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It is proved that a nondegenerate diffusion process in the closed half space 
G = {.x E Rd: xi > 0}, where d > 2, with Wentzell’s boundary conditions does not hit 
any specified point on the boundary. (cl 1986 Academic Press, Inc. 

It is known that a Brownian motion in the unit sphere, with normal 
reflection at the boundary, does not hit a specified point on the boundary 
(see McKean [4]). The aim of this article is to prove that a non-degenerate 
diffusion in the closed half space, with certain Wentzell-type boundary con- 
ditions, does not hit a point on the boundary specified in advance. We also 
give an application to a boundary value problem. 

Let G= {x=(x ,,..., ?cd): xi >O}, i3G= {xER? x, =0} and G=GudG, 
where d > 2. We have the coefftcients a, b defined on G, and ct, y, p defined 
on aG, satisfying one of the following two sets of conditions. 

CONDITIONSI. (I l)Foreachx~G,a(x)=((a~(x))i~~,~~~isadxdreal 
symmetric positive definite matrix; a(. ) is bounded and continuous; 
a-‘(. ) is also bounded and continuous. 

(I 2) b( . ) = (b, (. ),..., bd( . )) is a bounded and continuous lRd-valued 
function on G. 

(I 3) y( . ) = (yZ(. ),..., yd(. )) is an RdP1-valued function on aG; 
y,~Cz(dG) forj=2 ,..., d. 

(14) cr-Oasa(d-l)x(d-l)matrix. 

(I 5) p = 0; or p is a bounded locally Lipschitz function which is 
strictly positive at each point of aG. 
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The set of alternative conditions is 

CONDITIONS II. (II 1) In addition to (I 1) we assume that for each 
XE G, there exists a d x d real symmetric positive definite matrix 
a(x)=((uij(x)))l <i.j<d such that a(x) = (T(X) o*(x), r~(. ) is bounded and 
continuous, and (r- ‘(. ) is also bounded and continuous. 

(II 2) Same as (I 2). 

(11 3) 24 . ) = (Y2( . L Yd( . 1) is an Rdp’-valued bounded and con- 
tinuous function on aG. 

(II 4) For each xEaG, N(X)= ((cQ(.x))),.~,~~~ is a (d- 1) x (d- 1) 
real symmetric positive definite matrix, and there exists a (d - 1) x (d- 1) 
real symmetric positive definite matrix 5(x) = ( (c?~(x)))? G ?., G d such that 
E(X) = Z(x)* a*(x). 5(. ) and a-‘(. ) are bounded and continuous. 

(II 5) Same as (I 5). 

Define 
d 

L=; ,c 4j(x) r.J= I &+ i b;(x)& 1 I ,=l I 

and 

J= 

(1) 

(2) 

Let Q = C( [0, co): G) be endowed with the topology of uniform con- 
vergence on compacta and the natural Bore1 structure. 

Under conditions less restrictive than the set of Conditions I, Stroock 
and Varadhan [7], have established the existence of a unique solution to 
the submartingale problem corresponding to the coefficients a, 6, y, p. 
Following Watanabe [9], Nakao and Shiga [6] have established the 
existence of a unique solution to the stochastic differential equation 
corresponding to the coefficients a, b, c(, y, p under conditions less restric- 
tive than the set of Conditions II. The equivalences of these two for- 
mulations can be found in El Karoui [3]. (Here uniqueness is in the sense 
of law.) 

So, when Conditions I or II hold, for each XE G there exists a unique 
probability measure P, on 52 such that 

(1) P,{X(t)EG for all ta0 and X(0)=x)=1, 

(2) ./-V(t)) - j:, [ZG. W-)3(X(u)) du 

is a P,-submartingale for any f~ Ci ( Rd) satisfying Jf > 0 on aG, and where 
X(t) denotes the rth coordinate map on Q; also the process X(t) is strong 
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Markov and Feller continuous. Further, there exists a continuous, non- 
decreasing, non-anticipating process t(t) on D such that 

and 

is a P,-martingale for every fE Ci (Rd). We shall call the family {P1: x E G} 
the diffusion corresponding to (L, J). 

We first prove a theorem which effectively reduces the problem to the 
case of normal reflection; this theorem may be of independent interest. But, 
we first need a few lemmas. 

LEMMA 1. Let g: KY” + II?” be a bounded and continuous function (i.e., the 
image of g is contained in a compact set). Define g,: R” + W” by 
g, (x) =x +g(x). Then g, is onto. 

Proof Let z E R” be fixed. Define hz: R” + R”’ by h,(x) = -g(x) + z. 
Since the range of h, is contained in a compact set, by Brouwers fixed point 
theorem, there exists XE R” such that hz(x) = x, i.e., z = x +g(x). This 
shows that g, is onto. 

LEMMA 2. Let Conditions I hold. There exists a C2-diffeomorphism 
T: G + G, given by (y,, yz ,..., yd) = T(z,, z? ,..., zd), such that the following 
hold 

(i) T is identity on dG. 

(ii) Under T-‘, J = d/ay, + Cf= 2 y,(y) a/dy, is transformed to 
T=ala,-, on ac. 

(iii) L, given by (1) (in the variables y, ,..., yd), is transformed to a 
strict1.v elliptic operator 2: with bounded coefficients (in the variables 
z, , z2,..., zd) under T- I; and 2 has a representation like ( 1). 

ProoJ: By condition (I 1) there exist constants a, > 0, M > 0 such that 

laii(x)l GM for all xEG, 1 <i,j<d, 

a, = inf{ eigenvalues of a(x): x E G}. 
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We first consider the case when there is a constant ,u such that 

(4) 

For x = (x1, xa ,..., x,), let -7 = (0, x2 ,..., xd). Note that by (4), for 2, 3 E 8G, 
we have 

I&t)-y(i’)l’<(d- 1)~2IZ-.zI’. (5) 

Let Iz be such that 0 < 1< l/(2+); let 4 be a smooth function on ( - 1, co) 
such that 4 is non-decreasing, I#‘]< 1, and d(u) = u if u 8 $1, and &u) = 2 if 
v>i. Define T:G-+G by 

( y, > J’2,Y Y,,) = T(z,, z2,.-, =(I) 

= (- ‘51, 22,.-r Zd) + qQ,)(O, yz(Z) ,*.., Y/j(Z)). (6) 

We claim that T is one-to-one; indeed, let T(zi, z2,..., zd) = 
&,, ‘2 ,..., 2;). By (6), it is ciear that z, =z’,; and hence &z,)=&z;). 

T!tireJre Z+ &z,) y(Z) = Z’+ $(zl) $3’). Consequently by (;), 

which is a contradiction unless Z = =I’. Thus T is l-l. By Lemma 1, T is 
onto. (Actually T is one-one and onto on every {zl = constant}.) Since 
#J(O) = 0, it follows that T is identity on 8G. 

Since T is a bijection, from (6), we may write 

(2,) 22 )...) 2d )= .vl, y2, . . . . YJ-#(JUNO, Y,W,..., Yd(3) 

=(y,,y2,..., Yd)-d(Y1)(0, ~2(4’),..., fld(Y)L (7) 

where ei( JJ) = yi(z( y)), with Z expressed as a function of y, 
Since y;s are twice continuously differentiable, by inverse function 

theorem it follows that the transformation T is a C*-diffeomorphism and its 
inverse is also a C*-diffeomorphism. Thus, 0,‘s are twice differentiable as 
functions of J. 

Next, we claim that 

(8) 

TO that end, set y, ~0, 8, ~0; a,8= (atI,/ay, ,..., 3fIJay,), JPp,= 
(a7 ,/a+..., 8yJazP), for p = 1,2 ,..., d. Here it may be noted that y2 ,..., yd can 
be considered functions on G by making yJx) = ~~(2)). Let D,y denote the 
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(dx d) matrix given by (ZI,y),, = (3y,l/dz,). Then a simple computation 
shows that 

where Z is the (dxd) identity matrix. Since I#(Yl)(ayj/Jzk)l 61~ and 
dAp < f, it follows that [Z-t (6( y,) D,y]-’ exists and 

Hence by (4) and (9) we get 

whence (8) follows. 
Now for any smooth function g, by (7), we obtain 

for i=2 ,..., d. Since &O)=O, 4’(O)= 1, and O,(y)=ri(p) on {y, =O}, it 
follows from (10) that 

This establishes conclusion (ii) of the lemma. 
Differentiating again, it can be shown that, for i, j= 1, 2,..., d, 

+ first-order terms, (12) 

where S&=&$i; since 141 ~1, 14’1 < 1, l0,l 6~ < 1, by (4), (8), and the 
calculations leading to (12), it can be proved that 

IS~,l d 4 
1 - (d/l/i) ” 

(13) 
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Now from (12) we get 

= i [aii(. ) + qii(. )] $+ first-order terms, (14) 
i.;= I J 

where qii(. ) = C&=, aV(. ) sf,(. ). In view of (13) it is easily seen that for 
any C = (iI ,..., id) in R”, 

(15) 

Since dip < +, we have from (4) and ( 15), 

for any [ # 0. It may be noted that there are no terms of the form q( ) g( . ) 
in (12) and hence in (14). Thus 2, given by the right-side of (14) is 
uniformly elliptic (in the variables z, , zz ,..., zd). This completes the proof in 
the special case. 

In the general case, since yj E Ci(aG), there exists a constant K, such 
that 

Choose K large enough that K,/K< uo/(8Md3). Note that the diffusion 
corresponding to (L, J) is also the diffusion corresponding to (L, (l/K) J). 

Set P,=Kz,, fj=zj, j= 2,..., d; fj(i) = (l/K) yj(z) for z E aG. It is then 
easily seen that the general case is reduced to the previous case with the 
new ellipticity constant u,(K A 1); also (l/K) J in the z-coordinates is 
transformed to a/Z i + Cf= z fj (i)( a/ZJ) in the i-coordinates. The lemma 
now follows in the general case from the special case considered 
previously. [ 

We can now state our first theorem. 

THEOREM 1. Let Conditions I hold; let L, l, J, 7, T be us in Lemma 2. Let 
{P,. : y E G} be the diffusion corresponding to (L, J). Let i? 52 -+ 52 be, defined 
by ( pw)( t) = T(w(t)). f is a homeomorphism on Q. Set p,-= _P., T, where 
y= T(z). Then {P=: z E c} is the diffusion corresponding to (L, J). 

Proof: Let Bz = 0(X(s): 0 QS < t} be the natural filtration in Q. If 
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E E a’r, note that PE, f-‘E E a,. Let f~ Ci( lRd) be such that Jj-2 0 on 8G. 
Define 7 by setting f(y) =f(T-‘y). Note that J3(y) = ?f(z), where 
y = T(z); consequently J3> 0 on aG. Hence 

f(JGf)) - 1’ GIG. (mlw(u)) A4 
0 

is a P,-submartingale (with respect to g,). 
Note that by Lemma 2 

[I,. bm1Pm w)) = CZG. (-mlGw, w)) 

for all t and all w  E Q. Consequently, an elementary argument involving 
change of variables yields that 

f(X(t)) - j-’ [Z,. (zf)](X(s)) ds 
0 

is a P,-submartingale. This completes the proof. 1 

Remark. Let Conditions II hold; in addition, let y,i E Cz(aG). Let T be 
defined as in (6). Since d(O) = 0, the calculations leading to (12) show that 
for 2 6 i,j 6 d, a2g/(a~iayj) = a2g/(dz,azj) on aG. Consequently, analogues 
of Lemma 2 and Theorem 1 hold in this case with J given by (2) (in the 
y-variables) and J= a/az, + fczjc2 aij(. ) a’/(az,az,). 

Hereafter, L and J will be as in (1) and (2) that is, in the x-variables. 
We need a few lemmas. 

LEMMA 3. Let Conditions I or II hold; let {P,: x E c} be the diffusion 
corresponding to (L, J). Let U be a bounded open set in G. Then 
~~P~~~UU~)<~ and supxau E,(<(v~))< 00, where 5 is as in (3) and 
qu=inf(t>O: X(t)+ U}. 

Proof: Let h E C;(G) be such that h(x) = eqs’ for x = (xi ,..., xd) in 0 and 
q is a suitable positive constant so that Lh > 1 in U. Note that Jh 3 q > 0 
on aG n U. By (3b) and optional sampling theorem, for every T > 0 

E, h(J-(rlu A T)) - W-(O)) - j;‘;^ ’ III,. (Lh)l(3u)) du 

-.I 
vu” T 

Jh(X(u)) dl(u) = 0 
0 1 (16) 

for x E U and X(0) = x. Since h is bounded, Lh > 1 in rf and Jh > 0 on aG; 
by (16) and monotone convergence theorem it follows that 
sup XE U E, (II “) < 00. Again, since h is bounded, Jh 2 q > 0 on aG n U and 
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Lh > 0 in U, by (16) and monotone convergence theorem it follows that 
supxe U J%(<(VcJ)) < 00. I 

Fix c E c?. For x E G such that x # i, define 

d 

4(x)= c a,(x) 

txi - Ci)(-F, - ijt 

i./= I Ix-iI2 ’ 

B(x) = f U,j(X), C<(X) = 2 i b;(x)(x,- &). 
i= I i=l 

For r > 0, define 

DC(r)= sup 
K+‘+(x)+C,(x) 

1-Y - [I = i- A,(x) ’ 

&(r)= inf 
4x)-A,(x)+C,b) 

1.x - (1 = r A,(x) . 

Let c>O. Define for r>c, 

~~,i(r)=jrexp(-l,i(u))du, 1 F,,,(r) = jr exp( - I,,c (u)) du, c 
and letf,,.i(~)=~~,~(l.Y--l) and f~,i(x)=F,..r(I.u-il). 

Let H be a real-valued twice continuously differentiable function on 
(0, co), and let h(x)= H(lx-(1). Th en it is easily seen that for Ix - [I > 0, 

2~h(x)=A,(x)H”(Ix-il)+ Ix-i, H’(‘x-Q3(x)-Ac(x)+C;(x)). (17) 

LEMMA 4. Let Conditions I or II hold; let [E c be fixed. Let c and n be 
fixed real numbers such that c < n; let x E G be such that c < Ix - 51 < n; and 
Zet T,=inf{t>O: /X(t)-[I =c or n). Then 

F<,i(lx-:I)+ 
F,:,(n) j; 4,(X(u)) 4~) 1 

,R,iwil) 
Fe;.,(n) 

1 E 
+Fc.i(n) x J!,r (X(u)) d<(u) 

1 
9 (18) 

where for II closed set K in G, tK = infit 2 0: X(t) E K). 
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Proof Note that, by Lemma 3, r, < co as. P,. We apply (3b) to the 
functions fc,[ and & and proceed as in the proof of Lemma 2.1 in Bhat- 
tacharya and Ramasubramanian [2]; finally an application of the optional 
sampling theorem yields the lemma. We omit the details. 1 

Remark. Suppose L transforms smooth radial functions into smooth 
radial functions. Further, let J= a/ax,. Also, let [ = 0 for simplicity. Then 
A,(x) and B(x) + C,(x) are easily seen to be radial functions; consequently 
flsfl. Also J& Jf=O on dG. Hence (18) becomes 

F,;oWI)=~ (T 
F,,(n) .’ a.,.:.,<~aB(o:<))=*. (19) 

C.0 

Since L transforms radial functions into radial functions, by (17), it can 
be seen that solving D(x) = 0 in c < (xl <n is reduced to solving a 
(l-dimensional) second-order ordinary differential equation in the interval 
(c, n). The latter can be done easily, and (19) thus gives the solution to the 
problem: 

Lb(x) = 0 for c< (xl <n, Jh(x) = 0 for x E aG, 

h(x) = 1 for 1x1 =n, h(x) = 0 for )x1= c. 

In the general case, for i E aG, P,(z,,(~, ,,) < raB(c: c,) is bounded above 
and below by similar radial functions (which are harmonic for an elliptic 
operator which transforms radial functions into radial functions), plus 
correction terms depending essentially on the boundary conditions (cf. see 
CL 21. 

We are now in a position to prove our main theorem. 

THEOREM 2. Let Conditions I or II hold, and let [E 8G. Then for any 
n>OandanyxsuchthatO<Ix-[l<n, 

lim P.r(5asrc:n, < *astir Cl) = 1. Cl0 (20) 

Consequently, the d&fusion does not hit a point on the boundary specified in 
advance. 

Proof: (i) Let Conditions I hold. In view of Theorem 1 it is sufficient to 
consider the case J= a/ax,. In such a case note that Jfc,[ E 0 on aG. Then, 
as F,,(Ix-rl)/F,r(n)~l as cl0 for any n>O and any O<Ix-i’l<n, 
(20) follows from (18). 
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(ii) Let Conditions II hold. Let x E (7 be fixed and x # [. Let n > 0 be 
fixed. Let E >O be given, Choose c>O such that 

Fc.wil)>(l -E) 
F,:<(n) 

(21) 

Note that constants r,, j= 2,..., d can be chosen so that 

.k,[ ( Y ) 2 0, for CQ Iy-i( <n, ,v~dG, (22) 

where 

S=J+ 5 “q(.)r,&. 
i.J = 2 I 

Let Q; be the diffusion corresponding to (L, j), starting at x. Note that, by 
a Girsanov-type theorem (Nakao and Shiga [6, pp. 453, 4681) 

where (B2 (s),..., BJs)) is a (d - 1 )-dimensional P,-Brownian motion 
independent of t(t). 

Write A = ~~~~~~~~~ < ?set~: ct f and A, = ( ~~~~~~~ n) A t) < (T,YB,~, c ) * t) 1. BY 
(18), (21) (22) applied to the (L, &-diffusion, we get 

Consequently, Q: (A ,) > ( 1 - E); and hence 

s $,.,, dP.x > (1 - E). A, 
123) 

Note that P,($,..*> 1) +O as t -+ co. Hence (23) implies that 
lim t-cl3 P,(A,) > (1 --E). Thus P,(A)> (1 --a), whence (20) follows. This 
completes the proof. 1 

We now give two applications. 

COROLLARY 1. Let Conditions I or II hold. Let D be a bounded open set 
in c satisfying an exterior cone condition (in G) and such that aD n aG is a 
finite ser. Let T  = inf(t 2 0: X(t) 4 D}. Then t is continuous P,-a-s. for any 
xED. 

Proof. Set r’ = inf{ t > 0: X(t) 4 D}. It can be seen that r is upper 
semicontinuous and that T' is lower semicontinuous. Therefore, it is suf- 
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ficient to prove that P,(t = 7’) = 1. Since, by Theorem 2, P,(X(z) E 8G) = 0, 
it is sufficient to prove that P, (7’ > 0) = 0 for any y E c?D, y $ 8G. Because 
of the Cl law, it is sufficient to prove that P, (t’ > 0) # 1 for any y E aD, 
y $ aG. This now follows from the exterior cone condition and the support 
theorem of Stroock and Varadhan [8, Ex. 6.7.51). 1 

COROLLARY 2. Let Conditions I or II hold; let p = 0. Let D and 7 be as in 
the preceding lemma. Let J g, h be bounded and continuous functions respec- 
tively on D, aD, BG. Then 

is continuous on D. 

ProoJ: In view of Lemma 3, note that u is well defined and bounded. By 
the preceding corollary and Feller continuity, the corollary follows. 1 

Remark. Note that u defined as in the preceding corollary is the unique 
solution to the boundary value problem 

Lu =f on D, u=g on f?D, Ju = h on aG; 

that is, 

u(X(t A t))- ~;Arf(X(s,) ds- f A’ h(X(s)) dt(s) 

is a P,-martingale, and u = g on aD. If D is as before and is connected, 
f20 in D and if u(x) = 0 for some XE D, x$ aG, then by the preceding 
corollary and Lemma 2.3 of Bhattacharya [l] it follows that u = 0 in 6. 
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