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A random vector (X, ... X,). with positive components, has a Liouville dis-
tribution if its joint probability density function is of the form f(x, + -+ +x,)
xy oyt with the g, all positive. Examples of these are the Dirichlet and inver-
ted Dirichlet distributions. In this paper, a comprehensive treatment of the Liouville
distributions is provided. The results pertain to stochastic representations, transfor-
mation properties, complete neutrality, marginal and conditional distributions,
regression functions, and total positivity and reverse rule properties. Further, these
topics are utilized in various characterizations of the Dirichlet and inverted
Dirichlet distributions. Matrix analogs of the Liouville distributions are also
treated, and many of the results obtained in the vector setting are extended
appropriately. . 1987 Academic Press. Inc.

1. Introduction

Recently, increasing attention has been paid to families of probability
distributions which are defined through functional form assumptions. both
on density functions (cf. Johnson and Kotz {13, p. 294 ff]), and on charac-
teristic functions (cf. Cambanis er al. [ 1, 2]; Fang and Fang [7]; Richards
[297). These studies develop unified treatments of all distributions in some
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particular class, thereby developing their common features. For example,
the papers [1. 3] prove that certain important sampling properties of the
multivariate normal distributions remain valid for the larger class of ellip-
tically contoured distributions.

In this paper, we study another family, the Liouville distributions,
defined through functional form restrictions on the density functions. An
(absolutely continuous) random vector (X, .., X,) has a (multivariate)
Liouville distribution if its joint density function is proportional to

./‘< Y. \) [Tt (L.1)

i1 =1

where the variables range over the generalized octant R = {(x,. .., Xx,):
x;>0,i=1,.,n}:d,,..a, are positive numbers; and the function f(-) is
positive, continuous, and satisfies the integrability condition (2.1) (with
m=1) below. If f(-) has noncompact support, we say that (X, ..., X,) has
a Liouville distribution of the first kind. If the support of /() is compact
then we may assume, after a scaling, that f(-) is suported on (0, 1); then
the variables range over the simplex %, = {(x,,..,x,): x;>0, i=1, .. n;
Y, x;<1].and we say that (X, .., X,) has a Liouville distribution of the
second kind.

Brief treatments of the Liouville distributions appear in [22; p. 308],
where they are related with Schur-convex functions; and also in [31],
where some results on marginal distributions and transformation proper-
ties are presented.

I.1. ExamMPLE. (correlated gamma variables [22: p. 3087). If f(1)=
e P t>0,a>0.h>0, then (X,. ... X,) has a Liouville distribution of
the first kind, with joint density function proportional to

" a | n
(Z x,) [ xe Ter b (1.2)

i=1 i=1

1.2. ExaMPLE (the Dirichlet distribution). If f(r)=(1—¢)« '
O<t<l, a,,,>0, then (X,,.., X,) has a Liouville distribution of the
second kind with joint density proportional to

g " dn il i H
(l =) .\',) [T xe o (1.3)
1 / i1

i=

1.3. ExampLE (the inverted Dirichlet distribution). If f(¢)=
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(141¢) tat -+ 150, q,,,>0, then we have a Liouville distribution
of the first kind, with joint density function proportional to

n tay+ -t agpe1) n
(1 + ) x,-) [T~ " (1.4)
i

i=1

In this paper, we provide a comprehensive treatment of the Liouville dis-
tributions, extending the range of topics considered in [22, 31]. Our results
pertain to stochastic representations and transformation properties (Sec-
tion 3); marginal and conditional distributions, and regression functions
(Section 4); total positivity, reverse rule, and dependence properties (Sec-
tion 5); and characterizations based on the above topics (Section 6).
Examples 1.1-1.3 provide motivation for our work, consistently pointing
towards new results. For instance, we extend the results of [16] on the
multivariate reverse rule properties of the Dirichlet distributions to a large
subset of the Liouville distributions of the second kind. In return, we
characterize the three examples using independence, regression, and
neutrality properties.

We also consider matrix analogs of the Liouville distributions. The
positive definite (symmetric) m x m matrices 4, ..., A, are said to have a
Liouville distribution of the first kind if their (continuous) joint density
function exists and is proportional to

.f'<Z A,~> [T 1A 7 (1.5)

i~ i=1

Here, |A| denotes the determinant of 4; f(-) is positive, continuous, sup-
ported on all of R7*™ (the cone of positive definite m x m matrices), and
satisfies (2.1) below; p=1i(m+1) and a,>p—1, i=1, .., n. Further, the
matrix Liouville distributions of the second kind are those for which
I—3" | A, is also positive definite, where [ denotes the m xm identity
matrix.

1.4. EXAMPLE. Let S, ...S, be independent m xm Wishart matrices
having common covariance matrix X, and degrees of freedom ay, ..., a,,.
respectively, where a,>p—1, i=0,..,n Let S'? denote the unique,
positive definite square root of S=37_,.5,. Then Olkin and Rubin [24]
(cf. Khatri [187], Mitra [23]) show that the matrices 4,=S '*S.S~ ',
i=1, ... n have the joint density which is proportional to

l_l |A[|(l,‘2h1, v (1.6)

\(1:2)110 r
i=1

-3 4,
i=1
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for 4,,...,A4,, I-%"7_, A, all positive definite. This is a Liouville dis-
tribution of the second kind, generalizing Example 1.2.

1.5. ExampLE. Let S, ... S, be defined as above. It is shown in [24]
that the matrices 4;,= S, ’S S(, 12 i=1, ... n, have the joint density which
is proportional to

n (L2 + -t dy)
’1+ > A,‘

i=1

]_I lAi!(l,'Z)u, P (17)
i—1

This is a Liouville distribution of the first kind, generalizing Example 1.3.

Most of the results obtained for Liouville vector distributions will be
extended to their matrix counterparts. However, it appears that the com-
pletion of this program will require highly sophisticated techniques (see the
concluding remarks below Section 9). Section 7 contains stochastic
representations and transformations for the matrix distributions, extending
Section 3; while Sections 8 and 9 are appropnate extensions of Sections 4
and 6, respectively.

2. Preliminaries

Throughout, all random entities are assumed to be absolutely con-
tinuous with continuous density functions. However, we note that some of
our stochastic representations can be obtained in a density-free way using
the methods of Khatri [18], Kumar [21], and Mitra [23]. We shall
denote normalizing constants by the symbols ¢, ¢y, ¢, ¢;, etc., since their
precise expressions are not needed.

We invariably write (X, ., X )~ L,[/("):dy, . d, whenever
(X,....X,) has a Liouville distribution. If necessary, we write
(X, ot X))~ LR f()iay, oy a, ], k=1 or 2, according as the distribution
1s of the ﬁrst or second kind. We denote the Dirichlet distributions (1.3)
and (1.4} by Diuy,..a,.a,,,) and ID(a,,...a,;qa,, ) respectively;
however, if n =1, we use Blu,; a,) and IB(a,; a,) for the beta and inverted
beta distributions. Precisely the same notation will be used for the matrix
distributions, since the context always eliminates any possible confusion.

The nomenclature “Liouville distribution™ is adopted from Liouville’s
extension of Dirichlet’s integral [6; p. 160]. On the space R7*™, this
integral is as follows: if p=Lim+1);, a>p—1 for i=1,.,n
a=da,+ - +a,:and

i

| 17 " ATy dT <« (2.1)

YR



MULTIVARIATE LIOUVILLE DISTRIBUTIONS 237

then

JRmxm J (Z A > H |4, " dA,

i=1

+

?:l rm(ai) o '
T e—————— T o l T dT. 2.2
I ((l) meXm | | f( ) ( )

m

In (2.1) and (2.2), dA, is the Lebesgue measure on R” ™ and I',,(-) is the
multidimensional gamma function [11].

If a continuous function f: R”*"™ — R satisfies (2.1) and a> p— 1, then
the Weyl fractional integral of order « of f(-) is

W*f(T) = J IS—T1* 7 £(S) dS. (2.3)
ST

rm(cx)

where “S> T means that S — T is positive definite. Detailed properties of
W= are available from Rooney [31] when m=1 and for general m from
Richards [287]. The main properties needed are (i) if a continuous functlon
f(-) satisfies (2.1) then there is a onc-one correspondence between f(-
and its “fractional derivative”™ W?*f(-); (i1) W* satisfies the semigroup
property W* P = W*WF a>p—1, 8>p—1.

In Section 9, we shall apply the theorem of Deny [4]. Let G be a locally
compact Abelian group with a countable basis, and v be a Radon measure
on the Borel subsets of G such that the smallest closed subgroup of G
generated by the support of v is G itself. Further, let G be the set of all
continuous functions ¢: G — R _ for which ¢(s + t) = ¢(s) ¢(z) for all s, 7 in
G, and

G(\‘):{¢EG: J o) dv(t) = 1}.
«

With the topology of uniform convergence on compact subsets of G, Gisa
locally compact space and G(v) is a Borel subset of G.

2.1. THEOREM (Deny [4]). Let f: G— R, be continuous and satisfy
f(s):j fls+0)dv(1).  seG. (2.4)
(€]

Then there exists a unique positive measure u on G(v) such that

1= g(s) dutg). (25)

Giv)
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Other applications of Deny's theorem are given by Rao [26] and
Richards [27].

I. LioUVILLE DISTRIBUTIONS ON R",

3. Transformations and Stochastic Representations
We begin by establishing a one-one correspondence between the two
kinds of Liouville distributions.

3.1. PROPOSITION. Suppose that (Y, ... Y, }~L2[g(-): day....a,]
Define

X’,:)’,;'!(l— ¥ Y/). =1 an) (3.1)

S il

Then (X, .. X,)~LP[f(-): a\, .. qa,], where

Fley=(t41) Tt o1 4 1)), 1> 0. (

78]
to

In particular, the correspondence between f(-) and g(-) is one—-one.

Proof.  Solving Eq. (3.1), we obtain
Y,.:X,,f"(l +Y x> =1, .n, (33)
! 1

and it is straightforward to show that the Jacobian of the transformation
(3.3)is (1 +Y7_, x,) "*'. Then, the result follows by routinely applying
(3.3) to the density function of (Y,,.., Y,). It is clear that the converse
result is also valid.

3.2. THEOREM. Let (X, .o X))~ L, [ /()i 4y, .., a,]. Then the following
stochastic representations dare valid:

(i) (X n X)) =7 (Y .Y, |, 1= Y)Y, where (Y, ..,
Y, 1) and Y, are mutually independent. and (Y,,...Y, )~Dla, ..,
a, l; (1”);

(11) (‘Ylﬁ e ‘X’u) = ([_I:": 11 )[l” (‘ - Yl)n;'l: 21 )’i’ e l - Yn I) )r'”’
where Y,...Y, are nmutually independent, and Y, ~B(3| | a; a; ;)
i=1,..n—1;

(i) (X X,) =2 (T (0 + Y)W Y TTLd (0 + Y '
Y, (1+7Y, ) ")V Y, where Y, .. Y, are mutually independent, and
Yi~IBla;, ;2  a)i=1 .. n—1;
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(IV) (.Xrl...., X;;) =:/Y (YI’ YZ(] - Yl)a"-v Yn—-l 7:_12([ - Yi)a

T (1=Y))Y,, where Y, ..Y, are mutually independent, and
Yi~Bla; 20 ., q) i=1 .. n—1

Y, =" X~ L[/ Za]

Before proving the theorem, we review two implications. With fixed
dy,...a,, the function f(-) and hence the distribution of (X, .., X,)
is uniquely determined by the distribution of Y,. As an example,
Y, can have a gamma distribution only if (X, ... X,,) has the distribution
given in Example 1.1. Next, for an application of the theorem,
suppose that (X,, .., X, ~D(a,,...a,:a,,,); ie. f()y=1—)"" "
0<r<1. Then, in Theorem 3.2(ii), the mutually independent variables
Yi~Blay+ - +a;a;, ). i=1.,n and []°., Y, =" X,. Then (by
Proposition 4.1 below) [['_,Y,=" X,~B(a,;a>+ --- +a,,,). This
is a new proof of a result of Rao [25; p. 168] on certain products of
independent beta variables.

In all four cases,

3.3. Proof of Theorem 3.2. Each stochastic representation defines a
transformation from (X, .., X,,) to (Y, .., ¥,). For (i), substitute x;,= y, v,
(i=1,...,n—1) and x,=(1-%"_ /v ) vy, into (1.1); the corresponding
Jacobian is " '. After some routine algebra, the joint density of

(Y,,...Y,) s seen to be a multiple of

no 1 no- 1 ay 1
(H & l)(l‘ 2 1) e )
i=1 =1

which gives the desired result. Finally, the other parts are proven
similarly; note that the Jacobians of the transformations in (ii), (iii), and
(iv) are, respectively, [17_. v "' 2 ' [T (1+y,) "t and "'

l—[:z; ll (l . ".”n i ]'

34. PROPOSITION.  If (X|, .. X,)~L,Lf(-); aysva,l, then (37_ X
(ZL;X{)NBZT—M’ szr+la r<n.

Proof. In Theorem 3.2(i), it was shown that (X,,...X,) =Y (Y, ..,
Y, , 1 =3r'Y,)Y,, where (Y,..., Y, ,)~Dlay, .. a,_,;a,) indepen-
dently of Y,~L,[f(-); >’ _,a;]. Since (Y,,..Y,)~Dla,,..aqa,:

" _..14a;) (by Proposition 4.1 below), then (37 , X)/(>r., X)) =7
Z—ly B(Yi_ a2, a) r<n

The special case when a,=1 can be alternatively obtained by first
relating the Liouville and the spherically symmetric distributions [9] and
then applying results from [17].



240 GUPTA AND RICHARDS

4. Marginal and Conditional Distributions

4.1. PROPOSITION.  If (X, ... X, )~ L, L/ () aysna,] then (X, .., X,)
~LLfY ays o a]), r<n, where a=Y"7 . a;, and f(t)=Wf(t) is the
fractional integral of order « of f(-).

Proof. By definition, the marginal density function of (X,,...X,} is
proportional to

(ﬁx;‘l ‘)( ,/'(i,\'ﬁ zl .\‘,-) ﬁ x¢ Vdx,. (4.1)
gl R

i=1 i=r+1 i=r+1

Applying Liouville's integral (2.2) (with m=1) to the function
flt+3Y7_, x,). we see that (4.1) is proportional to

(ﬂ X l)J /‘(z+ Z x,-) . (4.2)
e e L=

From this, the result follows readily.

4.2 Remark. (i) In the case of the class L!*', the marginal distribution

of (X, ... X,) was previously derived in [31].

(i1) From the unicity of the fractional integral operators, it follows
that for fixed «,, .., a,, there is a one-one correspondence between f{-)
and /(). In the extreme case r=1, we find that the distribution of
(X,.... X,) is uniquely determined by the distribution of X;.

(i) A curious property of the class L' is that at most one of the
univariate marginals can be uniformly distributed on (0, 1) (cf. [13, p. 305]
for the case of the Dirichlet distributions). In proving this result, it suffices
to assume n =2 thus, suppose that (X,. X5)~ L&' [f(-); a,.a,]. where
a,>a, without loss of generality. Then, X, ~L{»'[W*f(-);a,] and
Xo~ LW f();a,). 1f X, is uniformly distributed on (0, 1) then
(" "W f(1)=¢, equivalently, W f(ty=ct “*' 0<s<1. Then, the
density of X, is proportional to

[u: 1 [/le/'([) = ! u/(n ug( Wagf(t)) = ct? 1 Wul ag(t ap + 1 )

which is not constant. That is, X, is not uniformly distributed on (0, 1).

43, CoroLLARY. If (X, .. X )~L,[f(): @y, a,) then the con-
ditional distribution of (X,, . .. X,), given { X, =x,, ., X,=x}, r<n, is
L, Lg )i a, e a, ] where g, (1) =flr+ 37 X)L X

The proof is straightforward from Proposition 4.1. Since the conditional
distribution depends on Xx,..., x, only through ¥/ ,x,, we lose no
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generality by conditioning on {}7_ X =y}, where y=Y"_, x,. We shall
use this result repeatedly in developing the multiple regression properties of
the class L,,.

44. PROPOSITION.  [If (X, ... X, )~L,[f(-); a,....a,], r<n, and the
expectation below exists, then

<(< [T x> X,-zt)ch’“f(t)/W“f(t), (4.3)
i=r4l i=1
where a=3%"  a;, j="__ . j. In particular, (4.3) remains valid if

[17_, . X/ is replaced by X/, r+1<i<n.
Proof. By Corollary 4.3,

(114

i=ri |

_r>/(t —(ljﬂif'(t—k Y x,-) [] x/** "dx,
i—1 1

i=r+1 i+

On applying Liouville’s integral (2.2). we see that the last integral above
equals

¢s { PO D dy =W ().

“Ja

Since f,(1)= W* f(1), then we have proven (4.3). The corresponding result
for £(X/) is proven similarly.

4.5, ExampLe. If (X,..., X,)~ D(a,, ...a,; a,, ) then it follows from
(43) that  &(I7,,, X/ X, =x,,..X,=x,) is proportional to
(1=27_,x;)". See [13: p. 304] for a special case of this result.

4.6. PROPOSITION.  Under  the  same  hypotheses — assumed — in
Proposition 4.4,

& <h< Y X,>
i=r+1

where h(-) is a real-valued function for which the expectation exists.

Z X»_z> ”_([,, (v=0)""hiy—1) f(y)dv, (4.4)

i=1 ’

The proof is similar to the proof of Proposition 4.4. In particular, if
h(1)=1’ then we find that for 1 <r<k<n,

A(( £ 0|5 vy (x

Z X, —{> (4.5)

i=1 i=1
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S. Total Positivity and Dependence Properties

In this section, we use the results of Karlin [14] and Karlin and Rinott
[15, 16] to obtain the totally positive and reverse rule properties of the
Liouville distributions. Then, we make applications to derive some
probability and correlation inequalities and positive dependence properties.

On R”, introduce the lattice operations v and A :if x=(x,, .., x,) and
y=(1,,... v,)are in R", then

X Vy=(max{x,, v}, ... max(x,. ¥,))

X Ay =(min{x,, 1), .., min{x,, v,)).

5.1. DErINITION [15]. A function g: R"— R, is mwltivariate totally
positive of order 2 (MTP,) if for all x.y in R",

gx)gly)<glx vy)gix ny) (5.1)

A random vector (X, .., X,,) is MTP, if its density function is MTP,.

In order to verify (5.1), it is sufficient [ 15, p. 469] to check that g(x)>0
is MTP, in every pair of variables while the remaining variables arc held
fixed. With regard to the Liouville distributions, we have the following
result.

5.2. PROPOSITION.  Let (X, .. X)~L,[f(-): ai,..a,]. Then the
following are equivalent:

(i) (X,... X,)is MTP,:
(ii) flx+ y)is TPy in (x, y) on R ;
(i) f(-) is logarithmically convex on R , .

Proof. 1t follows from Definition 5.1 that the density which is propor-
tional to (TT/.,x¢ ') fAXr., x;) is MTP, if and only if 3" | x,) is
MTP,. Since MTP, is equivalent here to pairwise MTP,, then we have
f(x,+x,) TP, on R, proving that (i) and (ii) are equivalent. Finally, the
equivalence of (ii) and (iii) was proven by Karlin [14, p 160]; indeed,
condition (5.1), when n=2, is precisely the definition of logarithmic
convexity.

5.3. ExampLE. Let f(-) be either of the functions f,(t)=¢* 'e¢ " or
=1 ""(141) " t>0, a>0, b>0; the related Liouville distributions
were encountered in Examples 1.1 and 1.3. The function f(-) is
logarithmically convex and, hence, the corresponding densities are MTP,,
if and only if 0 <a < 1.
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Having determined necessary and sufficient criteria for a Liouville dis-
tribution to be MTP,, we may now apply the results of Karlin and Rinott
[15, Section4] to obtain far-reaching information on probability and
expectation inequalities. In order to do this, we introduce a partial order
on R" as dollows: if x=(x;, .. x,)and y= (), ... y,) then x <Xy if x; <y,
i=1,..,n A function ¢: R” — R is increasing (decreasing) if x <Xy implies
d(x) < d(y) ($(x) = ¢(y)). Then we obtain the following results from [15.
pp. 484 -487].

5.4. THEOREM. Let (X, .. X, )~ L, [/(): a,....a,] and have a MTP,
density function. Then,
(1) the marginal distribution of (X, ... X,) is MTP,, 1 <r<n;

(ii) for any increasing function ¢: R, - R, 1<r<n, the multiple
regression

é’(é(x’l N Xr’ I Aerr 1 =X LI ‘X'n = .\‘,,)

is increasing in (X, |, .. X,);

(i) if ¢ and Y are both increasing or both decreasing on R” | then
Cov(g(X,, .. X,), w(X,,.., X,))=0. More generally, if ¢,,...0,, are all
increasing or all decreasing on R” . then

& <H 2 Spp Xn)) =[] 64X, . X)) (5.2)

i=1 i=1

(iv) ifdyt)=1and d()=P(X,<1,... X, <1) 1 <r<n, then

d, (1) d,, (1)=d>0), l<r<n—1.

It is customary to apply (5.2) to the development of inequalities for the
distribution function of (X, ... X,,). To this end, choose positive numbers
x; and define

bAX Y )= 1, X, < x,,
At T, otherwise.
i=1,...n Then, (5.2) becomes
PX,<x, . X, <x,) 2 |] PIX,<x,) (5.3)
i1
Replacing ¢, by | — ¢, leads to

PX,2x... X,2x,)=]] P(X,=x,). (5.4)
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In the case of the inverted Dirichlet distribution, the inequalities (5.3) and
(5.4) were obtained by Kimball [197 (cf. [ 13, p. 2407).

5.5. DepINITION [16]. A function g: R"— R, is multivariate reverse
rule of order 2 (MRR,) if g(-) satisfies the reverse of (5.1); that is, for all
X,y in R",

g(x) gly)= g(x vy)glx Ay) (5.5)

A random vector (X, .., X)) is MRR, if its density function is MRR,.

Suppose that a nonnegative function g(-) has the property that
g(x} g(y)#0 implies g(z)#0 for all z such that x <Xz =<(y. Then similar to
the MTP, case, g(-) is MRR, if and only if g(-) 1s RR, in every pair of
variables while the remaining variables are held fixed (cf. [16, p. S007).

5.6. PROPOSITION. Let (X, ... X,)~L, L/ ay...na,], where f(-) is
monotone increasing or decreasing. Then (X, ... X)) is MRR. if and only if
1) is logarithmically concave.

Proof. It is easy to see from (5.5) that (X, ... X,,) is MRR, if and only
if the function f(>" ,x;) is MRR,. Since f(-) is monotone, then
S x) S, v)#0 mplies (30, z)#0 for all x, <z, <y,
i=1,..n Hence (X,. .., X,)is MRR, if and only if f(37_, x,) is pairwise
RR,; that is, f(x, +x,) is RR, or f(-) is logarithmically concave.

As 1s noted in [16], the MRR, property does not suffice to imply expec-
tation and probabilistic inequalities analogous to (5.2)-(5.4). To this end,
we are forced to strengthen the reverse rule requirements.

5.7. DEFINITION [16]. (1) A function ¢: R— R is a Pdlya frequency
function of order 2 (PF,) if ¢(s—1) is TP, in the variables s, 1, —o0 <y,
1< .

(it) A random vector (X,,...X,) or its density function g(-) is
strongly multivariate reverse rule of order 2 (S-MRR,) if for any set {¢(-)]
of PF, functions the marginal

h(—\','l, e X )= J

RN T

g(xy e x,) [T ¢,0x,) dx, (5.6)
i=1

is MRR;, in the variables x,, ..., x,, where {i,, .., i} and {j,, ... j, .} are
complementary sets of indices drawn from {1, .., n}.

An example of a S-MRR, distribution is the Dirichlet distribution
Dia,,...a,; a,,,) with a,=1 for all i=1,., n+1; this result was
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established by Karlin and Rinott [ 16, p. 508]. Indeed, a close inspection of
their analysis yields the following general principle.

5.8. THEOREM. Let (X, .. X,)~L2P[f(-): ay,..a,], where a, 21,
i=1,.., 1, and f(-) is monotone increasing or decreusing. Then (X, ..., X,) is
S-MRR, if and only if f(-) is logarithmically concave.

Proof. Since S-MRR, implies MRR,, then the necessity follows from
Proposition 5.6. In proving the sufficiency, we modify the argument of [ 16,
Proposition 2.4], presenting the explicit details for the convenience of the
reader. If n=2, then (X,, X,) is RR, if and only if f(x, + x,) is RR,; this
holds because of Proposition 5.6. Let 14, = r“for 1 >0 and 0 for r < 0. When
n=3 we have to show that for any PF, function ¢(-).

J] Plxy) flx, +-\'2+-\'3)<H X l) dx,
0 i1

rl

=xg Iyp! . Gt —x5) f1+ x3 0 — x50 dr (5.7)
MY
is RR, in (x,, x;).

Since ¢(-) is PF, then ¢(7 — x,) is TP, in (¢, x,): also, (1 —x,) "is TP,
in (1, x,), a; > 1. Therefore, ¢(1 —x,)(1—x,) ' is TP, in (¢ x,). Next.
since f(-) is log-concave, then f(z+ x,)is RR, in (7, x;). Consequently, it
follows from the basic composition formula [14, p. 98] that the integral
(5.7) is RR, in (x5, x3).

Assume by induction that the function

P (T )7 (2 ) T aaay (58)
0 0 \;. 1

= i=1

is RR, in every pair of variables (x,, x,), with r<i<;j<n, for any set of
PF, functions ¢, .., ¢, . The integral in (5.8) is clearly of the form

()il x)

for some function A(-). Multiplying (5.8) by a PF, function ¢,(x,) and
proceeding as in the case n=3 we find that

Ll f(: <H1 X ‘)f <,~il n) ’_ljl $ilx,) dx;

is RR, in (x;, x;), r+ 1 <i<j<n This establishes the inductive step and
completes the proof.
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5.9. COROLLARY. Under the hypotheses of Theorem 58, if ¢, ..., ¢, are
all increasing (or decreasing) PF, functions then

g(H¢an<£<H¢mnﬂ£< 1 ﬁﬂﬂ) (>9)

i=1 i=1 Jer 4]

r=1, .., n, provided the expectations exist. In particular,

6(ﬂ¢wﬂ<ﬂmwxn (5.10)

(=1 i=1

Note also that I, ,,(-). the indicator function of {1, =), is increasing
and PF,. Approximating an increasing, nonnegative function #(z) by
e30 ol (1) =0, it follows that (5.9) and (5.10) remain valid for all
nonnegative, increasing ¢;, without the P¥, condition.

With the hypotheses of Theorem 5.8, the inequality (5.10) implies that
for x,> 0,

PX,Zx . X, 2x)<[] PLX, =x).
[

which is analogous to (5.3) (5.4). However, more stringent inequalities can
be obtained by appealing to [16, p.S513]; a typical result is that for
O<x, <y, <o, I <hk<i<n,

Plx, <X, <y, I<i<k: X, <y h<j<n) P, <X, <y, 1 <igh)

SPv<X, Sy I<isk: X, <y k<jg)

X P, <X, <y I<i<k X, < i< i<

6. Characterizations

In the preceding sections, we have treated several aspects of the Liouville
distributions. Here, we see how these distributions may be characterized
using the topics considered earlier. However, the proofs of the main
statements are placed in Section 9 where more general results are
established for the matrix analogs.

6.1. PrROPOSITION.  Let (X, .., X,)~ L") ay..va,]). Then the
following are equivalent:
(1) X,.... X, are mutually independent

(1) there exists i, j with X; and X, mutually independent ;
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(i) for 1<r<k<nand jeR, the regression (X[ |X/_, . X;=1t),1f
it exists, is constant (a.s.).

Note that all three statements will be established by proving that
flty=e . t>0, h>0. In particular, we will use Deny’s theorem to prove
part (iii).

6.2. Remarks. (i) From Propositions 4.4 and 4.6, it follows that
Proposition 6.1(iii) remains valid if XY is replaced by (¥/_,,, X,)/ or
Y7, X;). where h(-) is any continuous, nonnegative function for
which the regression exists.

(ii) If j is a positive integer, then Theorem 6.1(iii) can be established
without recourse to Deny’s theorem. By Proposition 4.4, the hypothesis of
constant regression is equivalent to W/TUf{r)=c¢W“f(t), where
a=a,,,+ --- +a,. Differentiating fractionally, we get f(t)=cW/f(1).
1> 0, which can be rewritten as

fin== " =0 fdy, (6.1)

where ¢, > 0. By repeated differentiation of (6.1), we get

(= 1Y fUty=c, f1), 1>0. (6.2)
From (6.2) we deduce that f(-) is infinitely differentiable and even that
f(-) 1s completely monotone; that is,

(—Df"0y=20,  i=0,1,2,..
By the well-known Hausdorff-Bernstein theorem, there exists a unique,
nonnegative, finite, Borel measure u such that

fln)y= J: e "du(y)

From the uniqueness of u and (6.2), it follows that u is singular; therefore,
ftty=ce ", 1>0, b>0.

(i1} In the case of the Dirichlet distributions D(a,, ..., a,; a4, ) it
was noted in Example 4.5 that

¢ (x

where j>0, I<r<k<n We conjecture that (6.3) characterizes the

Y X,:z):c(lt}’. 0<t<l, (6.3)
i1

6832326



248 GUPTA AND RICHARDS

Dirichlet distributions among the class L!*', and below, we prove this result
when j is a positive integer.

By Proposition 4.4 and the definition of the W operators, the problem
of characterizing the Dirichlet distributions through (6.3) is equivalent to
solving the integral equation

1

K ity (=0 w
| =i dy = [ =07 e (64)

I'a+j) I'ta)
where a=ua,,  + - +a, 0<tr<l, subjecl to f(t)=0 and the
integrability condition (2.1). Substituting y=(z—1)/z.1=(s—1)/s, and
g(z)=z""“"Y f{{z—1)/z), then (6.4) is transformed into
1

'.’;,—' a1 ~ _ ('/ ro e ) i
Favpl @ e ek =g ] e e

s>0. Thatis, W /(s 'g(5))=c,W“g(s). and by fractional differentiation,
Wits 'g(s))=c,gls) (6.5)

If j is a positive integer, then by repeatedly differentiating (6.5), we get the
ordinary differential equation

g s y=cl— 1) s gls), >0, ¢,=1j¢;>0. (6.6)

When j=2, (6.6) is known [20] as Cauchy’s equation. The standard
procedure for solving these equations is by way of the substitution s =¢*,
which transforms (6.6) into the linear differential equation

[(DID—1)Y(D=2) - (D—j+1)=c,(—1)]h(x)=0, (6.7)

where 4(x) = g(¢*) and D = d/dx. If j is even, the characteristic polynomial,
p(x), of (6.7) is strictly decreasing for x<0. Since p(0)= —c,<0 and
p(x)— oo as x —» —oo, then p(x) has a unique negative root — 4. A similar
argument yields the same conclusion if j is odd. Also, any complex roots of
p(x) are obviously to be disregarded, while positive roots are eventually
ruled out by (2.1). Therefore, (6.7) has the unique solution /i(x)=¢" 4% and
hence f(r)=(1—1)* '. Moreover, (6.4) implies that > 0.

Next. we characterize the Dirichlet distributions among the class L.”
using the concept of complete neutrality (Doksum [5]). This notion is
related to the tailfree distributions of Freedman [8], and has been used by
James and Mosimann [12] to derive other characterizations of the
Dirichlet distributions.

6.3. DEFINITION. A random vector (X,....X,) taking values in the
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simplex &, is completely neutral if there exist mutually independent,
nonnegative random variables Y, ..., Y, such that

, n-1
(X, . X,) % (Yl, Yol—=Y) .. Y, [T (- m).

i=1

6.4. PROPOSITION.  If (X ... X,)~L>[f(); ayy.a, ] then (X, ... X,)
is completely neutral if and only if (X,. .., X,)~Dla,, .., a,;a,. ) for some
Ay > 0.

A similar result may be established for the class L'" and the inverted

Dirichlet distributions.

6.5. PROPOSITION.  Suppose that (X, .., X,)~ L[ f(-):a,, ... a,]. Then
there exist mutually independent, positive random variables Y. ... Y, such
that

X n- |
(X, .. X,) = (Y,, Yol+ Y)Y, [] (1+ Y,)>

i=1

if and only if (X, ... X,)~ID(a,, ... a,; d, ) for some a, > 0.

II. LiouviLLE DISTRIBUTIONS ON R""

7. Transformations and Stochastic Representations

Throughout, the unique, positive definite (Symmetric) square root of a
positive definite matrix T will be denoted by T'".

7.1. PROPOSITION.  Suppose that (B, ... B,)~L'>[g(-); a,, ... a,]. For
=1, .., n, define

n -2 n 1,2
A,:<1_ v B,.> B,(I— s B,> | (7.1)

j=1 j=1

Then (A, ..., A,)~LVLf(); ay, .. a,], where
AN =\I+ Tt Tarrl o(T(I+TY Y, T>0. {7.2)

In particular, there is a one—one correspondence between f(-) and g(-).

Proof. The statement and proof of this result are natural extensions of
those given in Proposition 3.1. Let 4,=3%"_, A;,, Bo=2""_, B,. It follows
from (7.1) that Ay=(I—B,) '* By(I—By) '>=(I—B,) "' By. the last
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equality holding since B, commutes with any rational function of B,. By
simple manipulation of these identities, we get By=(/+4,) ' A, and
I—By,=(I+ A,) ' Inverting (7.1), we see that

Bi=(I+A4y) "2 A+ 4,) "% i=1 ..n (7.3)

The Jacobian of (7.3) may be shown to equal |7+ 4, '"*"'", and then the
rest of the proof is standard.

7.2. Remarks. When g(T)=|I-T|* ", 0<T< I, the transformation
(7.3) was used by Olkin and Rubin [24, Theorem 3.4] to transform an
inverted Dirichlet distribution into a Dirichlet distribution; their method
was somewhat more roundabout, being based on a set of successive trans-
formations.

7.3. ProPOSITION.  Let (A, .. A)~L,[f(-); a,,..qa,]. Then the
following stochastic representations are valid:

(i) (4,,..4,) =Y BYXB,,..B, |, I-Y"_!B,)BY. where
(B,....B, ) and B, are mutually independent, and (B, .., B, )~
Dia,,...a, \;4a,):

(i) (A, ., 4,) =7 BPUTTZ ! B2 AT BI?). (TTi2) By )
(/- B WIT_{B'"),..I—B, ) B};’Z, where B, ..., B, are mutually indepen-

dent, and B, ~ B(Z;;, a;a; ) i=1,.,n—1;

(iii) (Ay,...A4,) =7 BT/ '(1+B D OUNITZ ) T+ B) R

(H,n (I+B, . 1) ”)B(H,J(HB "), I+ B, ) "B, (I+
B, ) ‘%) B2 where By, ... B, are mutually independent, and B, ~ IB(a, . ;;
Sioia)i=1 . n—1;

(iv) (4,... 4,) =7 BY(B,. (I — B)" Byl — B, ..
(I1_2 (1 —B)") B, (II/-2 (= B, . )7, T2} (I~ B)"™?)
(I1'=} (I~ B, )'?)BY2, where B, ... B, are mutually independent, and
Bi~Bla: Y ., a)i=1 ., n—L

In all four cases, B, =" L\[f(-); Y"_, a;].

In view of the similarity with Theorem 3.2, a detailed proof is
unnecessary. However, it should be noted that the Jacobians of (i)-(iv) are,
respectively, [B,|" 7. TTr, B¢ "7 |B, )" VPTTiz I+ By,
and B, VTS 11— B

The above representations can also be used to generalize some earlier
observations (Theorem 3.2, infra); we obtain the following result which is
due to Khatri [18].

7.4. CoroLLARY (Khatri [187). If mutually zndependent B~ B(ZI,I a;:
a,, ). i=1, ... n, then (IT7_, BY?,, )T/, B{*Y~Bla,; X11) a;)
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Proof. We use induction, with n>=2. When n=2, define (4, 4,) in
terms of (B,, B,) using the transformation in Proposition 7.3(iv). By rever-
sing the argument which establishes that result, 7.3(iv), we obtain
(A,, A))~D(a,;a,+as); in particular, BY?B BY?>=4,~ B(a,;a,+a,).
The inductive step is also proven using similar arguments.

Finally, if we mimic the proof of Proposition 3.4 then we obtain the
following result.

7.5. ProPoSITION.  If (A, ... A)V~L,1f("); a,....a,] and r<n, then

7, Ai)”m (AT A) s B3 _ja. Y0, a)

8. Marginal and Conditional Distributions

As expected, the results for marginal and conditional distributions in the
matrix case are entirely analogous to the vector situation. We state the
needed results without proof.

8.1. ProposiTION.  Let (A4, ..., A,)~L,[f(); a\,...,a,] and r <n. Then
(1) (A, A)~L[f () a,..a), where a=3"__  a, and
FATY=Wf(T) is the fractional integral of order a of [(-);

(i1)  the conditional distribution of (A, ..., 4,) given Al, . A,, } s
L)I r[gr()! ar+l*"" an]’ Wher(,’ gr(T):f(T+er:1 /f 141 ’
(1) if the expectation below exists, then

f( [T 141

i=r+1

i A,-=T>=CW”"./'(T)/W“f(T), (8.1)

i=1

where a =301, dn J=20_, 0y e

9. Characterizations

Here, we extend the results stated in Section 6 by characterizing the
Liouville distributions through various properties treated in earlier
sections. Since the zero matrix is a limit point of the convex cone R *", we
may use the notation “7— 0+” to mean that 7 — 0 through R7>™ It is
assumed throughout that lim,_,,, f(T)=1.

9.1. PROPOSITION. Let (Ay,..,A,)~L"[f(-); a,,..a,]. Then the
following are equivalent
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(i} f(T)=exp(—tr 2T) for some X >0,
(i) A,, .., A, are mutually independent

(iil)  there exists i, j with A, and A; mutually independent.

Proof.  Since (i) implies (i1) and (i1) implies (iii), we need only show
that (i) follows from (iii). By Proposition 8.1(i), the pair (4,, 4;) has a
marginal distribution which belongs to the class L{!"; therefore, in proving

that (iii) implies (1), it suffices to assume that # = 2. Therefore. suppose that
A, and 4, are independent. Then

A 7 A 7 A+ A=A, " A T h(A) oA,

equivalently, f(A4,+ A,)=h,(A4,)h-(A,) for all 4,>0, 4,>0, and con-
tinuous, nonnegative functions /,, i1,. By symmetry, i, = h,; further, when
A A, >0+ we get h(0+) =1, so that h,(0+)=1. As 4,—-0+, we
even see that f(T)=~h(T), T> 0. Therefore,

ST+ T5)=f(T,) [(T,), (9.1)

which is the multiplicative analog of Cauchy’s equation on R” "™
Regarding (9.1) as a functional equation in the m(m + 1)/2 distinct entries
1,; of the matrix 7. then we have

w :

f(T)=exp <—— Y oy a,,r,,) =exp(—tr 2T,

P j—1

where the m xm matrix X is symmetric. If there exists 7,,>0 such that
tr(ZT,) <0 then the sequence f(iT,). i=1,2, .., is unbounded, contra-
dicting (2.1). Consequently, tr(27)>0 for all T7>0 and therefore [10,
p. 47871 X is positive semidefinite. Finally, the positive definiteness of 2 is
guaranteed by (2.1).

9.2. THEOREM. Let (A, ... A)~L,U/(): ayyna,], 1 <r<k<n, und
J be such that the following regreuton exists. Then E(|A'|Y_, A;=T) is
constant (a.s.) if and only if

f(T):J” exp(—tr ZT) du(X),  T>0, (9.2)
R

where 1 is a probability measure concentrated on a hypersurface of the form
12>0:12=c}.
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Proof. From Proposition 8.1, the a.s. constancy of the regression
function is equivalent to f{(-) satisfying the integral equation

AT =c|  fS+T)ISITdS,  T>0,

X m
Y R"

which is a special case of Deny’s equation (2.4). To apply Deny's theorem,
we need to find all continuous, bounded solutions ¢ of the functional
equation (T, +T,)=(T,)d(T,)., T,>0, T,>0. In proving
Proposition 9.1, it was shown that every such ¢ is of the form
M T)=exp(—tr 2T), where 2 >0. Then, the representation (9.2) follows
from Deny’s theorem.

9.3. Remark. Note that when n =1, the measure yu is singular; then, the
regression is constant (a.s.) if and only if f(t)=¢ " for some > 0. Com-
bining this remark with the results in Proposition 9.1, then we have com-
pletely proven Proposition 6.1. We also point out that results generalizing
Theorem 9.2 may be derived (from Deny’s theorem and Proposition 8.1) if
|4,|” is replaced by A(3;_, 4;), where A(-) is unbounded, nonnegative,
continuous, and such that the conditional expectation exists.

Finally, we develop the appropriate generalization of Proposition 6.4.

9.4. DerFiNITION.  Let A4,,.., 4, and I—Y"_, 4, be random matrices

i=1

taking values in R7*". Then (4, .., 4,) is completely neutral if there exist

mutually independent B, ..., B,, 0< B; < (i=1, ... n), such that
(A, ..A4,) % <Bl. (I—B)" B,(I— B} ..,
n-1 no1
(TLu-807)5( T 0-5, 7)) e
i=1 i=1
9.5. PROPOSITION.  Let (Ay,...., A,)~ L[ f(-):ay,...a,]. Then (A,,... A,)

is completely neutral if and only if (A, ..., A,)~Dla,, .., a,;a,, ), for some
a, + 1 > p 7 1

Proof. The Jacobian of the transformation defined through (9.3) is
[T;_/ |BJ" "7 Also, it can be shown (using induction, say) that

Y AL 1-(1—[ (IAB,-)“Q)(H (I=B, ., ,-)"2)

i=1 P=1 i=1
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Since (A4,...A4,)~L2[f(-); a,,..a,], then the joint density of
(B,, ... B,) is proportional to

n w1 .
(H |B,] ”)(H |[ - B o+ “,n)

= ] i1

o (r-(fm) (fu-n ) o

" An=u-1“" " a,, >p—1, then it follows from (9.4) that
B,. ... B, are independent multivariate beta matrices; hence, (4, ..., 4,) is
completely neutral.

Conversely, if (4, .., 4,) is completely neutral, then by (9.4),

< <ﬂ(1 B;) ><ﬂ(1 B, ,»)"'2>>=ﬁ/l,v(1—3f) (9.5)

i=1 i=1

for continuous, nonnegative functions #,. Using the argument of
Proposition 9.1, we find that A({—T)=f(T), O<T<I i=1,.,n As
B;—01n (9.5) (for i = 3), we find that the function g(7T)= (I — T} satisfies

g(TV2T,T1?)=g(T,) g(T>) (9.6)

for 0 < T, T, <1 The conclusion rests on the following result.

9.6. LEMMA. Let g: R"*" — R_ bhe nontrivial, continuous, and satisfy
(9.6). Then g(T)=|T\* for some k in R.

Proof.  Without loss of generality, we may suppose that g(-) is defined
on all of R">™. Since g(-) is nontrivial, then (9.6) implies that g(/)=1.
Next, recall that every m xm nonsingular matrix X has a “polar coor-
dinates” decomposition [10, p.4821 X=FT!? where T,>0 and
Ve O(m), the group of mxm orthogonal matrices. Then 7, =X'X and
V'X=T)?=(T|?) =X'V. Substituting these relations into (9.6), we
obtain

gV XTLX' V)= g(T\ 2T, T\?) = g(T\) g(T,) = g(V'XX'V) g(T,).  (9.7)

With X=11n (9.7), we get g(V' T, V)= g(T,) for all V€ O(m), T,>0; that
is, g(-) is orthogonally invariant. Hence, (9.7) reduces to g(XT,X")=
g{XX') g(T,), and on setting T, = YY" in this last equation we find that the
function p(X)= g(XX") satisfies

pXY)= p(X) p(Y) (9.8)

for all X, Ye GL(m), the group of all m xm nonsingular matrices. The
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THEOREM A [3, Theorem 3.6]. Suppose n=2.  Suppose p:.=
(Prsap)ell, o] is such that 3} _ | 1/p, < 1. Define the number ¢ = c(p)
=2 tkpky< oy 1Pk Then there exists a constant A= A(p) which is «
Sfunction only of p, such that the following statement holds: If (2, .#, P) is a
probability space, #, .., F, are o-fields < .#, and B: S (F)x - -x
INF,)—>C is an n-linear product  form, then |[B|,<A-dy(B)-
[1~logd,(B)].

Here ¢ :=01if p= (., .., x ). The main result of this section is as follows:

THEOREM 3.1. Suppose n=22, and p:=(p,, ...p, e [1, = ]". Define the
number ¢ =c(p) =3 . <. 1/pi. Then there exists a positive constant
a=alp) such that the following statement holds:

For each 1, 0<1<2 ", there exists a probability space (R, .4, P) and
o-fields #,....#,c./ and an n-linear product form B: Y (F)x---x
S(F)— C (defined by B(fys.mf,):=E(f-f,)—T1i_, Efi), such that
d(B)=tand | B||,Zza-1(1 —logt).

Remark 3.2, Several comments will be made:

(a) The assumption > 7 _, I/p, <1 in Theorem A is not required in
Theorem 3.1.

(b) The constant ¢=¢(p) in Theorem 3.1 is exactly the same as in
Theorem A. Consequently, Theorem 3.1 shows that Theorem A is within a
constant factor of being sharp, for any choice of parameters meeting the
specifications in Theorem A. (This “constant factor” may depend on the
parameters.) Consequently [3, Theorem 4.1(vi)] is sharp in the same sense.
by Theorem 3.1 for n=2. Theorem 3.1 also shows indirectly that
[3, Theorems 2.1 and 2.27 are sharp in the same sense; for if this were not
so, then (see the proof of Theorem A} an improvement in [3, Theorems 2.1
and 2.2] (beyond just a better constant factor) would lead to a similar
improvement in Theorem A, contradicting Theorem 3.1.

(c) The a-linear form B in Theorem 3.1 was chosen partly for its sim-
plicity. Because of the extensive role played by cumulants in the study of
dependence between more than two random variables, it is natural to con-
sider measures of dependence based on norms of cumulants. For example,
Mase [11] studied the measure of dependence d,, , , ,,(Cum) between
four o-fields, where Cum denotes the 4th-order cumulant. Theorem 3.1
holds with B defined by B(f,....f,)=Cum(f,....f,) (the nth-order
cumulant). Because of our proof, this will be a trivial corollary of
Theorem 3.1 itself; in our proof the construction will be such that any »n — |

o83 23 2]
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