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Suppose on a probability space (Q, F, P), a partially observable random process 
(x,, y,), t >O; is given where only the second component (y,) is observed. Further- 
more assume that (x,, y,) satisfy the following system of stochastic differential 
equations driven by independent Wiener processes ( W,(t)) and ( Wz(t)): 

dx,= -/?x,dr+dW,(r), x,=0 

dy, = ax, dt + dW,(t), y,=O; a,/?E(a,b),a>O. 

We prove the local asymptotic normality of the model and obtain a large deviation 
inequality for the maximum likelihood estimator (m.1.e.) of the parameter 0 = (a, p). 
This also implies the strong consistency, efticiency, asymptotic normality and the 
convergence of moments for the m.1.e. The method of proof can be easily extended 
to obtain similar results when vector valued instead of one-dimensional processes 
are considered and fl is a k-dimensional vector. 0 1991 Academic Press. Inc. 

1. INTRODUCTION 

Suppose on a probability space (a, F, P), a partially observable random 
process (xt, u,), t 2 0; is given where only the second component (y,) is 
observed (both the components could be vector valued). Furthermore 
assume that (x,, v,) satisfy the following system of stochastic differential 
equations (SDE): 

dx, = Fx, dt + G dW,( t), -%=~0, 

dy, = Hx, dt + dW,(t), Yo=O, 
(1) 

where (W,(t)) and ( W2(t)) are independent standard Wiener processes and 
F, G, H are nonrandom matrices of appropriate order. The initial value X,, 
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is assumed to be a Gaussian random variable independent of both ( W,(t)) 
and (K(f)). 

Let 8 (a point in Rk) be the vector of unknown parameters in H, G, and 
F. Estimation of 0 using observations (y,, 0 d t d T) is known as system 
identification. It appears that this problem of system identification was first 
considered by Balakrishnan [2], who proved the weak local consistency of 
the maximum likelihood estimator (m.1.e.) under suitable regularity and 
identifiability assumptions. Later Bagchi and Borkar [l] showed the 
strong global consistency of the m.1.e. for a slightly more general model. In 
their case the signal process could be an infinite dimensional process of the 
following kind: 

x, = ’ S,p,D dW,(s), 
s 0 

where S,, t 2 0, is a strongly continuous semigroup with generator A on a 
separable Hilbert space H, W, is a Brownian motion on a separable 
Hilbert space K, and D is a bounded linear operator from K to H. The 
observation process y,, however, is finite dimensional and satisfies the 
following SDE: 

y,= j;c,,ds+ Wz(f) 

where C is a bounded linear operator from H to R4 and W, is Rq valued 
Brownian motion independent of W,. The vector of unknown system 
parameters 8 is assumed to be a point from a compact set in Rk. 

It is important to note that even if the signal process is assumed to be 
finite dimensional their proof cannot be easily extended to obtain either the 
rate of convergence or the asymptotic normality of the m.1.e. Also, in 
addition to standard smoothness (with respect to 0), stability and con- 
trollability assumptions on A, D, and C, the smoothness of the error 
covariance operator P and uniform growth requirements on the semigroup 
Y,, a perturbation of S, introduced by them, are assumed rather than 
proved (see Bagchi and Borkar [l, (3.la), (3.lb), p. 210). These assump- 
tions are automatically satisfied in our case. No example of an infinite 
dimensional system satisfying the above mentioned assumptions is given. 

It was Kutoyants [8] who first considered the question of asymptotic 
normality of the m.1.e. in this setting. However, he only considered the 
following special case of the model in (1): 

dx,= -j?x(dt+dW,(t), x,=0 

dy, = ax, dt + dW,(t), y,=o; a, fi e (a, b), a > 0. 
(2) 
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(All the processes involved in (2) are assumed to be one-dimensional). In 
the above model, when /l is a known constant, Kutoyants obtained a large 
deviation inequality for the m.1.e. of tl which in turn implies the strong con- 
sistency, asymptotic normality, and the convergence of moments. In fact, 
without mentioning so explicitly, the “local asymptotic normality” (LAN) 
property of the model is also established, thus proving the efficiency of the 
m.1.e. in a large class of estimators (see, for instance, Basawa and Scott [S, 
Chap. 21). 

Here we extend this result to the m.1.e. of the bivariate parameter 
8 = (a, p). It should be emphasized that Kutoyants’s technique cannot be 
applied to this bivariate estimation problem (not even for the univariate 
estimation of b when a is a known constant). On the other hand, it will be 
clear that the method we have used can be applied without any major 
modification to the general model considered in (1) if, besides iden- 
tifiability, the following standard conditions are satisfied: (i) The parameter 
space 0 is an open, bounded subset of Rk. (ii) F, G, H are continuously dif- 
ferentiable with respect to 8. (iii) For every 8 the pair (F, H) is completely 
observable and the pair (F, G) is completely controllable. (iv) The eigen- 
values of the matrix F lie in the open left-half of the complex plane (i.e., F 
is stable). 

The main results along with the necessary notation are given in Section 2 
and the proofs are in Section 3. 

2. NOTATION AND STATEMENTS OF RESULTS 

From now on, unless mentioned otherwise, the signal and observation 
processes xI, y,, t 2 0; will refer to the solution of the SDE in (2). Also 
assume that the bivariate parameter 8 = (a, /I) is an element of 8 = (a, 6) x 
(a, b), a > 0, b < co. The letter C (with or without a subscript) will denote 
a positive constant independent of T (the time parameter); it need not be 
the same in two different expressions. 

For 0 < t let i, be the conditional expectation of x, given the observa- 
tions up to time t, i.e., 

gl= 0, I F:), (3) 

where F: is the o-field generated by ( y,, 0 < s < t } and all the P-null sets; 
furthermore, let 

dv, = dy, - a?, dt. (4) 

Then it is well known that (v,) is a Wiener process and, moreover, the 
process (a,) satisfies the SDE 

d2, = -/?a, dt + au, dv,, &=O; 
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where a, is the (unique) solution of a (deterministic) differential equation 
known as the Riccati equation. More precisely, a, is the solution of the 
following nonlinear differential equation: 

iUf= 1 -&‘a:--22pal, a,=o. 

It is also known that as t + GO, a, -+ aO, a0 = ( - fl + ,/-)/a*. All 
these facts can be found in Liptser and Shiryayev [9, Vol. II, 16.21. Now 
we make a simplifying assumption commonly made in the literature (see, 
e.g., Kutoyants [8, p. 1033). We assume that the system has reached the 
steady state, i.e., we assume that ,+Zt satisfies the SDE: 

d.?, = -PI?, dt + uag dv,, &=O. (5) 

Then from (4) and (5), it is easy to verify that 

I 
f 

it = uag e-b@-s)dy,, (6) 
0 

where be = Jm. 
Let CT denote the space of real valued continuous functions defined on 

[0, T] endowed with the sup-norm topology and let C, be the a-field of 
Bore1 sets in C,. Furthermore, let P”, denote the measure induced by the 
paths (y,, 0 <s < T) on (C,, C,). 

Then in view of the relation 

dy, = ~2, dt + dv; (7) 

and the fact that vf is a Wiener process, it follows that P”, is equivalent to 
the standard Wiener measure pw defined on (C,, C,). Furthermore the 
density or the likelihood function of the data (y,, 0 <s < T) at 8 is given 
by 

~(y)=exp(~o~~P,dy,-l/2~o~~2~~dt). 
W 

(8) 

The verification of this fact is quite straightforward; for example, it follows 
from the combination of two results (Theorems 7.3.1 and 7.3.2, p. 176) from 
Kallianpur [ 71. 

Let l(0) = l(13, y) be the loglikelihoodfunction of the data. For each T> 0 
define a random function Z,(U) as 

U,=,,h(Q-8)=,&a-a, b-cr)x(a-jl, b-j?). (9) 
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For u E UT, 

Z,(u) = l(6J + u/fi) - l(e). (10) 

(Clearly Z, and UT depend on 0 but this dependence is suppressed for 
notational convenience.) Now we can state the main result of this section. 

THEOREM 2.1. The random functions Z,(u) have continuous sample 
paths and satisfy the following three properties: 

(1) sup EB IZ,(U)-Z,(W)(~<CM~ lu-wj4 
I~I.IwI G M U.WE UT 

(II) For UE U, and T large, T> T,,, 

Ee exp( 1/4Z,(u)) < exp( - C’ 1~1’). 

(III) As T + 00 the finite dimensional distributions of Z,(u) converge 
to the finite dimensional distributions of Z(u), where for u E R2, 

Z(u) = u’ Y, - 1/2u’C, u; 

here Y, is a zero mean bivariate normal variable with invertible covariance 
matrix CO and u’ denotes the transpose of the vector u. (Note that Z(u) is 
a real valued, continuous random function defined on R2 which attains its 
maximum at a unique (random) point 2; ’ Y,.) 

The elements of the matrix CB are described as follows: Suppose that HO, 
Ge, and RB are trace class operators (R, is seif-adjoint) defined on 
L2[0, T] with kernels: 

Hdt, s) = J--& [l +b(t-s)-Jm(t-s)] e--(‘-‘), 

(11) 

GJt,s)= -l+ 
( J& > 

[l +/j(t-s)] e-W(r-s), 

if 0 <s < t < T and equal to zero otherwise; 

Rot& s) = 
e-8 II--s1 -e-P(r+s) 

28 ’ 
0 < s, t < T. (12) 

Let H* and G* denote the corresponding adjoint operators. Then it is 
easy to verify the following (see Lemma 3.2 in the next section): 

6) lim.,, l/T trace[HRH* + HH*] = o: c CO, 

(ii) lim., o3 l/T trace[GRG* + GG*] = 0: < co, and 
(iii) lim., m l/T trace[HRG* + HG*] = o12 < co. 
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Then CB denotes the 2 x 2 symmetric matrix with Cl1 = cr:, C,, = o;, and 
Cl2 = 012. It is easy to check that Z is strictly positive definite. 

The above result verifies all the conditions of two results in Ibragimov 
and Hasminski [6, Theorem 10.1, Chap. 1, and Corollary 1.1 in Chap. 31. 
The conditions are slightly modified in the sense that loglikelihood ratios 
are used rather than the likelihood ratios. The equivalence of these two ver- 
sions is not very difficult to see (see, e.g., Selukar [ 11, Theorem 2.2, p. 221). 
The property (III) is the uniform LAN property. The next theorem which 
is the result of practical interest follows as a corollary. 

Let fl,( y) be the m.1.e. of 0 based on observations (y,), 0 < t < T; i.e., the 
maximum of the likelihood ratio is attained at 4,. 

THEOREM 2.2. The m.1.e. of 0 has the following properties: 

47. is a strongly consistent and asymptotically efficient estimator 
of 0. O) I3 

(ii) As T tends to infinity the distribution of JT((eT- 0) converges to 
the normal distribution with zero mean and covariance matrix 2-l. Further- 
more, for every p > 0, the pth moment of the norm of JT(d, - 13) converges 
to the pth moment of the norm of this normal variable. 

(iii) For h > 0 and large T, T> T,, 

P,T{,/?I(d,-8)l >h) <&,exp(-b0h2), 

where B,, b, > 0 are constants. 

The efficiency in (i) above is to be understood in the sense of the second 
result from Ibragimov and Hasminski mentioned above. In particular, the 
m.1.e. is efficient under the quadratic loss. 

3. PROOF 

It suffices to verify the conditions of Theorem 2.1 which will be done 
using several lemmas. The first two lemmas are technical. Let (Y,), 
0 < t d T, be a mean square integrable zero mean Gaussian process with 
covariance R(t, s). Let R be the corresponding covariance operator. It 
is well known that R is a self-adjoint, non-negative definite trace class 
operator and 

trace(R) = ST R(t, t) dt = E I’ Yf dt. 
0 0 

(13) 
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LEMMA 3.1. (i) For all k> 1, 

(ii) 

E(joT y;dl)*<kk[E(joT Y:dt)]*. 

Eexp( -JOT Y:dt)<erp( - ;;;I;;,), 

where 11 RI1 is the operator norm of R. 

Proof: Let {A} be the system of eigenfunctions of R and &‘s be the 
corresponding eigenvalues then, using the Karhunen-Loeve expansion of 
(Y,), we obtain 

I 
T  

Y;dt= f ljXf and Ej= Y;dt= f S=l* say. (14) 
0 j= 1 0 j= 1 

The coefficients (Xj) are i.i.d. N(0, 1) random variables. From (14) 

Then the application of Jensen’s inequality in the square bracket and the 
i.i.d. nature of (Xj)s imply 

E(joT Y; dt) 4(i*)“E(~,iix:*)=(1*,“EX:*. 

Moreover, because X, is N(0, l), using Stirling’s approximation (see Rao 
ClO, P. 59lh 

This, together with (14) proves (i). The last inequality is easy to deduce 
from (14) and the fact that if X is a N(0, 1) variable then, for /I < f, 
Eexp(jIX2) = (1 - 2j19-l’~. 1 

For IE > 0 and m a non-negative integer, let L be an integral operator 
defined on L’[O, T] with kernel L(t, s) given by 

L(t, s) = (t -s)m e-““-“, O<s<t<T 

=o otherwise. 

That is, for f~ L2[0, T], 

W-)(t) = JOT Ut, s) f(s) ds. (15) 
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L is a special case of a Volterra operator. Let llLl/ be the operator norm 
of L and L* denote the adjoint of L. Then LL* is a self-adjoint trace class 
operator and it is easy to check that 

trace(LL*) = !‘I’ L*(t, s) ds dt 
0 0 

= T  l- u2me-2?." 

f s 

T  
du- U2VZ+ le-2”” du 

0 0 

The conclusions of the following lemma are simple consequences of the 
above expression for the trace of LL* and the definition of L. 

LEMMA 3.2. (i) llL[l 6 fi(r(m + ,)/Am+‘) 

(ii) trace(LL*) Q (r(2m + 1)/(21Z)2m+ ‘) T 

(iii) For large T, trace(LL*) 2 (Z72m + 1)/(2A)*“+‘) T/2 

(iv) lim., o. l/Ttrace(LL*) = r(2m + 1)/(2A)2m+1 

(v) If L, and L, are two Volterra operators of the above type (i.e., 
with Gamma kernels) then the operator L, L, is also a Volterra operator 
which is a finite linear combination of the operators of the above type. 

Proof: First observe that L(t, s) 2 0 and for each t, 1: L(t, s) ds < 
T(a + l)/A’+l. Hence 

(Lf)*(t)= ~~L(t,s)f(s)ds)*~~(a+l)/~“+‘(~‘L(t,s)f’(s)ds). 
( 0 

Therefore, 

IlLf//2=~oTVf)2Wdt 

T , 

<T(a+ l)/Aor+l 
ff 

L(t, s) f *(s) ds dt 
0 0 

<2(r(a+ l)/A’+1)2 IIf II*. 

This proves the first assertion. The others are even simpler to prove so the 
proofs are omitted. 1 

Remark 3.1. Note that the operator norm of L has a bound 
independent of T and the trace of LL* is of the same order as that of T. It 
is obvious that statements of the above lemma can also be obtained for an 
operator M which is a linear combination of Lis. 

Let d,(t, y) = ag-,. Then, using (6), 
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From (8) and (10) 

46 Y) = j’$(t, Y) dy, - l/2 j’8:(& y) dt. 
0 0 

Therefore, 

If we complete the square in the second term of the RHS and rearrange the 
terms we obtain 

-1/21’[8,(e+~Y)-Bi(e,y)]*dt, (17) 
0 

where dvf = dy, - 2J8, y) dt. Recall that under P,‘, vy is a standard Wiener 
process. 

From now on, unless stated otherwise, all the expectations are taken 
w.r.t. the true probability measure P,‘. Also, in order to simplify the nota- 
tion we may sometimes write, Z(U) = Z,(U), J?,(u) = 2,(6 + u/fi, y) and 
dv, = dvy. The next lemma verifies the first assertion of Theorem 3.1. 

LEMMA 3.3. For u, WE UT, 1~1, /WI GM, 

E(Z,(u)-Z,(W))4< CM4 Ill- WI4 

where C depends only on a and b. Recall that 8 = (a, b) x (a, b). 

Proof: From (17), 

Z,(u) - Z,(w) = joT C%(4 - %Wl dv, 

- l/2 jo’ {[8,(u) - 8,(O)]‘- [8,(w) - ft(0)]*j dt 

= TERM1 - l/2 TERM2 say. 
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Then, 

E(Z(u) - Z(w))” < 16(E(TERM1)4 + l/16 E(TERM2)4}. 

Consider E( TERM 1)“: 

E(TERM1)” = E j’ [B,(u) - B,(w)] dv,)4 
0 

(18) 

2 

< 16E [i@) - B,(w)]~ dt 

if 

T  2 

~64 EL-&(u) - it,(w)]’ dt . (19) 
0 

(The first step follows from Burkholder’s martingale inequality and the fact 
that (v,) is a Wiener process under Pr. The last step is a consequence of 
Lemma 3.1(i).) 

Note that from (16), 

(20) 

where L, = LB + ,,,J-~ is given as 

L,(t, s) = A,e-BU(‘-S), O<s<t<T, 

= 0, otherwise, (21) 

A,=A O+uJJ-T= 

and 

(Note that u = (u,, u2) is a point in U,c R2). 
Now recall that (see (2)) 

dy, = ax, dt + dW,( t), (22) 

where the “signal” (x,) and the observation “noise” ( W2(t)) are indepen- 
dent. Let R(t, S) denote the covariance function of xt, i.e., R(t, s) = E(x,x,). 
Then, since x, is the familiar Ornstein-Uhlenbeck process, it follows that 

R( t, s) = 
,-8b51 -,-/w+s, 

2B . 
(23) 
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If R is the integral operator with the kernel R(t, s). Then it is easy to check 
that R = R, R:, where R, is the Volterra operator with kernel 

R,(t, s) = e-B(r-s) for O<s<t< T. 

Therefore, by Lemma 3.2, R is a trace class operator and 

IlRll G V/3*. (24) 

From (20), (22), and the independence of (x,) and (W*(t)) it follows that 

f 

T  

E[h?&i) - 8,(w)]* dt 
0 

= (L,- L,)(t, u) R(u, s)(L, - L,)(t, s) ds du dt 

+j-Tj’(L,-L,)2(t,s)d~dt 
0 0 

=Trace{(L,-L,) R(L,-L,,)*}+Trace{(L,-L,,)(L,-L,)*}, 

where L, denotes the integral operator with kernel L,(t, S) and (L,)*, its 
adjoint. Next, using (24) and the fact that for any two non-negative definite 
trace class operators J, and J2, 

Trace(J,J,)dTrace(J,).IIJ,II, (25) 

where llJ211 = the operator norm of J2, it follows that 

5 
T  

E[R,(u) - ft(w)]* dt < (1+2/b*) Trace(L- U- L,)(L,- L,.)* 
0 

=(1+2/~2)jTj-f(LU-L,,,)2(t,s)dsdt 
0 0 

d C{ (u, - WI)* + (4 - w,,‘}. (26) 

The last step is obtained using the Taylor expansion and Lemma 3.2 as 

L,(t, s) - Lit, s) = (ul- w,,/fi; L,(t, s) 

+ (u2 - w2)/&j LJt, s), 

where n E (a + ~,/fi, a + w,/fi) x (B + u2/fi, /3 + wd,/?) = 0. (u may 
depend on t and s.) Therefore, 
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x ((C,+C,(t-s)+C,(t-s)2)exp(-C,(t-s))}; 

C;s are positive constants which depend on a > 0 and b only. (Recall 
that 0 = (a, b) x (a, 6)). Therefore from Lemma 3.2(ii) and Remark 3.1, 

(l+z/~*)~=~‘(L,-L,)~(t,s)dsdt 
0 0 

~4/T[(u,-w,)‘+(u,-ww,)2] 

X 
ff 

’ r{(C,+C2(t-s)+C,(t-s)2)exp(-C,(t-s))}dsdt 
0 0 

d C I/u- wll*/Tx T. 

Thus, from (19) and (26) it follows that 

E(TERM1)4 < C ((u- ~11~. 

Now consider TERM2: 

(27) 

(TERM2)4 = I’ {[2,(u) -2!(O)]* - [$(w) -8,(O)]‘) dt)* 
0 

2 

d k%4-%(W+ C%,(w)-~,(W)‘dt 
> 

2 
X (B,(u) - ii?,(w))2 dt 

> 
. 

We have used the identity (x2 - v*) = (x + y)(x - y) and then applied 
the Cauchy-Schwartz inequality. Again applying the Cauchy-Schwartz 
inequality, Lemma 3.1 (i) and from calculations similar to TERM1 we have 

IY(TERM~)~ < j-‘( [if,(u) -i?,(O) J + C&(w) - $(O)])’ dt 
> 

4 

0 

683/39/Z-6 
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Thus, since IIu[I, llwll <AI, 

IY(TERM~)~ < CM4 IIu- w)14. (28) 

The statement of the lemma follows from (18), (27), and (28). 1 

LEMMA 3.4. For u E U, and T large, 

Eexp(l/4Z,(u))~exp(-C’ 11412), 

where C’ > 0, depends on a and b only. 

ProojI From (17) and an application of the Cauchy-Schwartz 
inequality, 

Eexp( 1/4Z,(u))= Eexp 
( 

l/4 s’ [8,(u) - 8,(O)] dvy 
0 

- l/8 joT C over TJi?,( u) - R,(0)12 dt 
> 

l/2 j’ [2t(~) -B,(O)] dvf 
0 

- l/8 f’ [8,(u) -R,(O)]’ dz 
0 

. 

Note that the first term of the product in the bracket is a density (w.r.t. 
Pr). Therefore, 

The RHS above can be easily bounded by applying Lemma 3.l(ii), since 
5, = [2t(~) -;E,(O)] is a Gaussian process. Let F(t, s) be the covariance 
function of this process and F be the corresponding covariance operatar. 
Then, 

E exp( 1/4Z,(u)) < exp - l/16 
trace F 

1+ 2 IIFII > * 

From the calculations made in order to bound E(TERM1)2 in 
Lemma 3.3 (with u = u and w  = 0) we can make the following observations: 
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(i) F=(L,-L,)R(L,-L,)*+(L,-L,)(L,-L,)* 

(ii) IlFll < C 

(iii) trace F = trace(l, - L,) R(L, - L,)* + trace(l, - 15,) 
wu - Lo)* and, since the first term is always positive, trace F 2 
trace(l, - L,)(L, - Lo)* > C ~\uI[~. 

In order to see (iii) first recall that 

trace(l, - L&L, - L,)* = j’s’ (L, - ~5,)~ (t, S) ds dt. 
0 0 

Now 

where II E (a + u,/fi, ~1) x (fi + uJfi, /I) c 0. (II may depend on t and s.) 
Therefore, 

Cls are positive constants which depend on a > 0 and b only. (Recall 
that 0 = (a, b) x (a, b).) Therefore, from Lemma 3.2(iii) and Remark 3.1, 

SI = r(L,-Lo)z(r,s)dsdt 
0 0 

~4/Tll~ll~~~S*(CI+C,(t-s)+C~(t-s)~) 
0 0 

x exp( - C,( t - s)) ds dt 

~4/TIlul12C.T=C.Ilul12. 

for large T. Thus (iii) follows and we finally obtain that, for large T, 

Eexp(1/4Z.(u))~exp(-C’ l1412L 
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where C’> 0, depends on a and b only. This is the statement of the 
lemma. 1 

For u = (ui, u2) E R2 let 

Z,(u) = U’Yd - l/224’&, (29) 

where Y, is a zero mean bivariate normal variable with covariance 
matrix C. 

Now we will show that finite dimensional distributions of Z,(U) 
converge to the finite dimensional distributions of Z,(U) as T + co. This is 
done in two steps. First we define random functions Z;(u) such that for 
any fixed u E U,, 

E(Z,(u) - Z?(u))’ + 0 as T-+co. (30) 

Next we show that finite dimensional distributions of Z:(u) converge to 
the finite dimensional distributions of Z,(U). These two steps are clearly 
sufficient for our purpose. 

Let us begin the first step: For u E U, let 

G(u) = ST l~A/“h(~) + 4/‘hr(~)l dvf 
0 

= Jb; (-1 +&/m)[l +b(t-s)] cm(‘-“dy, 

= ‘G,(t,s)dy,. 
1 0 

(31) 

(Recall the two integral operators H,, Ge with kernels H,(t, S) and G@(f, s) 
defined in Section 2 (see (1 l).) It turns out that Ho(t, s) = (6/&x) L+(t, s) 
and Gdf, s)= (WV) &(t, s).) 
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LEMMA 3.5. For UE U,, 

E(Z,(u) - z;(u))’ -+ 0 as T+co. 

Proof: This proof is almost identical to that of Lemma 3.3. From (17) 
and (31) 

where 
Z,(u) - Z:(U) = TERM A - l/2 TERM B, (32) 

TERM A = joT C&W-&(O) - Wfi W’) + ~&hr(~))l dv; 

and 

TERM B = j’ (C&b) -~,(W’- Cu,IfiW? + &“b,Wl’) dt. 
0 

Let us consider E(TERM A)*. Since (v,) is a Wiener process, 

E(TERM A)* 

T  f 

J [i 1 
2 

=E 
0 0 

(L,-Lo-(u,/~H+u,l~G))(t,s)dy, dt 

<(1+2/B2) jo~j~(L.-L,-(u,/~H+u,/~G))2(t,s)drdt. 

The last step is obtained using the same arguments as in (17)-(26). Now 
note that, using the Taylor expansion, 

(L,-Lo-(u,IJTH+u,I~G))(t,s) 

for some u E (0, 8 + u/fi) c 0. Therefore, 

(L,-L~-(~~IJTH+u~/~G))’ (6s) 

< C/T2(u; + 24:)’ 

683/39/2-l 
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(The positive constants C and C1 depend on a and b only.) Therefore 

<c I(ul14/T2. T-+0 as T-+co 

(since u E U, is fixed). Thus E(TERM A)2 + 0 as T -+ co. 
The steps to show that E(TERM B)2 --) 0 as T-P co are also very similar. 

This concludes the proof of Lemma 3.5. 1 

Now let us begin the second step: First we state a version of the central 
limit theorem which is useful for our purpose (see Basawa and Prakasa 
Rao [4, Theorem 2.1, Appendix 2, p. 4051). 

Let { H’(t), t > 0} denote the standard m-dimensional Brownian motion. 
Suppose that J’(s)=(&(s))),~, is a random matrix valued function such 
that its elements fki E H[O, T] for all T > 0. (A random function f~ H[O, T] 
iff it is adapted to the Wiener filtration and 

EjTf2(t) dt < co.) 
0 

Set f,(s) = (MS), . . . . L,(S)), 1 G k G n. 

THEOREM 3.1. Suppose that the random matrix valued function F(s) 
satisfies 

l/T I’ (f,(s))’ fi(s) ds -+ ckj 
0 

in probability as T + CO, where cij, 1 <k, j < n, are finite. Then the distribu- 
tion of 

T-‘12 jo’ F(s) dW(s) 

converges to the normal distribution with mean zero and covariance matrix 
C= (ckj) as T-, co. 

Note that just as Z,(u) (see (29)) we can write 

Z?(u) = u’Q,(O) - 1/2u’d .(B)u, 



PARAMETER ESTIMATION IN LINEAR FILTERING 301 

where Q,(O) is a bivariate normal random variable and AT(O) is a 2 x 2 
random symmetric matrix described below: 

Q=(e) = ( lIfijoTW) dv,, l:fijo= g,(e) dv,)', 

A,(l, l)= l/‘Tj?z:(B)dt, 
0 

4,CT 2) = v-Jr d(e) dt, 
0 

A T(l, 2) = w-Jr h(e) h,(e) dt. 
0 

From the above result, the fact that (v,) is a Wiener process, and the 
special forms of Z;(u) and Z,(U), it is clear that we only have to show 
that AT(O) converges to C in probability and Q,(e) converges to Y, in 
distribution. Since the former implies the latter we only have to show 
that A,(O) converges to C in probability. 

Let us first show l/T~,‘hf(O) dt + 0:. We will show that 

l,‘Tj=h;(H)dt-a: 
> 

2 

--PO as T-co. 
0 

Let M,= El/Tj,Thf(O) dt. Then 

l,‘Tj=hf(O)dt-0: 
2 

0 

l/T~=h;(B)dt-MT 
> 

2 

+ 2(M, - of)‘. 
0 

Consider the first term on the RHS: 

l,‘Tj=h;(O)dt-A4 
0 

.)i=E(l,Tj-oTh;(0)dt)2-(MT)2 

= l/T2 j-‘j.’ (Ehfhf) ds dt - (MT)‘. 
0 0 

Let J(s, t) = Eh,h,; then, since (h,) is a Gaussian process, 

Ehfh; = 2J2(s, t) + J(t, t) J(s, s). 

This, together with the fact that M,= l/TfrJ(t, t) dt, implies that 

l/Tj=h;(@dt-M 
0 

T)2=2,T2j-oTjoTJ2(s, t)dsdt 

(33) 

=2/T’ trace(JJ*) 

<2/T’ trace(J) 11311, 
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where .Z is the integral operator corresponding to the symmetric kernel 
Jb, 2). 

Since h, = Jb H&t, s) dy,, it is easy to check that J= HRH* + HH*. 
Therefore, using Lemma 3.3(i) and (ii) we obtain that jlJJ( <C and 
trace J< CT. Thus 

E l/T~=h;(tI)dt-M, 
( 0 > 

2 

< 2/T=CT + 0 

as T + co. Therefore (33) is proved if we show that 

M,-$ as T-+co. 

However, note that 

M,=El/Tj=h;(8)dt= l/TjTJ(t, t)dt 
0 0 

= l/Ttrace J= l/T[trace(HRH*) + trace(HH*)]. 

Therefore 

lim M,=a:. 
T-CC 

The verification of l/Tjr g:(8) dt + 0: is exactly identical. Then only 
l/Ts; g,(e) ht(@ dt --) ~1,2 remains to be verified. Let 

Consider 

YT=El/TJT g,(8) h,(8) dt. 
0 

E w-j“ g,(e) h(e) dt - vT 
> 

2 

0 

= E l/TIT g,(8) h,(8) dt 
> 

2 

- ( vT)2 
0 

= l/T2 joT joT ( Eg, &kk) ds dt - ( vT)2. 

Note that if cr, t2, <3, c4 are jointly normal then 

E(~,~25354)=E(rl52)E(5354)+E(5153)E’(5254)+E(5154) E(5253). 

Therefore, if Z(s, t) = E( g, g,) and K(s, t) = E(h, g,), 

Eg,g,h,h,=Z(t,s)J(t,s)+K(t, t)K(s,s)+K(t,s)K(s,t). 
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Therefore, 

= l/T2~T~T(Z(~,~)J(I,~)+K(r. t)K(s,s)+K(t,s)K(s, t))dsdt 
0 0 

-l/T*j=/=(K(& t)K(s,s))dsdt 
0 0 

= l/TZ.Tr~I(Z(l,~)J(f,~)+K(I,s)K(s, t))dsdr 
0 0 

.Z*( t, s) ds dt 

Using the facts from Lemma 3.2 and Remark 3.1 it is easy to see that the 
above terms tend to zero as T-t CO. Let K be the integral operator with 
kernel K(s, t); then 

K= HRG* + HG*. 

Thus the verification is complete, since 

s T  

lim VT= l/T lim K(t, t) dt 
T-W T + m  0 

= l/T lim trace[HRG* + HG*] = o~,~. 
T- 05 

This concludes the proof of Theorem 2.1. 1 
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