canonical coefficient corresponding to
first CC does not satisfy the nonnegativity restriction, it does not give
RCC. Clearly, if we drop a variable from one or both the two groups, then
the CC resulting from the subvectors are going to be 0.1, 0.05, or 0; and
the corresponding coefficients for each of these cases are nonnegative (0 or
1). Hence, by Lemma 1, the RCC=0.1, which is the correlation between
the first variables of the two groups.

Das and Sen [3] have considered more general form of inequality
restraints (including the case where such restrictions apply only on some of
the coefficients. Similar restricted principal components and part, partial,
and bipartial canonical correlations have also been studied by them. Here,
the main emphasis is on the sampling distribution of RCC with the non-
negativity restriction, as the other cases follow very similar tracks.

Sample restricted canonical correlation (SRCC) is obtained when in the
calculation of RCC, the population covariance matrix 7 is replaced by the
sample covariance matrix Sn . The intuitive justification is the same as in
the case of traditional canonical correlation; i.e., it provides the maximum
likelihood estimate of population RCC when the underlying distribution is
a multivariate normal one. (Note that it does not change the value of
SRCC, if we use ((n&1)�n) Sn , instead of Sn .) Otherwise, Sn is, at least,

4 das and sen
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a method of moment estimator of 7, and this provides some justification.
It would have been nice to have an alternative candidate which is an
unbiased estimator of population RCC. But, as in the case of usual CC,
this is not generally available.

In Section 2, a representation of SRCC in terms of different sample CC's
along with the asymptotic normality results for the latter is incorporated in
the derivation of the asymptotic normality for the SRCC. Relevant resam-
pling methods are discussed in Section 3, and some related numerical
studies are made in the last section.

2. Asymptotic Normality of SRCC

It follows from Lemma 1 that the squared RCC equals the square of
the first or higher CC of some proper submatrix. There are in PQ such
submatrices, where P=2 p&1 and Q=2q&1. Further, there are ( p

i )( q
j )

proper submatrices of order (i+j)_(i+j), having (i7j) CC's. Hence, there
are

K= :
p

i=1

:
q

j=1
\p

i+\
q
j+(i7j)

squared CC's which are possible candidates of the squared RCC. Now
index these PQ proper submatrices in any fixed order. Let \2

r, s denote the
squared r th CC of the s th proper submatrix of 7, where s=1, ..., PQ, and
r=1, ..., min(i, j), ) if the s th proper submatrix is of dimension (i+j)_
(i+j). Similarly, let X(r, s), n denote its sample version, i.e., the squared r th
canonical correlation of the s th proper submatrix of Sn . While such
double-indexing describes the situation appropriately, the notation
becomes clumsy. Hence, for the sake of notational convenience, \2

r, s and
X(r, s), n will be denoted in the sequel by \2

k and Xk, n , respectively, with the
index k running from 1 to K.

The sample covariance matrix Sn can be partitioned into K classes, and
Sn belongs to the k th class if the squared RCC of Sn is its k-squared CC
in the mode of ordering as described above.

Also let Tn and % denote the squared sample and population RCC,
respectively. By Lemma 1, %=\2

k for some k8 . The following assumption is
crucial for most of the statistical properties discussed in this work:

k8 is unique, i.e., \2
k{% for k{k8 . (3)

Also, for notational convenience, we assume without loss of generality, that
k8 =1.

5restricted canonical correlation
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Representing SRCC in Terms of Sample CC 's

From Section 1, it is easy to see (replacing 7 by Sn in Lemma 1)
that sample squared RCC is always equal to sample squared for some
``subvector''; i.e.,

Tn(|)=Xk, n(|) for some k=k(|, n) # [1, 2, ..., K], \n�1, \| # 0,

(4)

where 0 is the probability space on which all the random variables are
defined. So if

A0
k, n=[| : Tn(|)=Xk, n(|)], k=1, 2, ..., K, (5)

then �K
k=1 A0

k, n=0. Further, for each n, one can define a partition [Ak, n ,
k=1, 2, ..., K] of 0 by

A1, n=A0
1, n , Ak, n=A0

k, n> .
k&1

i=1

Ai, n , k=2, ..., n. (6)

Thus, we obtain the following representation of SRCC,

Tn= :
K

k=1

IAk, n_Xk, n , (7)

where IA stands for the indicator function of the set A. Muirhead and
Waternaux [7] showed that if \k is a distinct population CC then

- n (Xk, n&\2
k) w�L N(0, '2

k), (8)

where '2
i is of the form

4\2
i (1&\2

i )2+\4
i (}i : 4+}i+p : 4)+2\2

i (\2
i +2) }i, p+i : 2, 2

&4\3
i (}i, p+i : 3, 1+}i, p+i : 1, 3), (9)

with }'s being different fourth-order cumulants of the population. Also,
since Xk, n is a continuous function of the sample covariance matrix,

Xk, n w�a.s. \2
k , k=1, ..., K. (10)

The following lemma, a key to the proof of main results, relates to
different modes of convergence of indicator variables. The proof is fairly
straightforward (Das [2]) and, hence, is omitted here.

6 das and sen
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Lemma 2. Given a sequence of events An , the following are equivalent:

(i) IAn w�P 0.

(ii) IAn=op(n:) for some :<0.

(iii) IAn w�L
1

0, i.e., P(An) � 0, and are implied by
(iv) IAn w�a.s. 0.

Corollary 1. This lemma remains true if the limiting constant is 1
instead of 0.

Since, (S)RCC is a continuous function of the (sample) covariance
matrix and Sn w�a.s. 7 as n � �, we immediately obtain that

Tn w�a.s. %. (11)

We may note that (11) holds even when Assumption (3) may not hold.
Since the SRCC is an implicit function of Sn , estimation of '2

k is somewhat
involved, and an alternative method is pursued here. First, consider the
following.

Lemma 3. Under Assumption (3), IA1, n w�a.s. 1, where A1, n is defined as
in (6).

Proof. Let 00=[| : Tn(|) � %; Xk, n � \2
k ; \k=1, 2, ..., K]. By (10)

and (11),

P(00)=1. (12)

We claim that (since K is finite), \| # 00 ,

_N(|) such that n�N(|) O Tn(|)=X1, n(|). (13)

Otherwise, by (4), there must exist an index k1�2 and a subsequence [nl],
such that

Tnl (|)=Xk1, nl (|) \l�1.

Hence, we would have

lim
l � �

Tnl (|)= lim
l � �

Xk1, nl (|)=\2
k1

{% (by Assumption 3).

But that would imply

lim
n � �

Tn(|){%,

which is a contradiction to | belonging to 00 .

7restricted canonical correlation
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To complete the proof of the lemma, we note that (13) implies

\| # 00 _N(|) such that n�N(|) O IA1, n(|)=1,

or equivalently, IA1, n(|) � 1 \| # 00 . K

Corollary 2. Under Assumption (3), IAk, n w�a.s. 0 for k�2.

Theorem 1. Under Assumption (3), - n (Tn&%) w�L N(0, '2
1).

Proof. From (7) we get

- n (Tn&%)=IA1, n_- n (X1, n&%)+ :
K

k=2

I1k, n_- n (Xk, n&%).

Since by Assumption (3), \2
k{% for k>1, X1, n corresponds to a distinct

population CC and, hence, by (8), - n (X1, n&%) w�L N(0, '2
1). Further,

all CC's being bounded by 1, - n |Xk, n&% |�2 - n and, hence, by
Lemma 2, Lemma 3, Corollary 1, and Corollary 2, IA1, n=1&op(1), and
IAk, n=op(1�- n) for k�2. This completes the proof via Slutsky's
theorem. K

It may be worthwhile to reiterate the importance of Assumption (3)
in this context. It is clear that the proof presented here may not work in
the absence of (3). For example, if %=\2

1=\2
2 , then parallel to Lemma 3,

we have IA1, n _ A2, n w�a.s. 1, which may hold even with none of IAi, n 's (for
i=1, 2) converging individually. Also, the implications of this assumption
is beyond this. The present authors are of the opinion that when (3) fails
to hold, the limiting distribution of SRCC, even if it exists, may be non-
normal.

3. Resampling Methods for RCC

In Section 2, we observed that the asymptotic variance of SRCC involves
unknown fourth-order moments of the population. Hence, for obtaining a
large sample confidence interval for the RCC or to test for a suitable
hypothesis on it, a good estimate of the sample variance is required. It is
natural to think of resampling methods (viz., jackknife and bootstrap), and
these will be pursued here. In this context, estimates of bias of SRCC can
be used to improve the estimates. The methods for proving effectiveness of
jackknife and bootstrap in the context of RCC are similar in the sense that
both use the representation (7) and parallel results for CC.

8 das and sen
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Jackknifing RCC

In this resampling method, the replications are obtained by deleting one
observation at each time. For k=1, 2, ..., K; j=1, ..., n, let Xk, n, &j and
Tn, &j denote the k th (in the sense described in the beginning of Section 2)
squared sample CC and SRCC (respectively), based on [Yt : 1�t�n,
t{j]. Further, as in (5) and (6), let Ak, n, &j=[| : Tn, &j (|)=Xk, n, &j (|)],
except for appropriate disjointifications. Also define

Bn=A1, n ,
n

i=1

A1, n, &i . (14)

Then we have the following lemma which provides the key to the proof of
the main results in this section.

Lemma 4. Under Assumption (3), IBn w�a.s. 1, i.e., P[lim inf(Bn)]=1.

Proof. First observe that, by Corollary B.2.3 of Das [2],

sup
0� j�n

|Tn, &j&% | w�a.s. 0, as n � �. (15)

Now, for any fixed i=1, ..., K,

sup
0� j�n

|Xi, n, &j&\2
i | w�a.s. 0, as n � �. (16)

Let 01=[| : sup0� j�n |Tn, &j (|)&% | � 0, sup0� j�n |Xi, n, &j (|)&\2
i | � 0

\i]. By (15) and (16), P(01)=1. Suppose, if possible, there exists |1 # 01 ,
such that IBn(|1)�% 1, as n � �. Then for each n, there exists in such that
0�in�n and Tn, &in(|1){X1, n, &in(|1). Since K is finite, this implies the
existence of a subsequence [n$] and index k1>1, with

Tn$, &in$
(|1)=Xk1, n$, &in$

(|1).

But since |1 # 01 , the left-hand side converges to % as n � �, and the
right-hand side (RHS) converges to \2

k1
{%. This leads to a contra-

diction. K

The jackknife estimates of the bias and the variance of Tn are respec-
tively given by

(n&1)[T� J
n&Tn]=B� J(Tn),

n&1
n

:
n

i=1

[Tn, &i&T� J
n ]2=V� J

n(Tn),

where T� J
n=(1�n) �n

i=1 Tn, &i . Similarly, define the corresponding quantities
for sample CC's.

9restricted canonical correlation
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The effectiveness of a jackknife in the context of CC follows through the
next two results (Das and Sen [4]).

Theorem 2. The bias-corrected jackknife estimate of the squared CC,
X J

i, n=Xi, n&B� J(Xi, n), is asymptotically normal with the same mean and
asymptotic variance as the sample squared CC, i.e., - n (X J

i, n&\2
i ) w�L

N(0, '2
i ).

Theorem 3. A jackknife estimate of variance for the squared CC is
strongly consistent, i.e., n_V� J

n(Xi, n) w�a.s. '2
i .

Parallel to Theorems 2 and 3, the asymptotic normality of a bias-
corrected jackknife estimate of RCC and the consistency of a jackknife
estimate of variance of SRCC are established in the following theorems.

Theorem 4. The bias-corrected jackknife estimate of the squared RCC is
asymptotically normal with the same mean and asymptotic variance as a
usual sample squared RCC, i.e., - n (T J

n&%) w�L N(0, '2
1).

Proof. Similar to the representation (7), we have

Tn, &j= :
K

k=1

IAk, n, &j_Xk, n, &j .

On (Ak, n �n
i=1 Aki , n, &i), Tn=Xk, n and Tn, &i=Xki , n, &i . So

- n T J
n=n&1�2 :

n

i=1

[nTn&(n&1) Tn, &i]

=IBn_n&1�2 :
n

i=1

[nX1, n&(n&1) X1, n, &i]+IB c
n
_Rn ,

where, noting that the CC's are bounded by 1,

Rn= :
K

k, k1, ..., kn
not all 1's

I[Ak, n �
n
i=1 Aki , n, &i]

_n&1�2 :
n

i=1

[nXk, n&(n&1) Xki , n, &i]=Op(n5�2).

Also, by Lemma 4 (and Lemma 2), IBn=1&op(1), and, hence,
IB c

n
=op(n&5�2) by Lemma 2. Thus, by Slutsky's theorem, the desired result

follows from Theorem 2. K

10 das and sen
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Theorem 5. The jackknife estimate of variance of the squared RCC is
strongly consistent, i. e., n_V J

n w�a.s. '2
1 .

Proof. n_V J
n =(n&1) �n

i=1 [Tn,&i&(1�n) �n
j=1 Tn,&j]2=IBn_nV J

n(X1, n)
+IBc

n
_Rn*, where nV J

n(X1 , n)=(n&1) �n
i=1 [X1, n, &i&(1�n) �n

j=1 X1, n, &j]2.
And by the Theorem 3,

nV J
n(X1, n) w�a.s. '2

1 . (17)

Lemma 4 and (17) complete the proof. K

Bootstrap for RCC

To obtain appropriate confidence interval (C.I.) for RCC, we may note
that by virtue of the implicit functional formulation of the RCC, there is no
reliable and easy-to-compute approach to the estimation of the standard
error of the SRCC, and hence, the standard bootstrap t-interval (see, for
example, Efron [5] and Efron and Tibshirani [6]) may not be of much
use. Of course, a two-level nested bootstrap as suggested by Efron and
Tibshirani [6] can be implemented, but that will require a formidably
large number of bootstrap replicates, and hence is not pursued here. Alter-
natively, in a computationally simpler way, C.I. can be obtained from the
bootstrap percentiles, and we concentrate on this approach.

Given a set of sample observations Y(n)=[Y1 , ..., Yn], the bootstrap
resamples Y1*, ..., Yn* are drawn i.i.d. with replacement from Y(n), or equiv-
alently from the empirical distribution function Fn . The bootstrap
replicates of SRCC or sample CC's (to be denoted respectively by, T n* and
X*i, n's) are simply the values of the relevant statistics based on Y1*, ..., Yn*.
The above procedure can be repeated extensively to provide a large
number (typically 1000 or higher) of replicates of the statistic, from which
one can construct the bootstrap estimate of the entire distribution of the
statistic. Appropriate (typically, equal exclusion probability on both tails)
percentiles of this bootstrap distribution can serve as the upper and lower
bound of the required C.I. In the following, a formal proof of this percentile
method has been provided. Certain improvements of this method (namely,
the BCa and ABC methods of Efron and Tibshirani [6]) are available in the
literature. But these modifications have not been dealt with in the current
work, since the original percentile method seems to be quite succesful here.

Beran and Srivastava [1] showed that the bootstrapped sampling
distribution of a smooth function (with continuous first derivative) of a
sample covariance matrix converges to the right population distribution,
i.e., if Jn(F )=L[- n[g(Sn)&g(7)] | F] and g is continuously differen-
tiable, then Jn(Fn) � N(0, 0F), which is the limit of Jn(F ) as n � �.
Hence it is reasonable to estimate the sampling distribution of g(Sn) by the
appropriate bootstrapped distribution.

11restricted canonical correlation
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The required smoothness of CC as a function of sample covariance can
be shown (viz., Das and Sen [4]). Hence we have

L[- n (X*i, n&Xi, n) | Y(n)] w�a.s. N(0, '2
i ). (18)

Note that, the RHS of (18) is simply the limiting distribution of
- n (Xi, n&\2

i ). The next theorem shows the consistency of the boots-
trapped sampling distribution for SRCC.

Theorem 6. Under assumption (3), the bootstrapped distribution of
SRCC is strongly consistent, i.e.,

L[- n (T n*&Tn) | Y(n)] w�a.s. N(0, '2
1). (19)

Proof. Denote the normal cumulative distribution function in the RHS
of (19) by G( } ). By (18), _0(1)�0 s.t. \| # 0(1), \x,

P[- n (X*1, n&X1, n)�x | Y(n)](|) � G(x) as n � �. (20)

Let 0*=0(1) & [| : IA1, n(|) � 1]. By Lemma 4 and (18), it follows that
P(0*)=1. If | # 0*, then Tn(|)=X1, n(|) for sufficiently large n. By
Theorem 1, under any i.i.d. sampling scheme, the asymptotic distribution of
SRCC is the same as that of appropriate sample CC. Applying this on the
bootstrap resampling procedure (where population RCC and the first CC,
identify with Tn and X1, n , respectively), it follows that

lim
n � �

P[- n (T n*&Tn)�x | Y(n)](|)

= lim
n � �

P[- n (X*1, n&X1, n)�x | Y(n)](|),

and the RHS is equal to G(x) by (20). K

4. Numerical and Simulation Studies

In this section, numerical illustrations of Examples 1 and 2 are provided,
and simulating observations from multivariate normal (MN) and multi-
variate Poisson (MP) distributions, the relative performances (with regard
to variance estimation and reduction of bias) of jackknifing and boots-
trapping, are studied.

Example 1 (Continued). The scores in different exams of eight students
who took both the French and mathematics courses are shown in Table I:

12 das and sen
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TABLE I

Example 1

Mathematics French

Student HW Quiz Midterm Final Test1 Test2 Test3

1 87 56 78 69 86 74 79
2 91 66 82 81 83 79 81
3 90 70 87 94 88 85 93
4 55 48 60 54 71 56 63
5 76 72 75 79 68 63 70
6 98 90 90 96 91 93 78
7 80 75 73 84 68 77 85
8 92 83 80 74 65 60 72

The first sample CC is 0.9985 while the SRCC with restrictions (1)�(2)
is 0.8651. The rescaled coefficients for both these are listed in Table II. At
first look, the zero weights for the SRCC, may seem counterintuitive. But,
by Lemma 1, that is likely to happen with nonnegativity type restrictions.
The jackknife estimate of the standard error of SRCC was found to be
0.0962. The bootstrap methods could not be implemented because small
sample size leads to singularity of the covariance matrix.

Example 2 (Revisited). Table III shows the measurements of 16 sub-
jects for the two variables. The sample CC turns out to be 0.9475 with
canonical coefficients (0.23, 0.08, 0.01, &0.09, &0.92)$ for the time-on-
target�variables and (&0.09, &0.06, 0.09, 0.28, 0.17)$ for the hits-on-target
variables. Because the cross-covariance matrix (S12) has all entries negative,
by Lemma 7 of Das and Sen [3], SRCC=&0.6837, which is the largest
element of the cross-correlation matrix. But clearly in this case one should
consider minimum RCC (i.e., the minimum correlation between non-
negative linear combinations); in effect this amounts to replacing S12 by

TABLE II

Optimal Coefficients in Example 1

Subject Test Canonical coefficient Restricted can. coef.

Mathematics Homework &2.2437 0
Quiz &0.6964 0
Midterm 6.3089 0.4929
final &2.3688 0.5071

French Test1 4.4133 0
Test2 &3.8266 0.5714
Test3 0.4133 0.4286

13restricted canonical correlation
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TABLE III

Example 2

Time on target�s Hits on target

Ind. 1 2 3 4 5 1 2 3 4 5

1 13.95 12.00 14.20 14.40 13.00 31.50 37.50 36.50 35.50 34.00
2 18.15 22.60 19.30 18.25 20.45 22.50 12.00 17.50 19.00 16.50
3 19.65 21.60 19.70 19.55 21.00 18.50 18.00 21.50 18.50 14.50
4 20.80 21.35 21.25 21.25 20.90 20.50 18.50 17.00 16.50 16.50
5 17.80 20.05 20.35 19.80 18.30 29.00 21.00 19.00 23.00 21.00
6 17.35 20.85 20.95 20.30 20.70 22.00 15.50 18.00 18.00 22.50
7 16.50 16.70 19.25 16.25 18.55 36.00 29.50 22.00 26.00 25.50
8 19.10 18.35 22.95 22.70 22.65 18.00 9.50 10.50 10.50 14.50
9 12.05 15.40 14.75 13.45 11.60 28.00 30.50 37.50 31.50 28.00

10 8.55 9.00 9.10 10.50 9.55 36.00 37.00 36.00 36.00 33.00
11 7.35 5.85 6.20 7.05 9.15 33.50 32.00 33.00 32.50 36.50
12 17.85 17.95 19.05 18.40 16.85 23.00 26.00 20.00 21.50 30.00
13 14.50 17.70 16.00 17.40 17.10 31.00 31.50 33.00 26.00 29.50
14 22.30 22.30 21.90 21.65 21.45 16.00 14.00 16.00 19.50 18.00
15 19.70 19.25 19.85 18.00 17.80 32.00 22.50 24.00 30.00 26.50
16 13.25 17.40 18.75 18.40 18.80 23.50 24.00 22.00 20.50 21.50

&S12 . The minimum SRCC turns out to be &0.9380, with the weights
(standardized, to make the sum 1) are (0, 0, 0, 0, 1) for the time-on-target�
variables and (0, 0, 0.3435, 0.2365, 0.42) for the hits-on-target variables.
The jackknife and bootstrap estimates of the standard error of SRCC are
0.0275 and 0.0220, respectively. The 900 as obtained from the bootstrap
percentile method is found to be (0.9203, 0.9921).

Next, we discuss simulation results regarding the distribution of SRCC
and effectiveness of the jackknife and bootstrap estimates of the bias and
variance in finite-sample cases. The asymptotic distribution of SRCC seems
to be very close to the normal distribution for sample sizes of 500 or higher
in most cases (in some cases, even for moderate sample sizes like 200).
The following two correlation matrices were among those which were
considered for simulation purpose:

1 1
1�2 1 0.4 1

71=_ } & , 72=_ } & .
1�6 1�6 1 0.3 0 1
1�6 1�6 1�3 1 0.15 0.35 0.3 1
1�6 1�6 1�3 1�3 1 0.15 0.25 0.4 0.2 1

14 das and sen
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71 is a typical case, where the population RCC and the first population CC
are the same (here, equal to 1�- 15r0.2582); 72 provides an example where
that is not the case (RCCr0.3968, whereas first CC is r0.4685).
Experiments were performed with continuous as well as discrete data. In the
figures, we summarized the performances of the resampling estimators when
simulated data was generated from (i) MN distribution with covariance
matrix 71 (ii) MP distribution with covariance matrix 72 . A ( p+q)-variate
MR distribution (see Teicher [9]) is characterized by 2p+q&1 parameters
and to retain generality the data from such a distribution should be
generated from the same number of independent univariate Poisson random
variables. However, a simpler model is considered here for generating the
MP random vectors by using only ( p+q)( p+q&1)�2 univariate Poisson
variables which account for the second moments of the distribution.

Comparing Bias Reduction
In Fig. 1 and 2 the performances of the bias-corrected jackknife and

bootstrap estimates of RCC are compared with the original estimator

Fig. 1. Estimates of RCC; MN�71

15restricted canonical correlation
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(SRCC). The formula of jackknife of bias is described in Section 3. The
bootstrap estimate of bias is given by E� Fn(T V

n )&%(Fn). Hence the bias
corrected bootstrap estimate of RCC is 2Tn&E� Fn(Tn*), and the second term
is approximated by T� n*=(1�B)�B

i=1 T*n, i , where T*n, i's are the bootstrap
replicates. These simulations show that the SRCC has significant positive
bias for smaller sample sizes. The curve corresponding to ``original SRCC''
is actually obtained by taking averages over large (5000) simulated realiza-
tions of SRCC, for different sample sizes. Of course, the bias goes down
with increasing sample size. Jackknife does an excellent job of estimating
this bias and, hence, the bias-corrected jackknife estimates are remarkably
closer to the target even for small sample sizes. The performance of the
bootstrap is quite comparable for larger sample sizes, although for small
samples jackknife seems to be slightly more effective.

Comparing Performances of the Resampling Methods in
Estimating Sample Variance and MSE.

Next, the performances of the jackknife and the bootstrap estimate of
variance for SRCC and sample CC are compared for finite sample sizes.

Fig. 2. Estimates of RCC; MP�72
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The bootstrap estimate of variance is taken as (1�(B&1))�B
i=1 (T*n, i&T� n*)2.

Since in most cases MSE, rather than the sample variance are of primary
importance, MSE (instead of variance) estimates are shown in Fig. 3
and 4. (It may be added here that looking solely at variance figures, the
performances of both jackknife and bootstrap estimators are found to be
very good, especially for sample sizes of 500 and higher. For smaller sample
sizes, bootstrap does a somewhat better job, although possibly at some-
what higher computational cost.) The MS estimators via jackknife and
bootstrap are calculated from the respective bias and variance estimates
provided earlier. For the jackknife and bootstrap estimates, the points
represent the relevant values averaged over 50 simulations. Bootstrap
resample size is taken to be 1000. The simulated MSE is obtained from
5000 simulated values of the statistic. These figures show that the per-
formance of the jackknife and the bootstrap are quite comparable in this
context.

Fig. 3. Estimates of MSE; MN�71

17restricted canonical correlation
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Fig. 4. Estimates of MSE; MP�72

Concluding Remarks

Apparently, it may seem that the resampling plans may not be necessary
for RCC since the asymptotic variance for SECC is the same as that for an
appropriate sample CC, and the latter is of known form (viz., (9)). But,
unfortunately there are hidden impasses in such a direct approach. First,
the expression in (9) is quite complicated and simpler estimates are not
that apparent. Secondly appropriate moment estimates are needed to be
plugged into (9) in order to have such a natural estimate. Finally, the most
important complication arises from the fact that k8 is itself an unknown
parameter, and, hence, it needs to be estimated from the sample. Therefore,
such a direct estimation scheme seems to be very ``unstable.'' On all counts,
the proposed resampling methods are more convenient.
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