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For some general multivariate linear models, linear rank statistics are used in 
conjunction with Roy’s Union-Intersection Principle to develop some tests for 
inference on the parameter (vector) when they are subject to certain linear 
constraints. More powerful tests are designed by incorporating the a priori infor- 
mation on these constraints. Profile analysis is an important application of this type 
of hypothesis testing problem; it consists of a set of hypothesis testing problem for 
the p responses q-sample model, where it is a priori assumed that the response- 
sample interactions are null. 

1. INTRODUCTION 

In multivariate nonparametric hypothesis testing theory, the role of Roy’s 
[ 141 Union-Intersection (UI-) principle has not yet been examined fully. 
Chatterjee and De [5] considered some UI-rank tests for a bivariate, two- 
sample location problem with an orthant restriction. The current authors 
[ 7, 81 generalized this UI technique to develop asymptotically distribution- 
free (ADF) tests for a broad class of restricted alternative problems in 
multivariate analysis, with special emphasis on the orthant restriction 
problem in the multivariate case. The object of the present investigation is to 
examine another application of the theory developed in [7], namely, the 
linear equality restriction and profile analysis. Some preliminary results on 
multivariate linear rank statistics are introduced in Section 2 and these are 
then incorporated in Section 3 in the formulation of a class of UI-rank tests 
for the linear equality restriction problem. As a special case, the profile 
analysis problem is treated in Section 4. ADF tests for the profile analysis 
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problem, based on U-statistics, were proposed by Bhapkar and Patterson 14 1. 
Their statistics were computationally and analytically complex. The current 
approach not only provides comparatively simpler solutions but also more 
efficient ones (in the majority of the cases). 

2. A CLASS OF MULTIVARIATE LINEAR RANK STATISTICS 

We consider the following multivariate (general) linear model: 

xi = pl;“’ + p(cNi - EN) + &jr i = l,..., N, (2.1) 

where P = (PI ,..., P,) is a p x q matrix and pl;“) is a p-vector of unknown 
parameters, the regressors c,,,~ = (cNi, ,..., cNicr)’ are specified q-vectors, EN = 
N- ’ Cy’, I+, and the Ed are independent and identically distributed random 
vectors (i.i.d.r.v.) with a continuous (unknown) p-variate distribution 
function (d.f.) F. As we shall see in Section 3, our main interest lies in 
testing hypotheses about p, where there may be some a priori linear 
restriction on p. Our proposed tests are based on some linear rank statistics 
which we present below. We form the adjusted constants 

dNi = N-“‘(cNi - EN) = @iNil ,..., dNiq)‘; i = I,..., N; (2.2) 

(2.3) 

Also, we let X, = (Xi ,,..., X,)‘, i = l,..., N, and let R, be the rank of Xii 
among the set (Xu ,..., XNj), for i = l,..., N and j = l,..., p, so that we have a 
set of rankings for each of the p coordinates. Then for eachj (1 < j < p), we 
consider a set of scores aNj(i), 1 < i < N, defined in the following manner: 

aNi = #,(i/(N + 1)) Or E$j(UNi) Or N C2s4) 

where UN, < .*a < UNN are the ordered random variables of a sample of size 
N from the uniform (0, 1) d.f. and the #j are suitable score functions. Then in 
a manner similar to Puri and Sen [ 121, we construct the matrix of linear 
rank statistics 

where 

N 

‘Njk = E dNikaNj@tj) for j = I,..., p; k = l,..., q. (2.6) 
i=l 
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As additional notations, we let Ftjl and F,j,i,l be the univariate and bivariate 
marginals of F, respectively, for j (Zj’) = l,..., p; similar notations hold for 
the probability density function $ Finally, we let i(x) = (a/ax)f(x) denote 
the p-vector of partial derivatives off, so that the Fisher information matrix, 
of order p x p, for the density f is 

(2.7) 

The assumptions listed below are needed for the asymptotic distribution 
theory of T, and for the development of a UI statistic. 

Assumption I. The constants in (2.2) and (2.3) satisfy the following: 

(ii) ?hl D, = D, which exists and is of full rank q. (2.9) 

Assumption II. (i) The distribution function F is absolutely continuous 
with an absolutely continuous density function f; 

(ii) i(x) exists and is continuous almost everywhere (a.e.); 

(iii) the largest characteristic root of I(f) is finite. 

Assumption III. The score functions #j, 1 Q j< p, in (2.4) are 
nondecreasing, square integrable, and absolutely continuous inside (0, 1). 

Assumption IV. For each j, 1 < j < p, at least one of the following two 
conditions is true: 

(i> lim x++co 4ji(FrjI(X)l fijI(X) = 0; 

(ii) - log{fljl(x)} is nondecreasing. 

Whenever it is convenient, we shall roll out T, and I3 into pq-vectors. 
Next, we define the p x p matrix v = ((vii,)) by letting 

for j, j’ = l,..., p, where 

6j = 1’ #j(u) du for j = l,..., p. 

Also, we define the p x p stochastic matrix V, = ((UNi/,)), where 

vNjj’ = (N- 11-l $, taNjtRtj) - fiNj}{aNj’(Rijt> - GNj’) 

(2.11) 

(2.12) 
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forj,j’= l,..., p, and 

ciNj = N-l y UNj(i) 
i=l 

for j = l,..., p. (2.13) 

For proofs of any of the following results in this section, we may refer to 
[7]. We shall only outline what is essential for the subsequent sections. Now 
under H, : p = 0, 

V,Av and T, 3 Jy;,(O, D 0 v), (2.14) 

where @ represents the Kronecker product. We reformulate the model in 
(2.1) as 

Xi = piN’ + d,,h + q, i = I,..., ZV, (2.15) 

where the &i and fib”) are defined as before and I = IV”*@. Then, we frame 
H,: 3L = 0 against an alternative {KN: (2.15) holds for some fixed h # 0). 
The sequence of alternatives {KN} is contiguous to H,, and under (KN}, 

v,+v and TN 3 J’jq((D 0 r) L D 0 V), (2.16) 

where E is a diagonal matrix (of order p x p) with elements 

Yjj = jl #j(U) Vj(u) du, j = l,..., p, (2.17) 

and where for each j (= l,..., p) and u E (0, l), 

(2.18) 

We also need to estimate E, and for this purpose we borrow some results 
from JureEkovi [9, lo]. We let B = ((bj,)) be a p x q matrix of real elements 
and let X,(B) = Xi - B(cNi - S,), 1 < i < N; corresponding to these new 
variables, we define Rij(B) as the rank of Xii(B) among the set 
(X,/(B) ,..., X,,.(B)), for 1 < i < N and 1 <j < p. Then in (2.5) and (2.6) we 
replace the Rii with the Rij(B) and denote the resultant statistics by TNjk(B), 
for 1 < j < p and 1 < k < q, and T,(B) = ((TNjk(B)). Finally, we let Ejk be 
the p x q matrix having 1 in the cell (j, k) and 0 elsewhere, for 1 < j < p and 
1 ,< k < q. The estimator of E we propose is f, = Diag(yNjj, 1 < j < p), 

where 

,. 
YNjj = 4 -’ ’ 1 TNjk(“) - TNjk(Ejk)}* 

k=l 

(2.19) 
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If we let 

UN= (D;‘@f;‘)T,,,, 

then under H, : A= 0, 

U+J&(O,D-‘0 (r-‘VI--‘)), 

and under (K,,,}, 

UN~.&@, D-’ @ (I-‘VI--‘)). 

(2.20) 

(2.21) 

(2.22) 

3. THE LINEAR EQUALITY CONSTRAINT PROBLEM 

We intend to develop a functional statistic form U, in (2.20) to test for 

H,:p=O against H, : AP = 0, (3.1) 

where p is defined in (2.1) and A is a full rank, a pq matrix, with a < pq. In 
[ 71, we developed a statistic for a more general restricted alternative problem 
from UN. However, for the special case in this section, the sophisticated 
nonlinear programming approach to locating a UI statistic is not necessary. 
Hence, we just demonstrate the UI technique for this special case. 

For each b E EPq, b # 0, we define the univariate statistic 

V,(b) = (b’U,)/(b’&,b)1’2, (3.2) 

where the stochastic matrix I;, is defined by 

XN = D; ’ @ (f, ‘V,f, ‘), (3.2) 

and D,, V,, and f, are defined in (2.3), (2.12), and (2.19), respectively. 
From the results in Section 2, 

(3.4) 

under H, : h = 0 and the contiguous sequence {K,,,}, where D, v, and I- are 
defined in Assumptions I(ii), (2. lo), and (2.17), respectively. Therefore, 

U,(b) 2 Jy;((b%)/(b’Zb)1’2, l), (3.5) 

under H, and the contiguous sequence {KN}. 

m/12/2-5 
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If we let p,(b) be the asymptotic size (I test function (0 < a < 1) which 
rejects H,: I = 0 for large values of U,(b), then from (3.5), 

%,@) = 1 I HoI = PlU,v@) > 5, IHo]+ a> (3.6) 

and the asymptotic power of the test p,(b) is 

Q,(b) = 1 ] KN] + 1 - @(r, - (b’A)/(b’ZCb)“2), (3.7) 

where @ is the standar normal distribution function and @(r,) = 1 - a. Note 
that the right-hand side of (3.7) is large if b’lc/(b’Zb)“* is positive and large; 
the value of b which maximizes it is b* = MI: -‘5, M > 0. With this in mind, 
we partition the parameter space R (= {A E Epq: Al = 0}) into subspaces 
L!(b) = {A E EP4: 1= MEb, M > 0) and define the set B as 

B = (b E EP4: AXb = 0, b’Zb = 1 }, (3-g) 

so that 0 = UbsB R(b). Note that Z is unknown, and hence, as in [7], we 
define 

B, = (b E Epq: A&b = 0, b’Z,b = 1). (3.9) 

Then, analogous to the Type I UI-test of Roy [ 141, with the modifications in 
* [7], we reject H, . X = 0 in favor of H,: Al k 0, if p,(b) = 1 for some 

b E B,; this leads us to the UI-test statistic 

Q,,, = sup{ U,(b): b E B,,,}. (3.10) 

From the theory of Lagrangian multipliers (viz., [ 1, p. 152]), the solution to 
Q,,, in (3.10) is easily found to be 

Q,: = U;{Z,’ - A’(AE,A’)-’ A} U,. (3.11) 

Note that the matrix {Xc-’ - A’(AXA’)-’ A} = I - A’(AZA’)-’ A is idem- 
potent and of rank pq -a. Hence, by an appeal to (2.22), (3.4) and 
Lemma 3.1 of Chatterjee and De [5], we arrive at the following. 

THEOREM 3.1. Under the sequence of alternatives {KN} and the 
regularity conditions in Section 2, Qi has asymptotically a noncentral chi- 
squared distribution with pq-a degrees of freedom and noncentrality 
parameter 

d* = h’{X-’ - A’(AZA’)-‘} 1. (3.12) 

The advantage of using the statistic Qi in (3.11) for the testing problem in 
(3.1), instead of using the unrestricted test statistic (viz., [ 121) 

R; = U;E,‘U,, (3.13) 
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is that Qi is asymptotically more powerful than Ri in the region R. To force 
this point, note that [ 121 Ri, under (KN}, has asymptotically a noncentral 
chi-squared distribution with pq degrees of freedom and noncentrality 
parameter A’Z-‘b; therefore, if qz and ri be so defined that 

P(Q*>q~~H,}=P{R*>r~H,}=a (O<a< l), (3.14) 

then for any 1# 0, 

(3.15) 

A proof of a result more general than (3.15) is provided in Section 3.2 of 
[6]. It may be remarked that in the parametric case (viz., [ 1 l]), the current 
testing problem can e reduced to testing H, : pi = 0 against H, : pi # 0 after 
a proper reparametrization (with p, being a (pq - a)-dimensional vector). 
However, in the nonparametric case, the linear rank statistics T, in (2.5) and 
(2.6) may not remain invariant under nonsingular transformation on the p 
variates. Hence, this reparameterization will generally lead to some lack of 
uniqueness in the resulting test statistic. However, given such a reduction, the 
theory developed in Sen and Puri [ 171 will remain applicable and will agree 
with the one presented here. 

4. PROFILE ANALYSIS 

Profile analysis is a special collection of testing problems for the p- 
response q-sample model: X, = cNllp, + ... + cNipPq + Ei, i = I,..., N, where 
the pj are all p-vectors, cNik is equal to 1 or 0 according as the Xi is from the 
kth sample or not (1 ,< k < q; 1 ( i < N), the si are i.i.d.r.v.‘s and the p- 
responses on each individual are comparable. We wish to test that the q- 
samples are equivalent, with the possible information that the response- 
sample interactions are null. Typically, such a case arises in many 
educational testing problems. If we define 

G = (I,-,,,-,, -J,-,,,I and M’ = (Iq-,,,-I, -J,-,*A (4.1) 

(where J has all elements equal to l), then the sample main effects are 
mathematically represented by PM and the response-sample interactions by 
GPM, where p = (pi ,..., p,). 

Profile analysis consists of the following hypothesis testing problems: 

Hi,: GPM=O against Hzs : GPM # 0, (4.2) 

H;: PM=0 against H,*: PM#O, (4.3) 

Hz: PM=0 against H& : Gf3M # 0. (4.4) 
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The strategy is to conduct a preliminary test for the response-sample 
interaction in (4.2), at significance level a,. If HRs is not rejected, then the 
testing problem of sample equivalence in (4.3) is conducted at significance 
level 02; otherwise, the testing problem in (4.4) is implemented at 
significance level czj . The appropriateness and implications of such a strategy 
will be discussed alter, after the development of the statistics and their 
(asymptotic) distributions. 

We let n, ,..., n, denote the respective sizes of the q samples with 
Ci=, nk = N. Then for each k, CNk = n /N and we assume that there exist ck : k 
0 < c?~ < 1, such that I?,,,~ + Ckk, for k = l,..., q. As in (2.2), we define d,i = 
N-“*(c,,,~ - CN), i = l,..., N, so that D, in (2.3) reduces to 

f..bL - c;y.d))~ where hkc is the Kronecker delta. Also, D = 
~+a, D, = ((C;,@w - C;,,))). Thus, Assumption I in Section 2 holds and 

we assume that Assumptions II, III and IV also hold. Since D, (or D) is not 
of full rank, we partition cNi, dNi, D, and D according to the first q - 1 
components (i.e., ck = (c,&(,), cNis), 

D,= 
e 

N(11) D N(12) 

D N(21) D N(22) 

and so on), write 1= N112P and PAN’ = PC,. Then, (2.15) may be written here 
as 

Xi = pl;” + IMdNi(,, + Ei, i = l,..., N, (4.5) 

where M is defined in (4.1) and the corresponding D,(, ,) is of full rank 
(= q - 1). For this model, we may virtually repeat the steps in Section 3 and 
arrive at the following. The UI-statistics for the testing problems in (4.2) and 
(4.3) are 

Q;,, = UI;[DNtI,) 0 {G’(Gf,‘V,f,‘G’)-’ G}] UN (4.6) 

and 

Q&2 = UkP,u,, @ (f,‘v,f,‘)-‘} UN, (4.7) 

respectively, where V, and f, are defined in (2.12) and (2.19). The UI- 
statistic for the restricted alternative problem in (4.4) is [by (3.1 l)] 

Qi,, = Q&2 - Q&I. (4.8) 

For the model (4.5), with {KN} defined as in after (2.15), we have then 

Q;,, +‘((P - l)(q - I), 8% 

Qi.2 3 x2W - l),%> 
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and 

ei.3 3 x2(4 - 19 m (4.9) 

where the noncentrality parameters S:, Sz and S: (= S: -ST) are found by 
substituting the corresponding values of IM, D,, i), I and v for U,, D,(, i), 
f, and V, in (4.6), (4.7) and (4.8). 

For the sake of comparison, we now develop an equivalent set of statistics 
under a normality assumption. Suppose that I+ -J$(O, Y) where Y is a 
known p x p matrix of full rank. It is not essential that the covariance 
matrix Y be specified (cf. [6, Sects. 4.6 and 5.61; however, we make this 
simplifying assumption because we are only interested in asymptotic 
comparisons. From (4.5) and the maximum likelihood estimator (MLE) 
of 5M, 

(4.10) 

the likelihood ratio statistics for the three testing problems of (4.2)-(4.4) are 

W&l= t&M)’ Pm,, @ {G’(GYG’)-’ G}]&M), (4.11) 

Wk.2 = &vW P?w,,, @ Y-‘}&M) and Wi’,3 = Wi,? - Wi,,, (4.12) 

respectively. Each of these statistics has an exact chi-squared distribution 
with an appropriate noncentrality parameter, found by substituting 1 for &,, 
and degrees of freedom (p - l)(q - 1), p(q - 1) and (q - l), respectively. 
Their asymptotic distributions remain the same even if the r+ have non- 
normal distributions, but with finite second-order moments (see, [ 161). Thus, 
individually, the asymptotic relative efficiency (ARE) of QN,I with respect to 
W,,, (t = 1, 2, 3) can be computed simply by the ratio of the corresponding 
noncentrality parameters (see [ 13, Sect. 3.81). However, in general, these 
depend on the direction of 1 and, in many cases, one may have to be 
satisfied with some lower or upper bounds easily obtainable from the charac- 
teristic roots of the two matrices appearing in the noncentrality parameters. 
In general, the rank statistics fare quite well compared to their parametric 
counterparts, more noticably for distributions with heavy tails. In particular, 
if the &i have normal distribution and for the rank procedure, we use the 
normal scores (i.e., in (2.4), we take #j(u) = @-l(u), the inverse normal d.f.), 
then this ARE is equal to 1. 

The rank statistics set for profile analysis provides a suitable alternative to 
the likelihood ratio tests because (i) it is ADF, (ii) it is computationally 
simple on a computer and (iii) it fares well with regards to asymptotic 
power. Although the U-statistics set for profile analysis, proposed in (41, 
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also has the properties (i) and (iii), it is nearly impossible to make any type 
of analytical power comparison with the likelihood ratio type tests. 

We now return to the question of whether or not there is any advantage of 
using the strategy decision rule for testing sample differences. For 
convenience, let us assume that we are using the asymptotic analogues Q:, 
Qz and Q: of the rank UI-statistics Qi,,, Qi,, and Qi,, in (4.6)--(4.8); these 
statistics have exact chi-squared distributions, given by the right hand sides 
of (4.9). If P, denotes the probability under appropriate null hypothesis and 
we define the s, by 

at = JYQ: > stl for t= 1,2, 3, 

then the overall significance level of the strategic decision rule is 

(4.13) 

a=f’,{Q:>s,, Q:>.J +UQ: <s,, Q:>G (4.14) 

We would like to compare a with a,, because Qz would be the statistic used 
for testing sample differences if no attention were paid to the response- 
sample interaction. Note that Q: = Qf + Qi and Q, and Q3 are independent. 
Hence, if we set a, = a3 (a reasonable condition since Q: and Q: test the 
same null hypothesis), then by (4.13), (4.14) and the fact that s, + sj > s2, 
we have 

a=PdQi+Q:>s,, Qf>s,l +a,(1 -a,> 

= a,PdQi + Q: 2 s, I Qf > s,l + aAl- a,) 

>a,a,+a,(l-a,)=a,. (4.15) 

This shows that a, the overall significance level for the decision rule, is larger 
than a,, the significance level for just testing (4.3). However, if the difference 
is small enough [as is usually the case, see Sen and Saleh [ 18]), the decision 
rule would still have a power edge over Q: [because of (3.14) and (3.15)]. 
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