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Multivariate Liouville Distributions 

RAMESHWAR D. GUPTA* 

DONAH> ST. P. RICHARIX’ 

A random vector (,Y, 1 ._.. x’,,). with positive components, has a Liuuville dis- 
tribution if its joint probability density function is of the form /(.Y, + + \,,) 
.,-‘;I ’ .,::* ’ with the (I, all positive. Examples of these are the Dirichlet and inver- 
ted Dirichlet distributions. In this paper, a comprehensive treatment of the Liouville 
distributions is provided. The results pertain to stochastic representations. transfor- 
mation properties. complete neutrality. marginal and conditional distributions. 
regression functions. and total positivity and reverse rule properties. Further. these 
topics are utilized in various characterizations of the Dirichlet and inverted 
Dirichlet distributions. Matrix analogs of the Liouville distributions are also 
treated. and many of the results obtained in the vector setting are extended 
appropriately. f IYX7 Academ!L Pre\r. Inc 

Recently, increasing attention has been paid to families of probability 
distributions which are defined through functional form assumptions. both 
on density functions (cf. Johnson and Kotz [ 13, p. 294 ff]), and on charac- 
teristic functions (cf. Cambanis et al. [ 1, 21; Fang and Fang [7]; Richards 
[29]). These studies develop unified treatments of all distributions in some 
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234 GUPTA AND RICHARDS 

particular class, thereby developing their common features. For example, 
the papers [I. 31 prove that certain important sampling properties of the 
multivariate normal distributions remain valid for the larger class of ellip- 
tically contoured distributions, 

In this paper, we study another family, the Liouville distributions. 
defined through functional form restrictions on the density functions. An 
(absolutely continuous) random vector (dY,, . . . . X,,) has a (multivariate) 
Liouville distribution if its joint density function is proportional to 

(1.1) 

where the variables range over the generalized octant R”+ = ((A-,. . . . . x,,): 
.s, >0, i= 1, . . . . 12;; (I,, . . . . u,, are positive numbers; and the function ,f’( .) is 
positive, continuous, and satisfies the integrability condition (2.1 ) (with 
/jr= 1) below. If ,f’( . ) has noncompact support, we say that (X,, . . . . X,) has 
a Liouville distribution of the first kind. If the support of .f( ) is compact 
then we may assume, after a scaling, that ,f’( ) is suported on (0, 1); then 
the variables range over the simplex ,U;: = ((s,, . . . . x,,): s, > 0, i= 1, . . . . rr; 
X::‘L , .Y, < 1 1. and we say that (,Y,, . . . . X;,) has a Liouville distribution of the 
second kind. 

Brief treatments of the Liouville distributions appear in [22; p. 3083, 
where they are related with Schur-convex functions; and also in [31], 
where some results on marginal distributions and transformation proper- 
ties are presented. 

1.1. EXAMPLF. (correlated gamma variables [22; p. 3081). If f’(f) = 
1 t, ’ C’ “‘, t > 0, (I > 0. h > 0, then (X,, . . . . ,Y,,) has a Liouville distribution of 
the first kind, with joint density function proportional to 

(1.2) 

1.2. EXAMPLE (the Dirichlet distribution). If ,f’( t) = ( 1 ~ t )+. I ‘. 
o<t< I, II,, / , > 0, then (/X’, . . . . . X,,) has a Liouville distribution of the 
second kind with joint density proportional to 

(1 -!, .I.,)t”“’ ’ fi, .q ‘. (1.3) 

1.3. EXAMPIX (the inverted Dirichlet distribution). If ,f’( t) = 
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(1 l tt) lul+ --+~G~+i), t>(), urr+, > 0, then we have a Liouville distribution 
of the first kind, with joint density function proportional to 

In this paper, we provide a comprehensive treatment of the Liouville dis- 
tributions, extending the range of topics considered in [22, 311. Our results 
pertain to stochastic representations and transformation properties (Sec- 
tion 3); marginal and conditional distributions, and regression functions 
(Section 4 ); total positivity, reverse rule, and dependence properties (Sec- 
tion 5); and characterizations based on the above topics (Section 6). 
Examples 1.1P1.3 provide motivation for our work, consistently pointing 
towards new results. For instance, we extend the results of 1161 on the 
multivariate reverse rule properties of the Dirichlet distributions to a large 
subset of the Liouville distributions of the second kind. In return, we 
characterize the three examples using independence, regression, and 
neutrality properties. 

We also consider matrix analogs of the Liouville distributions. The 
positive definite (symmetric) 1~ x VI matrices A,, . . . . A,, are said to have a 
Liouville distribution of the first kind if their (continuous) joint density 
function exists and is proportional to 

,f’ (1.5) 

Here. IAl denotes the determinant of A; f’( .) is positive, continuous, sup- 
ported on all of R,;x”’ (the cone of positive definite t~z x m matrices), and 
satisfies (2.1) below; p = i(m + 1 ) and u, > p- 1, i= 1, . . . . n. Further, the 
matrix Liouville distributions of the second kind are those for which 
I-x;- , A, is also positive definite, where 1 denotes the ~II x ??I identity 
matrix. 

1.4. EXAMPLE. Let S,,, . . . . S,, be independent WI x IPI Wishart matrices 
having common covariance matrix X:, and degrees of freedom u,~, . . . . u,,, 
respectively, where a, > p - 1. i= 0, . . . . II. Let S’ ’ denote the unique, 
positive definite square root of S= C;=,, S,. Then Olkin and Rubin [24] 
(cf. Khatri [18], Mitra [23]) show that the matrices A, = S ‘,:‘S,Sm”‘, 
i= 1, . . . . II have the joint density which is proportional to 
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for A , , . . . . A ,I, f - X:2 , A, all positive definite. This is a Liouville dis- 
tribution of the second kind, generalizing Example 1.2. 

1.5. EXAMPLE. Let S,, . . . . S,, be defined as above. It is shown in 1241 
that the matrices A, = SC,- “‘S,S, ’ ‘, i = I, . . . . n, have the joint density which 
is proportional to 

(1.7) 

This is a Liouville distribution of the first kind, generalizing Example 1.3. 

Most of the results obtained for Liouville vector distributions will be 
extended to their matrix counterparts. However, it appears that the com- 
pletion of this program will require highly sophisticated techniques (see the 
concluding remarks below Section 9). Section 7 contains stochastic 
representations and transformations for the matrix distributions, extending 
Section 3; while Sections 8 and 9 are appropriate extensions of Sections 4 
and 6, respectively. 

2. Prrlinhwies 

Throughout, all random entities are assumed to be absolutely con- 
tinuous with continuous density functions. However, we note that some of 
our stochastic representations can be obtained in a density-free way using 
the methods of Khatri [lg], Kumar 1211, and Mitra 1231. We shall 
denote normalizing constants by the symbols c, co. c,, c,, etc.. since their 
precise expressions are not needed. 

We invariably write (X, , . . . . A~,, ) x ,!,,,[,I’( ); N, , . . . . LI,,] whenever 
(X,. . . . . X,,) has a Liouville distribution. If necessary, we write 
(X, ~ . . . . X,,) - L):‘[ I’(. ); (I,, . . . . u,,], k = 1 or 2, according as the distribution 
is of the first or second kind. We denote the Dirichlet distributions (1.3) 
and (1.4) by f&a,, . . . . II,,; u,, + 1 ) and ID(a,, . . . . rr,,; u,,+ , ), respectively; 
however. if II = I, we use B(u, ; a:) and IB(u, ; (I?) for the beta and inverted 
beta distributions. Precisely the same notation will be used for the matrix 
distributions, since the context always eliminates any possible confusion. 

The nomenclature “Liouville distribution” is adopted from Liouville‘s 
extension of Dirichlet’s integral [6; p. 1601. On the space R”:“)‘, this 
integral is as follows: if p=$(p?z+ 1); ir,>p-1 for i= l,...,n: 
II = u, + . + u,,; and 



MULTIVARIATE LIOUVILLE DISTRIBUTIONS 

then 

= n:: I f,,(a;) s f,,ia) . I TI ‘I ” ,f( T) dT. 
R”’ x “I 
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(2.2) 

In (2.1) and (2.2) dAj is the Lebesgue measure on R;“’ and I-,,,( .) is the 
multidimensional gamma function [ 1 I]. 

If a continuous function f’: R;*“’ + R satisfies (2.1) and a>p- 1, then 
the Weyl fractional integral of order SI of ,f( . ) is 

W’,/‘( T) = j&j;, -, IS- Tl”~ P.f‘(S) dY ,,l \,I 
(2.3) 

where “S> T” means that S- T is positive definite. Detailed properties of 
M’” are available from Rooney 1311 when PI = 1 and for general nr from 
Richards [28]. The main properties needed are (i) if a continuous function 
.f‘( ) satisfies (2.1) then there is a one-one correspondence between f‘( ) 
and its “fractional derivative” IVf’( .); (ii) IV” satisfies the semigroup 
property W” + ‘j = W”W”, cc>p~l,‘p>p~l. 

In Section 9, we shall apply the theorem of Deny [4]. Let G be a locally 
compact Abelian group with a countable basis, and v be a Radon measure 
on the Bore1 subsets of G such that the smallest closed subgroup of G 
generated by the support of \I is G itself. Further, let G be the set of all 
continuous functions q5 : G + R ~+ for which &s + t) = d(s) d(t) for all s, t in 
G, and 

With the topology of uniform convergence on compact subsets of G, G is a 
locally compact space and G(v) is a Bore1 subset of G. 

2.1. THEOREM (Deny 141). Let ,j‘: G + R, he continuous and satisfii, 

.f’Ls)= ~,.fl.s+ t) dv(t), J 
.s E G. (2.4) 

I 

Then there e.uists a unique positive measure ,u OH 6(v) such that 
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Other applications of Deny’s theorem are given by Rao [26] and 
Richards [27]. 

1. LIOUVILLE DISTRIBUTIONS ON R’; 

3. Transformations and Stochastic Representation.~ 

We begin by establishing a one-one correspondence between the two 
kinds of Liouville distributions. 

3.1. PROPOSITION. St4pposc~ thur ( Y,, ___. I’,,) - L],“[,y( .); 11). . ..? LI,,]. 

D<f ;;nfJ 

‘Y, = Y,/ ,/[I -ii, Y,,. i= l,...,/Z. (3.1 1 

Then (.I’, , . . . . ,I’,,) - Lj,’ ‘[ f’( ); u, , .._, a,,], ,chrre 

,f’(t)=(l +t) ‘WA +““+“g(t,!(l +t)), t > 0. (3.2) 

IFI purticulur. the corrrspondencr hrt~tvrn f‘( ) and ,y( ) is o~z+orw. 

Proc?f: Solving Eq. (3.1 ), we obtain 

Y,=.ri,, -/cl +!, A,]. i= I. . . . . ti, (3.3) 

and it is straightforward to show that the Jacobian of the transformation 
(3.3) is (1 +x;-, x,) “I+ I’. Then, the result follows by routinely applying 
(3.3) to the density function of ( Y, , . . . . I,,). It is clear that the converse 
result is also valid. 

3.2. THEOREM. Let (X, , . . . . X,, ) - L,,[,f'( . ); u, , . . . . u,,]. Thaw the,fiAlo~~ing 
.stoc.hastic~ wpwsen tations ure &id: 

(i ) (X, , ,.., .y,,) = y’ ( Y, . _.., Y,, , , I -- C:‘~- li Y,) Y,,, rlherr ( j’, , . . . . 

y,, 1) and Y,, ure nmtuall~~ independent. und ( Y, , . . . . Y,, , ) - D( a, , . . . . 
a,, , ; (I,, 1; 

(ii) (*y ,,...,. y,,) =“’ (ny=,I Y,, (1 ~ Y,)ny-i Y ,,.... l-Y,, ,) I:,, 
~~herc~ I’, . . . . . Y,, are Fmtzlul!)~ irldepmdent, und Y, v B(C; , u, ; (I, + , ), 
i= I, . . . . II-- 1; 

(iii) (A’,...., *y,,) =?’ (n:,=,‘(l + Y,) ‘. Yt r]:I=; (1 + Y,)‘...., 
y,, , ( I + Y,, , ) ’ ) Y,, , ithere Y,, ,.., Y,, are tnutuull~~ independent, and 

Y, - IB(a,, , ; C;=, u,), i= 1, . . . . iz- 1; 
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(iv) (X,, . . . . X,,) =y (Y,, Y,(l - Y,), . . . . y,,- I rI:z; u - Y;), 
ny= ; (1 - Y,)) Y,,, IlkV? Y,, . . . . Y,, arc mutually independent, and 

Y,-Na,;C;=,+, a,), i= 1, . . . . Iz- I. 

In a/l,fiuir cases, Y,, =y’ C:‘=, X, - L, [,f’(. ); C:‘= , a,]. 

Before proving the theorem, we review two implications. With fixed 
~7 , , . . . . a,, , the function .f‘( . ) and hence the distribution of (X,, . . . . X,,) 
is uniquely determined by the distribution of Y,,. As an example, 
I,, can have a gamma distribution only if (X, , . . . . X,,) has the distribution 
given in Example 1.1. Next, for an application of the theorem, 
suppose that (X,, . . . . X,,)-D(a,, . . . . a,,;a,,+,); i.e.. f(t)=(l -f)““” I, 
0 < r < I. Then, in Theorem 3.2(ii). the mutually independent variables 
Y, - B(a, + ... +a,;a,, ,), i= 1, . . . . II, and II;=, Y, =i/’ X, Then (by 
Proposition 4.1 below) I-I:‘=, Y, = i/ X, - B(a, ; CI~ + I.’ + a,, t , ). This 
is a new proof of a result of Rao [25; p. 1683 on certain products of 
independent beta variables. 

3.3. Proof of’ Tkortw 3.2. Each stochastic representation defines a 
transformation from (X, , . . . . X,,) to ( Y, , . . . . I’,,). For (i), substitute .Y, = 19, J‘,~ 
(i= 1, . . . . II - 1 ) and .Y,, = (1 -C:‘: ,’ J’,) J’,, into (1.1 ); the corresponding 
Jacobian is j$ ‘. After some routine algebra, the joint density of 
( Y,. . . . . Y,,) is seen to be a multiple of 

which gives the desired result. Finally, the other parts are proven 
similarly; note that the Jacobians of the transformations in (ii), (iii), and 
(iv) are, respectively, n:= z ~9: ‘, j’:: ’ ny=-,’ (1 + j’,) ‘I+ I’, and .I$ ’ 
n;_,1 (1 -?‘,)” ’ ‘. 

3.4. PROPOSITION. Ij' (X,, . . . . X,,) - L,,[.f( . 1; L(,, . . . . u,,], therl (Z,:=, .I’, I/ 
CC:'_, X,)-BE=, (7,; C:'=, + , ~0, r<n. 

Proqf: ln Theorem 3.2(i), it was shown that (X,, . . . . X,,) =” (I’,, . . . . 
Y ,I~ 1, 1 - C;:,’ Yi) Y,,, where ( Y,. . . . . Y,, , ) - D(a,, . . . . (l,,~~, ; a,,) indepen- 
dently of Y,-L,[f’(.); C:‘=l u,]. Since (Y,,..., Y,)-D(al.....u,: 

Err-+ I a,) (by Proposition 4.1 below), then (x;=, X,)/(x;;, X,) =’ 
C:=, Yj-RC:=, a,; C:‘=.+, a,), r<n. 

The special case when a, - 4 can be alternatively obtained by first 
relating the Liouville and the spherically symmetric distributions [9] and 
then applying results from [17]. 
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4. Marginal and Conditionul Distributions 

4.1. PROPOSITION. Ij' (X,...., X,)- L,,[.f‘(.); u,...., u,,] then (A’,,..., A’,) 

- LCfA 1; (1 I1 ...> ar], r < 11, where a = C: ,+, u,, amif;( W”f(t) is the 

f~acrional integral of order u of f( ). 

Proof: By definition, the marginal density function of (X,, _.., ,I’,) is 
proportional to 

Applying Liouville’s integral (2.2) (with 1~ = I ) to the function 

flt+~;=, Y ). we see that (4.1) is proportional to , 

(4.2) 

From this, the result follows readily. 

4.2 Rrnrark. (i) In the case of the class I!,:,~), the marginal distribution 
of (X, , . . . . X,.) was previously derived in [3 11. 

(ii) From the unicity of the fractional integral operators, it follows 
that for fixed CI,, . . . . a,,, there is a one--one correspondence between .f’( .) 
and j;.( ). In the extreme case r = I, we find that the distribution of 
(,I’, . . . . . .Y,,) is uniquely determined by the distribution of X, 

(iii) A curious property of the class L13’ is that at most one of the 
univariate marginals can be uniformly distributed on (0, 1) (cf. [ 13, p. 3051 
for the case of the Dirichlet distributions). In proving this result, it suffices 
to assume II = 2; thus, suppose that (X,. X2) - L$“[f(. ); a,, a,], where 
a, buz without loss of generality. Then. X, - ti”[ WU2,f‘( .); a,] and 

L”)[ W”’ f‘( .); LI,]. If X, is uniformly distributed on (0, 1) then 
*” ’ W’ f‘(t) 2 c, equivalently, 1”’ ‘<I’ 
density of X2 is proportional to 

W”Jf( I) = (‘[ [I, + 1, O<ttl. Then, the 

f”‘ 1 ,;Wf( f) = p: I M”” e( WlZ,f‘( f )) = (,pc 1 W”, “L( t <J, !- 1 ) 

which is not constant. That is, X, is not uniformly distributed on (0, 1 ). 

4.3. COROLLARY. lf‘ (X,, . . . . X,,)- L,z[.f(.): u,, . . . . u,,] thrn the cm- 
ditional distribution of‘ (X, + , , . . . . X,,), gizvn IX, = xl , . . . . X, = .Y, I, r < tz, is 

L,, ,IsA ); u,, 1, “‘9 a,,], where ~,(t)=.f(t+Z::~ , .~,V.LE=, -u,). 

The proof is straightforward from Proposition 4.1. Since the conditional 
distribution depends on .Y, ~ . . . . .K, only through XI-, x,, we lose no 
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generality by conditioning on (C:=, Xi = ?: ‘,, where J = I;= , x,. We shall 
use this result repeatedly in developing the multiple regression properties of 
the class L,,. 

4.4. PROPOSITION. Jf (X, . . . . . X,, ) A L,, [,f( . ); a, . ,... u,,], r < n, mi the 

e.upectation h&w erists. fhen 

~thrre u = 2;. r+ , u,, ,j= C:'_ I+ , j,. In purticulur. (4.3) remuins valid lf’ 

lx I i I Xi’ is repluced hi> X,‘. r + 1 < i < II. 

Proof: By Corollary 4.3. 

On applying Liouville’s integral (2.2). we see that the last integral above 
equals 

-r 

I 
(‘2 J‘ “I’ ‘.f’(?,+t)dl,=(,M”+“,f’(t). 

-0 

Since ,/i(t) = W.f’(t), then we have proven (4.3). The corresponding result 
for 6(X/) is proven similarly. 

4.5. EXAMPLE. If (A’, . . . . . X,,) b D(u,, . . . . u,,; u,, + ,) then it follows from 
(4.3) that 6(n~.‘=,. , , Xi’1 X, =s,, . . . . A’,= x,) is proportional to 
( I - x:= , x,)‘. See 113; p. 3041 for a special case of this result, 

4.6. PROPOSITION. Under the same ll~y70tlzesr.s assur~~ed in 
Proposition 4.4, 

brliere A( ) is a real-durd fimction for whidz the e.xpectatimi eui,vf.s. 

The proof is similar to the proof of Proposition 4.4. In particular, if 
h(t)=t’then we find that for 1 <r<k<n, 
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In this section, we use the results of Karlin [14] and Karlin and Rinott 
[ 15, 161 to obtain the totally positive and reverse rule properties of the 
Liouville distributions. Then, we make applications to derive some 
probability and correlation inequalities and positive dependence properties. 

On R”, introduce the lattice operations v and A : if x = (.Y,, . . . . .Y,,) and 
y = ( .I’, . . . . . J‘,, ) are in R”, then 

x v y= (max(s , . .I’, 1, . . . . maxts,,. J’,, 1). 

x A y = (minis,, J’, 1, . . . . min(s,,. ~9,~)). 

5.1. DEFINITION [ 151. A function g: R” + R , is rnultioariute total/J. 
positirc~ c?f’orrkr 2 (MTP,) if for all x, y in R”. 

8(X)K(Y)G<dX v y)g(x A Y). (5.1 ) 

A random vector (X,, . . . . X,,) is MTP, if its density function is MTP,. 

In order to verify (5.1), it is sufficient [ 15, p. 4691 to check that g(x) > 0 
is MTP, in every pair of variables while the remaining variables arc held 
fixed. With regard to the Liouville distributions, we have the following 
result. 

5.2. PROPOSITION. Let (.k',, . . . . ,u,,)- L,,[f‘( .); (I,, . . . . u,,]. Th thr 
fbllo~c~ing m-c’ rquiuulent : 

(i) (~I’,, . . . . .I’,,) i.v MTP,; 

(ii) ,f’(s t J,) is TP, in (.Y. J!) on R’, ; 

(iii ) ,f’( . ) is lo‘~urithnlic~all?~ conw.~ mz R + 

Proc?fI It follows from Definition 5.1 that the density which is propor- 
tional to (n:,- , .Y;, ‘) ,/(I;,, , .u,) is MTP, if and only if ,f(C:‘-, s,) is 
MTP,. Since MTP, is equivalent here to pairwise MTP?. then we have 
,f‘(.xe, + .v2) TP, on Rt. proving that (i) and (ii) are equivalent. Finally, the 
equivalence of (ii) and (iii) was proven by Karlin [ 14, p 1601; indeed, 
condition (5.1 ), when n = 2. is precisely the definition of logarithmic 
convexity. 

5.3. EXAMPLE. Let ,f’( -) be either of the functions ,f’,(r) = t“ ‘c “’ or 
,f;(r)=teJ ‘(1 +t) ‘, t >O, (I > 0, h > 0; the related Liouville distributions 
were encountered in Examples 1.1 and 1.3. The function ,f‘( .) is 
logarithmically convex and, hence, the corresponding densities are MTP,, 
if and only if O<u< I. 
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Having determined necessary and sufficient criteria for a Liouville dis- 
tribution to be MTP,, we may now apply the results of Karlin and Rinott 
[ 15, Section 41 to obtain far-reaching information on probability and 
expectation inequalities. In order to do this, we introduce a partial order 
on R” as dollows: if x = (x, , . . . . x,~) and y = (JS, , . . . . JS,,) then x < y ifs, < ~3,. 
i = 1, . . . . n. A function 4: R” --f R is increasing (decreasing) if x < y implies 
d(x) d 4(y) (d(x) 3 d(y)). Then we obtain the following results from [ 15. 
pp. 484 -4871. 

5.4. THEOREM. Let (X,, . . . . X,,) - L,,[,f‘(. ); N,, . . . . u,,] ~HLI ~ZUW ~1 MTP, 

tlmsit~~ jhction. Then, 

(i) the margitzal distribution o/’ (X,, ,.., X,) is MTP?, 1 <r z; tz; 

(ii ) ,fbr utz?’ increasitzg ,fiozction q5 : Rz + R, 1 < r < n, the ttnrl~iplc 
rrgressim 

B(qQx’,. . . . . X,)IX,+, =.y,+ ,, . . . . A,,=r,,) 

i.v increasing it2 (s,. + , , . . . . r,,); 

(iii ) lf’ q!t und $ are horh incareusing or hot/t decreasing 011 R”, , ilww 
c’ov( cj(X, , . . . . X,,), t/t(X, , ,.., X,,)) 3 0. More generally’, [f 4, , . . . . d,,, ure ull 
itweusing or ull &reusing on R’; , tlzcn 

,,I ,,I 
G’ 

c 
n b;CX,, . . . . X,,) 

> 
b n cs”(d,(X,, . . . . X,,)); (5.2) 

I=- I ,=I 

(iv) if d,,(f) = 1 ~tzd d,(r) = P(X, d 1, . . . . -%,. < 1). 1 d r < tz, then 

4 , (I 1 J, + , ( t 1 2 47 f 1, l<r<lz-1. 

It is customary to apply (5.2) to the development of inequalities for the 
distribution function of (dY,, . . . . X,,). To this end, choose positive numbers 
.Y, and define 

x, d s,, 
otherwise. 

i= I. ___. tz. Then, (5.2) becomes 

Replacing Q’I, by I - 4, leads to 

P(X, 3 I,, . . . . x,, 3 x,,) 3 fi P(X, 3 I-,). 

(5.3) 

(5.4) 
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In the case of the inverted Dirichlet distribution, the inequalities (5.3) and 
(5.4) were obtained by Kimball [ 191 (cf. [ 13, p. 2401). 

5.5. DEFINITION [ 161. A function g: R” + R, is twltivariucte reverse 
rule c$‘order 2 (MRR,) if g( .) satisfies the reverse of (5.1); that is, for all 
x. y in R”, 

K(X)R(Y)3‘~(XVY)K(XAYI. (5.5) 

A random vector (X,, . . . . X,,) is MRR, if its density function is MRR,. 

Suppose that a nonnegative function g( .) has the property that 
R(X) g(y) # 0 implies K(Z) # 0 for all z such that x < z =$ y. Then similar to 
the MTP, case, R( .) is MRR, if and only if K( .) is RR, in every pair of 
variables while the remaining variables are held fixed (cf. [ 16, p. 5003). 

5.6. PROPOSITION. Let (A’, , . . . . A”,, ) - L,,[ I‘( ); II, , . . . . (I,,], \~*kerc~ f( ) is 
tmtwtonc increusitq or decreusitg. Th (X, , . . . . X,,) is MRR, (f’attd otzl~- if 
,f‘( . ) is logarithmically concuw. 

Proof: It is easy to see from (5.5) that (X,, . . . . X,,) is MRR, if and only 
if the function ,r’(C; , .Y,) is MRR,. Since ,f‘( .) is monotone, then 
.f’E:‘= , Y ) I‘(z;- , ~3,) #O implies ,f‘(x;, , z,) # 0 for all I, < I, 6 !‘,, / 
i = I, _... tt. Hence (X, . . . . . X,,) is MRR, if and only if f’(x;=, x,) is pairwlse 
RR,; that is, ,f(s, + I?) is RR, or ,f‘( ) is logarithmically concave. 

As is noted in [ 161, the MRR, property does not suffice to imply expec- 
tation and probabilistic inequalities analogous to (5.2)-( 5.4 ). To this end, 
we are forced to strengthen the reverse rule requirements. 

5.7. DEFINITION [16]. (i) A function 4: R --, R is a P6lw ,firyuenq 
fimctiotz ~$order 2 (PF,) if b(s- t) is TP2 in the variables s, t, - 1~ <s. 
t< %. 

(ii) A random vector (X, , . . . . X,,) or its density function g( ) is 
strongly multivariate reverse rule c?f’order 2 (S-MRRJ if for any set I $,( .) j 
of PF, functions the marginal 

17(x,,, . . . . s,,) = y(x,, . . . . r,,) “nr (b,,(.Y,,) dx,, (5.6) 
R” ’ ,=I 

is MRR, in the variables s,,, . . . . x,,, where Ii,, . . . . i,l and i.j,, . . . . j,, ,) are 
complementary sets of indices drawn from : 1, . . . . n ). 

An example of a S-MRR, distribution is the Dirichlet distribution 
&a, , . . . . a,, ; u,, + 1 ) with N, > I for all i= I, . . . . n + 1; this result was 
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established by Karlin and Rinott [ 16, p. 5081. Indeed, a close inspection of 
their analysis yields the following general principle. 

5.8. THEOREM. Let (A’,, . . . . A’,,) - Lj,)[f( .); u,, . . . . u,,], where a, 3 1, 
i = I, . . . . n, und f ( ) is monotone increasing or decreasing. Then (A’, , . . . . A’,,) is 
S-MRR, fund only tf f‘( ) is logarithmically coneme. 

Proc$ Since S-MRR, implies MRR,, then the necessity follows from 
Proposition 5.6. In proving the sufficiency, we modify the argument of [ 16, 
Proposition 2.41, presenting the explicit details for the convenience of the 
reader. If ~=2, then (X,, X1) is RR, if and only if f’(.u, +.Y~) is RR,; this 
holds because of Proposition 5.6. Let t”+ = r” for t > 0 and 0 for t d 0. When 
n = 3 we have to show that for any PF2 function 4(. ), 

is RR, in (.Y?, .r3). 
Since d(. ) is PF, then &t -s,) is TP, in (t, .Y~); also, (f - .Y? 1’; ’ is TP, 

in (t, s7). a, 3 1. Therefore, $(t - .u,)( t - .y>)‘;i ’ is TP2 in (t, s,). Next, 
since j’( ) is log-concave, then ,f.( t + si) is RR2 in (t, .Y~). Consequently, it 
follows from the basic composition formula [ 14, p. 981 that the integral 
(5.7) is RR, in (a,, .Q). 

Assume by induction that the function 

is RR, in every pair of variables (x,, s,), with r < i<jb II, for any set of 
PFZ functions 4,) . . . . dI , The integral in (5.8) is clearly of the form 

for some function h( ). Multiplying (5.8) by a PF, function dl(s,) and 
proceeding as in the case n = 3 we find that 

is RR2 in (.Y;, si), r + 1 < i<j< n. This establishes the inductive step and 
completes the proof. 
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r=l 1 . . . . II, pro~~idt~d thr espctation.s c).ui.st. 1n purticulur, 

Note also that I [,. , ,(. ), the indicator function of [I, E ), is increasing 
and PF,. Approximating an increasing. nonnegative function k(t) by 
c C;po I,,,, , ,(t), i: + 0, it follows that (5.9) and (5.10) remain valid for all 
nonnegative, increasing qb,, \l~ithout the PF, c~onditiorl. 

With the hypotheses of Theorem 5.8, the inequality (5.10) implies that 
for .Y, > 0. 

which is analogous to (5.3) (5.4). However, more stringent inequalities can 
be obtained by appealing to [ 16, p. 5131; a typical result is that for 
0 < x, 6 J’, 6 ‘% , I < A < I< II, 

6. (‘haructcri,ution.s 

In the preceding sections, we have treated several aspects of the Liouville 
distributions. Here, we see how these distributions may be characterized 
using the topics considered earlier. However, the proofs of the main 
statements are placed in Section 9 where more general results are 
established for the matrix analogs. 
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(iii) ,for 1 < r < k <n and ,jc R, the regression 8( Xi 1 C:‘= r+l X, = t), tf 

it exists, is constunt (as.). 

Note that all three statements will be established by proving that 
f(t)=e “. t > 0, h > 0. In particular, we will use Deny’s theorem to prove 
part (iii ). 

6.2. Remarks. (i) From Propositions 4.4 and 4.6, it follows that 
Proposition 6.1 (iii) remains valid if XJ, is replaced by (I;= r+ , A’,)’ or 

m:‘= I + , Xi), where h( .) is any continuous, nonnegative function for 
which the regression exists. 

(ii ) If .j is a positive integer, then Theorem 6.1 (iii) can be established 
without recourse to Deny’s theorem. By Proposition 4.4, the hypothesis of 
constant regression is equivalent to W’+“~f(t)=cW’“f’(t), where 
a=u,, , + ‘.’ +a,. Differentiating fractionally, we get ,f’( t ) = c W’,f( t ), 
t > 0, which can be rewritten as 

,f’(t)=C” 
s U.i) I 

’ ( .I’ - t ) ’ ’ .f‘( .l’ ) dy. (6. I ) 

where C, > 0. By repeated differentiation of (6. I ), we get 

(-1,‘f”‘(t,=c,.f‘(t), t > 0. (6.2) 

From (6.2) we deduce that f‘( .) is infinitely differentiable and even that 
,f‘( .) is completely monotone; that is, 

(-1 )‘f”“(t)20, i=O, 1, 2, . . . . 

By the well-known Hausdorff-Bernstein theorem, there exists a unique, 
nonnegative, finite, Bore1 measure p such that 

,f( t) = j;; r ‘I’ dp( y). 

From the uniqueness of p and (6.2). it follows that p is singular: therefore, 
f‘( t ) = ce hr, t > 0, h > 0. 

(iii) In the case of the Dirichlet distributions D(a,, . . . . a,,; u,,, ,), it 
was noted in Example 4.5 that 

~(x:l;i,x’=t)=c(I~t)/. o<t<1, (6.3) 

where j> 0, 1 d r <k d n. We conjecture that (6.3) characterizes the 
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Dirichlet distributions among the class LI,“, and below, we prove this result 
when j is a positive integer. 

By Proposition 4.4 and the definition of the W “ operators, the problem 
of characterizing the Dirichlet distributions through (6.3) is equivalent to 
solving the integral equation 

where II = (1, + , + + N,,, O<r< 1, subject to ,f’(r)>O and the 
integrability condition (2.1 ). Substituting ~3 = (Z ~ I )/z. t = (s - 1 )/x and 
g(z)=:- ‘<’ + ‘I ,f’( ( z - 1 )/z ), then (6.4 ) is transformed into 

1 ^I 

i - f(a+,j) \ 
- ‘(,-,s)“+’ ’ R(-)d&jy (z - .s)” ’ g(z) Lk, 

.Y > 0. That is, l#“’ + ’ (s ‘,F( s)) = c, W”g(s), and by fractional differentiation, 

W’(.s ‘g(s)) = c,g(.s). (6.5 1 

If ,j is a positive integer, then by repeatedly differentiating (6.5) we get the 
ordinary differential equation 

<y”‘(s) = c,,( ~ 1 )’ .Y ‘g(s), .s > 0, (‘,, = l/c, > 0. (6.6) 

When j = 2, (6.6) is known 1201 as Cauchy’s equation. The standard 
procedure for solving these equations is by way of the substitution s = c’, 
which transforms (6.6) into the linear differential equation 

[n(n-1)(D~3)~..(n-~~+1,-~~,,(~1)’]/2(.\-)=0. (6.7) 

where h(\-) = g( e‘) and L) = ci/cl.u. If ,j is even, the characteristic polynomial, 
p(s), of (6.7) is strictly decreasing for I < 0. Since I)(O) = -co < 0 and 
P(X) --, 1x1 as .\- + -(XI, then p(.u) has a unique negative root -L A similar 
argument yields the same conclusion if j is odd. Also, any complex roots of 
E)(S) are obviously to be disregarded, while positive roots are eventually 
ruled out by (2.1). Therefore, (6.7) has the unique solution k(s) = e I’, and 
hence,f‘(t)=(l-t) i( ’ Moreover, (6.4) imp lies that b > 0. 

Next, we characterize the Dirichlet distributions among the class LJ,‘) 
using the concept of comnplrtr rzeutrality (Doksum 151). This notion is 
related to the tailfree distributions of Freedman [S], and has been used by 
James and Mosimann [ 121 to derive other characterizations of the 
Dirichlet distributions. 

6.3. DEFINITION. A random vector (X,. . . . . X,,) taking values in the 



MULTIVARIATE LIOUVILLE I>ISTRIBUTIONS 249 

simplex YH is completel~~ neutral if there exist mutually independent, 
nonnegative random variables Y,, . . . . Y, such that 

N 1 

(XI,..., X,,) s Y,, Yz(l-Y,) ,..., Y,, n (I-Y,) 
,=I 

6.4. PROPOSITION. [f (X,, . . . . X,,) - LI”‘[.f‘( .); a,, . . . . u,,], then (X,, . . . . X,,) 

is completel!, neutral q’ and only $ (A’, . . . . . X,, ) - D( a, , . . . . a,, ; a,, + , ) for .vmw 
a ,I+ I > 0. 

A similar result may be established for the class ICI,” and the inverted 
Dirichlet distributions. 

6.5. PROPOSITION. Suppose that (Xl , . . . . A’,,) - L!,’ ‘[,f( ); a,, .,.. u,,]. T/xvz 
there exist mutual/Y independent, positive rundom uuriahles Y, . . . Y,, Sll(.h 
that 

i 

,i I 

(Xl, . . . . ‘Y,“,,) s Y,, Y,(l + Y,), . . . . Y,, n (1 + Y,) 
,-I i 

(f Ltrld onl~s 4’ (Xl, . . . . A’,,) - ID( a, , . . . . (I,, ; u,, + , ) ,fbr .yome a,, + , > 0. 

IT. LIOUVILLE DISTRIBUTIONS ON R’:’ ‘I 

I. Transformations and Stochastic Representations 

Throughout, the unique, positive definite (symmetric) square root of a 
positive definite matrix T will be denoted by T’ ‘. 

7.1. PROPOSITION. Suppose that (B,, . . . . B,,)-Lj,21[g( .); a,, . . . . a,,]. For 
i = 1, . . . . n, define 

A,+,i,B,) “‘B,(z-;,B,) “? (7.1) 

Then (A , , . . . . A,,) - Lj,’ )[f( ); (I, , . . . . a,,], +iahere 

f’(T) = )I+ TJ ‘u’+ +on+p’ g(T(Z+ T) ‘), T> 0. (7.2) 

In particular, there is a one-one correspondence hetw,een .f( ) and g( ). 

Proof: The statement and proof of this result are natural extensions of 
those given in Proposition 3.1. Let A,=C;=, Ai, B,=C;=, B,. It follows 
from (7.1) that A,=(Z-B,) ‘I2 B,,(Z- B,)-‘“= (I- B,,)--’ B,, the last 



250 GUPTA AND RICHARDS 

equality holding since B, commutes with any rational function of B,,. By 
simple manipulation of these identities, we get B, = (I+ A,) ’ A, and 
I- &= (I+ A,)- ‘. Inverting (7.1), we see that 

B,=(I$A,)~ ‘~2A,(I+,4,,) ’ ?, i= I , . . . . n. (7.3) 

The Jacobian of (7.3) may be shown to equal II+ A,,1 “+ ‘If, and then the 
rest of the proof is standard. 

7.2. Remarks. When R( T) = 1 I - TI “ I’, 0 < T < I, the transformation 
(7.3) was used by Olkin and Rubin [24, Theorem 3.43 to transform an 
inverted Dirichlet distribution into a Dirichlet distribution; their method 
was somewhat more roundabout, being based on a set of successive trans- 
formations. 

7.3. PROPOSITION. Let (A,, . . . . A,,) - L,,[f‘( ); a,, . . . . u,,]. Then the 
,fbllo+~Qng stochustic. representations are ivdid: 

(i) (‘4 , , . . . . .4 ,, ) = y B:z,‘( B, , . . . . B,, , , I - x;= ,, B,) B,!“, ,tJlerr 
(B,, . . . . B,, ,I and B,, urp mutually independent, and (B,, . . . . B,, , ) ‘- 
D(a,, . . . . LI,, , ; N,,); 

(ii) (A,, . . . . A,,) =y’ Bf,!‘((n:‘=,’ Bfl’“,)(fl:=,’ Bf,‘), (ny:i BA’f , ,) 
(I-B,)(n;_,l B,!‘) ,..., I-B,, , ) BL”, w,herr B, , . . . . B,, are mutuall~~ indepen- 
dent, and B, - B( Ci ~ , a,; a, + , ), i = 1, . . . . n ~ 1 ; 

(iii) (A,, . . . . A,,) =” Bf,‘((nt!:,‘(I+ B,~ )) “)(n:‘= ,’ (I+B,) I’), 

(FI:l= 2’ (I+ B,,,, ,I “1 B,(n;=;(f+ B,) I”), . . . . (I+ B, ,I “B,, ,(I+ 
’ ‘) B”‘. &err B, , . . . . B, 

g:!,), i=i ,..., n-l; 

ure mutually independent, und B, - IB(a, + , ; 

(iv) (,4,, . . . . A,,) =Y’ B;‘“(B,, (I - B,)“’ B,(Z ~ B,)“‘, . . . . 
(n;=f (I-B,)“) B, ,(fl;=; (I-B,, I ,)I”), (n:,_,l (Z-B,)“‘) 
(n;=~; (Z-B,, ,)I”)) B;“, where B,, . . . . B,, are mutually independent, and 
B,-B(u,: IX;‘-,+, a,), i= 1, .,., n- 1. 

In ull,four CLIWS, B,, =” L, [,f‘(. ); x;=, a,]. 

In view of the similarity with Theorem 3.2, a detailed proof is 
unnecessary. However, it should be noted that the Jacobians of (i )-( iv) are, 
respectively. /B,,l”’ ‘I”, nyy2 lB,l” ‘I”, IB,,I’” ‘,“n::-,l II+ BjlPci+““, 
and I B,,I ,” ’ I,5 ny:,’ II& B,l’” I 1 II’, 

The above representations can also be used to generalize some earlier 
observations (Theorem 3.2, irzfra); we obtain the following result which is 
due to Khatri [IS]. 

7.4. COROLLARY (Khatri [lS]). If’mutuully independent B, - B(Ci=, a,; 
a, + ,), i = 1, __., n, then (n:=, By” ,+ ,)(n:= , Bf”) - B(a, ; xy:j a,). 
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Proof We use induction, with II 3 2. When II = 2, define (A,, A?) in 
terms of (B,, B,) using the transformation in Proposition 7.3(iv). By rever- 
sing the argument which establishes that result, 7.3(iv), we obtain 

(A,, A,)-D(a , ; a, + a,); in particular, Bi’* B, By’ = A, - B(a, ; a2 + al). 
The inductive step is also proven using similar arguments. 

Finally, if we mimic the proof of Proposition 3.4 then we obtain the 
following result. 

7.5. PROPOSITION. If‘ (A,,..., A,,) - L,,[J‘( .); a,...., a,,] and r -cn, then 
(C:= , A,) ~I” (Z:= , A;)(C:‘= , A;) I;” - BE=, a,; C:‘= v + , a,). 

8. Murginul and Conditional Distrihutiom 

As expected, the results for marginal and conditional distributions in the 
matrix case are entirely analogous to the vector situation. We state the 
needed results without proof. 

8.1. PROPOSITION. Let (A,, . . . . A,,) - L,,[J ); a,, . . . . a,] und r < II. Then 

(i) (A,, . . . . A,) - L,[f,( .); u,, . . . . a,], where a=C:-.+, u, and 
f;(T) = W”f( T) is the fractional integral qf‘order u of ,f’( ); 

(ii) the conditionul distribution of‘ (A, + , , .,., A,,) gizlen {A 1, . . . . A,, ) is 
L,, ,Is,( ); a,+ I1 .‘.1 a,,], dwe g,(T)=f(T+C:=, A,V.f;Ej=, A,); 

(iii ) $ the expectution below e.uists, then 

(4, lRl’;~~,A,=7j=rU”‘.:(l7).WUf(T), (8.1) 

bchere u=~:l=.+,~,,j=C:‘=,+~ j,. 

9. Characterizations 

Here, we extend the results stated in Section 6 by characterizing the 
Liouville distributions through various properties treated in earlier 
sections. Since the zero matrix is a limit point of the convex cone K’; x “‘, we 
may use the notation “T + O+” to mean that T-r 0 through Ryx”‘. It is 
assumed throughout that lim., 0+ f(T) = 1. 

9.1. PROPOSITION. Let (A,, . . . . A,,) - LL’ ‘[f( . ); a,, . . . . a,]. Then the 
following are equivalent : 



252 GUPTA AND RICHARDS 

(i) ,f’( T) = exp( - tr ZT) ,/or some 2‘ > 0; 

(ii) A , , . . . . A,, ure mutual!,. independent: 

(iii) there csists i, j n,ith A, und A, mutuul!)* independe~lt. 

ProoJ Since (i) implies (ii) and (ii) implies (iii), we need only show 
that (i) follows from (iii). By Proposition 8.1 (i), the pair (A,, A,) has a 
marginal distribution which belongs to the class Lj,“; therefore, in proving 
that (iii) implies (i), it suffices to assume that n = 2. Therefore, suppose that 
A, and A, are independent. Then 

I A , I I” ” 1,4z1”2 “,/‘(A, +A?)= (A,(“’ ” /,47jL’J “h,(A,)h?(A,). 

equivalently, ,f’( A, + A ?) = k, (A, ) 1z2( A, ) for all .4 , > 0, A 1 > 0, and con- 
tinuous, nonnegative functions h,, 11~. By symmetry, 11, = 1~~; further, when 
,4,,.4z-+O+ we get /l,(O+)?=l, so that h,(O+)=I. As A?+O+, we 
even see that ,f‘( T) = h,(T), T > 0. Therefore, 

./I T, + T2) = .f’( T, ) f’t T, 1. (9.1 1 

which is the multiplicative analog of Cauchy’s equation on R’;I’ “*. 
Regarding (9.1 ) as a functional equation in the m(m + 1)/2 distinct entries 
t,, of the matrix T. then we have 

.f‘( T) = exp c-- 2 i n,,r,,j=exp(-trLT), 
I-l ,-I 

where the nz x m matrix L is symmetric. If there exists T,, > 0 such that 
tr(ZT,,) < 0 then the sequence j”(iT,,), i= 1. 2, . . . . is unbounded, contra- 
dicting (2.1 ). Consequently, tr(Z-T) > 0 for all T> 0 and therefore [ 10, 
p. 4781 Z is positive semidefinite. Finally, the positive definiteness of Z is 
guaranteed by (2. I ). 

9.2. THEOREM. Let (A,, . . . . A,,) - L,,[,j’( ); (I,, . . . . (I,,], 1 < Y <k Gn, und 
j he such that the ,fbllou)ing regression exists. Then 8( 1 A,/ ’ / C:= , A, = T) is 
constunt (u..s. ) !/‘ and only if 

.I‘( T) = 1 j exp( - tr XT) dp( I), T>O, (9.2) 
R”’ ’ “’ 
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Proof From Proposition 8.1, the as. constancy of the regression 
function is equivalent to ,f( . ) satisfying the integral equation 

j’( T) = c !,J ss T) ~sl’--pds, T>O, 

which is a special case of Deny’s equation (2.4). To apply Deny’s theorem, 
we need to find all continuous, bounded solutions 4 of the functional 
equation &T,+T,)=qh(T,)cj(T,), T,>O, T,>O. In proving 
Proposition 9.1, it was shown that every such I$ is of the form 
& T) = exp( - tr L’T), where C > 0. Then, the representation (9.2 ) follows 
from Deny’s theorem. 

9.3. Remurk. Note that when n = I, the measure p is singular: then, the 
regression is constant (a.s. ) if and only if ,f’( t) = P ” for some h > 0. Com- 
bining this remark with the results in Proposition 9.1, then we have com- 
pletely proven Proposition 6.1. We also point out that results generalizing 
Theorem 9.2 may be derived (from Deny’s theorem and Proposition X.1 ) if 
IAr. I ’ is replaced by /ICC:=, A,), where h( ) is unbounded, nonnegative, 
continuous, and such that the conditional expectation exists. 

Finally, we develop the appropriate generalization of Proposition 6.4. 

9.4. DEFINITION. Let A,,..., A,, and I- C:‘=, ‘4, be random matrices 
taking values in Ry* ‘n. Then (A ], . . . . ,4,,) is conzplrtel~~ nrutrul if there exist 
mutually independent B, , . . . . B,,, 0 < B, < I (i = 1, . . . . n), such that 

(AI,...,A,,) 5 
i 

B,,(I-B,)“‘B,(z-B,)” ,,.., 

n- I 

n (I-B,)“’ “n’(I-B,, ,)I’ (9.3) 
,=I I =- I 

9.5. PROPOSITION. Let (A , , . . . . A,,) - Lj”‘[,f’( ); u,, . . . . a,,]. Thetz (A , , . . . . A,,) 
is c~otqdetely rleutral $and on/J) lf (A , , . . . . A,,) - D( a, , . . . . u,,; a, + , ), fi)r some 

(l,I+I >P- 1. 

Proof: The Jacobian of the transformation defined through (9.3) is 
n:I- ,’ IB,i”‘~‘)“. Also, it can be shown (using induction, say) that 
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Since (A,. . . . . A,,) + Lk2’[f‘( .); a,, . . . . u,,], then the joint density of 
(B, , . . . . B,, ) is proportional to 

;)I’? (9.4) 

If f(T)=(f-TI”n”’ I’. LI,,, ,>p-I. then it follows from (9.4) that 
B,, . . . . B, are independent multivariate beta matrices; hence, (A,, . . . . A,) is 
completely neutral. 

Conversely, if (,4,, . . . . A,,) is completely neutral, then by (9.4) 

.f(I-(ii )( (I-B,)“’ 1”1 (Z-B,,,, ,)“’ = fi h,(l- B,) (9.5) 
I I I _ I !) /:! 

for continuous, nonnegative functions /I,. Using the argument of 
Proposition 9.1, we find that h,(I- T) =f‘( T), 0 < T< I, i = 1, . . . . n. As 
B, +O in (9.5) (for i3 3) we find that the function g:(T) =./‘(I- T) satisfies 

g(T;s’T,Tj12)=g(T,)g(T,) 

for 0 < T,, T2 < I. The conclusion rests on the following result. 

(9.6) 

9.6. LEMMA. Let g: R’; “” -+ R + he nontrivial, continuous, and satisfj: 
(9.6). Then g( T) = 1 Tl k ,jbr sotne k in R. 

Proof: Without loss of generality, we may suppose that g(. ) is defined 
on all of Ry “)‘. Since g( ) is nontrivial, then (9.6) implies that g(Z) = 1. 
Next, recall that every rn x r~z nonsingular matrix X has a “polar coor- 
dinates” decomposition [ 10, p. 4821 X= VT:‘“, where T, > 0 and 
VE O(m), the group of m xm orthogonal matrices. Then T, =X’X and 
V’X= T,‘!‘= (Tf”) = X’ V. Substituting these relations into (9.6) we 
obtain 

g(V’XT,X’V)=g(Tf’2TZTl”)=g(T,)g(T2)=g(V’XX’V)g(TZ). (9.7) 

With X= I in (9.7), we get g( V’ Tz V) = g( T2) for all VE O(m), Tz > 0; that 
is, g( .) is orthogonally invariant. Hence, (9.7) reduces to g(XT,X’) = 
g(XX’) g( T,), and on setting Tz = YY’ in this last equation we find that the 
function p(X) = g(XX’) satisfies 

P(XY) = P(X) P(Y) (9.8 ) 

for all X, YE GL(m), the group of all m x m nonsingular matrices. The 
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THEOREM A [3, Theorem 3.61. Szcppose n 3 2. Szrppaw p := 
(p, , . . . . P,~ ) E [ I, co]” is mch rhut x:; = , l/p/, d 1. Defi’tze the nzctnher c = c(p) 
:=c;i(./G,< I ; l/p;. Then there r.C.vt.v u constunt A = A(p) which is u 
,firnction onl~~ qf p, such thut the ,ftillm~ing statermnt holds: [f’ (a, ~ N, P) is u 
ptwhuhilit~~ spuce. CF, , . . . . .3$, ure ajklds c N, and B: .V’(.e ) x x 
Yf’( &) 4 @ ix un n-linear prodwt ,form, then IjBII,<A-d,(B). 
[ 1 - log dp( B)]‘. 

Here L’ := 0 if p = ( I, ___, XI ). The main result of this section is as follows: 

THEOREM 3. I. S~ppo.w II 3 2. and p := (p, , . . . . p,, ) E [ 1, x 1”. &fine thr 
mr~ihrr C’ = c( p ) : = 1 I A I,(‘: , i , I 1/p; Then there cJ.x-ist.c u positiw conxtunt 
u = u( p ) mch thut the ,f~~Non~ing stuttwcnt holds: 

For twh t, 0 < t < 2 ‘I, thrre csists u prohuhilit~~ .~puw (Q, il. P) urid 
o~fk1tl.v .F, . .._, .“i;n c il urld un n-lirwur prodwt ,fiwnl B: .(I’(.6 ) x x 
.“‘(.ep) --, @ (tlt;fi’m~d by B(,f’, , . . .._ f;,) := E(,f, ..,f;,, ~ n; = , f?f; ), such thut 
d,(B) = t und 11 B /I p 3 u t( 1 ~ log t )‘. 

Rrtmrrk 3.2. Several comments will be made: 

(a) The assumption x; =, l/p, < 1 in Theorem A is not required in 
Theorem 3.1. 

(b) The constant c= c,(p) in Theorem 3.1 is exactly the same as in 
Theorem A. Consequently. Theorem 3.1 shows that Theorem A is within a 
constant factor of being sharp, for any choice of parameters meeting the 
specifications in Theorem A. (This “constant factor” may depend on the 
parameters.) Consequently [3, Theorem 4.1 (vi )] is sharp in the same sense, 
by Theorem 3.1 for n = 2. Theorem 3.1 also shows indirectly that 
[3. Theorems 2.1 and 2.21 are sharp in the same sense; for if this were not 
so, then (see the proof of Theorem A ) an improvement in [ 3, Theorems 2.1 
and 2.21 (beyond just a better constant factor) would lead to a similar 
improvement in Theorem A, contradicting Theorem 3.1. 

(c) The n-linear form B in Theorem 3.1 was chosen partly for its sim- 
plicity. Because of the extensive role played by cumulants in the study of 
dependence between more than two random variables, it is natural to con- 
sider measures of dependence based on norms of cumulants. For example, 
Mase [It] studied the measure of dependence ti, , , , , ,(Cum) between 
four a-fields, where Cum denotes the 4th-order cumulant. Theorem 3.1 
holds with B defined by B(,f’, ~ . ..., f;,) = Cum(,f’, , . . . . f;,) (the 17th~order 
cumulant). Because of our proof, this will be a trivial corollary of 
Theorem 3.1 itself; in our proof the construction will be such that any n - I 
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