
SCHEDULING IMPATIENT JOBS IN A CLEARING SYSTEM

WITH INSIGHTS ON PATIENT TRIAGE IN MASS CASUALTY

INCIDENTS

Nilay Tanık Argon*, Serhan Ziya*, Rhonda Righter**

*Department of Statistics and Operations Research, University of North Carolina, Smith

Building CB#3260, Chapel Hill, NC 27599-3180, U.S.A.

**Department of Industrial Engineering and Operations Research, University of California,

Berkeley, CA 94720-1777, U.S.A.

October 12, 2007

Abstract

Motivated by the patient triage problem in emergency response, we consider a single-server

clearing system in which jobs may abandon the system if they are not taken into service within their

“lifetime.” In this system, jobs are characterized by their lifetime and service time distributions.

Our objective is to dynamically determine the optimal or near-optimal order of service for jobs so

as to minimize the total number of abandonments. We first show that if the jobs can be ordered

in such a way that the job with the shortest lifetime (in the sense of hazard rate ordering) also

has the shortest service time (in the sense of likelihood ratio ordering), then the optimal policy

gives the highest priority to this “time-critical” job independently of the system state. For the case

where the jobs with shorter lifetimes have longer service times, we observed that the optimal policy

generally has a complex structure that may depend on the type and number of jobs available. For

this case, we provide partial characterizations of the optimal policy and obtain sufficient conditions

under which a state-independent policy is optimal. Furthermore, we develop two state-dependent

heuristic policies, and by means of a numerical study, show that these heuristics perform well,

especially when jobs abandon the system at a relatively faster rate when compared to service rates.

Based on our analytical and numerical results, we develop several insights on patient triage in

the immediate aftermath of a mass casualty event. For example, we conclude that in a worst-

case scenario, where medical resources are overwhelmed with a large number of casualties who

need immediate attention, it is crucial to implement state-dependent policies such as the heuristic

policies proposed in this paper.

Keywords: Priority scheduling, stochastic orders, stochastic dynamic programming, impa-

tient customers, abandonment, reneging, patient triage, emergency response.

1

1 Introduction

Consider a service system where a finite number of jobs are waiting to receive service from

a single server. There will be no additional arrivals to this system and the existing jobs

may abandon the system without receiving service if they are not given service within their

lifetime. For such a system, we are interested in the dynamic scheduling of jobs that are

characterized by their lifetime and service time distributions with the objective of minimizing

the expected number of total abandonments. More specifically, our aim is to develop insights

on optimal or near-optimal scheduling policies that determine the priorities among different

job types dynamically depending on the system state.

Our primary motivation to study this optimal control problem originates from the patient

triage1 problem that arises in the immediate aftermath of a mass casualty incident such as

a natural disaster or a terrorist attack. After such an event, which may cause a significant

number of injuries and overwhelm the local medical resources, emergency responders perform

triage on patients and determine the order by which these patients will be admitted to scarce

resources. These resources may include ambulances, imaging devices (e.g., X-ray and MRI

machines), or operating rooms. For example, in case of a mass trauma event caused by a

bombing, it is estimated that at least half of the casualties will require surgical procedures,

and therefore operating rooms are expected to constitute a serious bottleneck (see, e.g., Levi

et al. [18] and Peleg et al. [21]).

Many local emergency response divisions and hospitals have adopted triage procedures

that will be used in case of a mass casualty incident. Following these procedures, immediately

after the incident, patients are classified into different priority groups. (According to one of

the most widely adopted triage procedures, which is called START, patients are classified

into four groups: immediate, delayed, minimum, and expectant; see, e.g., Nocera and Garner

[19].) Then, each patient is given treatment in the order determined by his/her priority class.

According to these triage procedures, patients are typically classified into priority classes

based solely on their initial health conditions, ignoring other factors such as the size of the

event (i.e., the number of patients waiting for care) and treatment times. Furthermore,

these initially assigned priorities do not change with any changes in the system state, i.e.,

the number of patients at different criticality levels and time. However, recent work from

the emergency response literature suggests that when determining priorities, the numbers of

patients at different criticality levels should also be considered to achieve the greatest good

for the greatest number (see Arnold et al. [1] and Frykberg [12]). Indeed, one of the findings

1Triage is a brief clinical assessment that determines the order in which patients should be seen in the
Emergency Department or, if in the field, the speed of transport and choice of hospital destination [26].

2

of our study is that making prioritization decisions dynamically over time, based on the

system state, can bring significant improvements in the number of patients saved.

We first investigate conditions under which one can safely ignore the system state (i.e.,

the composition of patients at different criticality levels and time) in making prioritization

decisions. For example, we find that if the patient with the shortest service time (in the

sense of likelihood ratio ordering) also has the shortest lifetime (in the sense of hazard rate

ordering), then priority should be given to this patient independently of the system state.

However, in general, we show that there are clear benefits of updating priorities as the sys-

tem state changes. We prove structural results for our optimal control problem, and propose

easy-to-implement and insightful heuristic policies that will help make these dynamic pri-

oritization decisions. Our numerical experiments show that these heuristic policies perform

quite well.

The outline of the paper is as follows. In Section 2, we provide a literature review on

scheduling, queueing, and optimal control problems that are most relevant to our problem.

In Section 3, we formally define the optimal control problem under consideration, and obtain

analytical results on the characteristics of this problem and its solution for general service

time and lifetime distributions. In Section 4, we consider the Markovian case where the

service times and lifetimes are exponentially distributed. Under certain conditions on the

service and abandonment rates, we provide a complete characterization of the optimal policy

for the Markovian case. Based on our analytical results, we propose two heuristic policies

that are described in Section 5. A numerical study that tests the performance of these

policies is presented in Section 6. Finally, Section 7 includes our concluding remarks and

discussions.

Before we proceed further, we would like to mention two important points regarding this

paper. First, it should be noted that patient triage is an extremely complicated decision

problem that involves a significant degree of human judgment in classifying patients and

determining priorities. Any mathematical model of this problem that is also analytically

tractable needs to be a significantly simplified version of the reality. Therefore, our objective

here is not to develop policies that can be readily implemented but rather to provide some

general insights on the problem. Second, although our main focus in this paper is on the pa-

tient prioritization problem, our treatment of the problem is general enough to be relevant to

other application areas as well (see Glazebrook et al. [14] for examples of other applications).

Hence, in order to keep the general appeal of our results, throughout the paper, we use the

general queueing terminology, e.g., by referring to patients as “jobs” and operating times as

“service times.” However, we discuss most of our results and observations in relation to the

patient triage problem when they are especially relevant and significant within that context.

3

2 Literature review and contribution of the paper

Although the problem under consideration has relevance to several different areas in the

literature, to our knowledge, the only closely related study is conducted by Glazebrook,

Ansell, Dunn, and Lumley [14]. In this section, we first review the paper by Glazebrook et

al. [14], and then provide a survey of the relevant literature on stochastic scheduling and

optimal control of queueing and clearing systems with reneging (abandonment).

Glazebrook et al. [14] considers scheduling of jobs in a clearing system with impatient

jobs that abandon the system unless they receive service before their random due dates. One

of the models studied in Glazebrook et al. [14] is concerned with the scheduling of jobs in

a clearing system with N ≥ 2 jobs having exponentially distributed times to abandonment,

where jobs are characterized by their abandonment rates, mean service times, and rewards.

The objective is to maximize the total expected reward earned. The authors prove that

a policy resembling the “cµ rule” is asymptotically optimal in the class of non-preemptive

policies as the abandonment rates approach zero. The authors also provide numerical results

on the performance of the suggested policy. To our knowledge, this heuristic method is the

only other policy available in the literature that is alternative to those that we provide in

this study. We discuss the policy by Glazebrook et al. [14] in more detail in Section 5, and

compare its performance with the performance of our heuristics by means of a numerical

study in Section 6.

There are several other papers in the general context of scheduling in queueing systems

with random or predetermined deadlines for jobs, and queueing systems with expulsion

(where the system controller may eject jobs), see, e.g., Bhattacharya and Ephremides [3,

4], Doytchinov, Lehoczky, and Shreve [10], Glazebrook [13], Jang and Klein [16], Jiang,

Lewis, and Colin [17], Righter [25], Panwar, Towsley, and Wolf [20], Van Mieghem [28],

Xu [33], and Zhao, Panwar, and Towsley [34]. Among these papers, we find Bhattacharya and

Ephremides [3, 4], Panwar et al. [20], and Zhao et al. [34] to be the most relevant to our work

mainly because the performance measure of interest in these papers is the (weighted) number

of tardy jobs, i.e., jobs whose deadline expires while waiting in the queue. Bhattacharya and

Ephremides [4] and Panwar et al. [20] study the scheduling problem under the assumption

that the stochastic due date of a job is announced upon the arrival of the job, and show

that a form of the “shortest-time-to-extinction” policy is optimal under certain conditions.

Bhattacharya and Ephremides [3] and Zhao et al. [34], on the other hand, assume that the

decision maker knows only the distribution of the due date of a job, not the exact due dates,

at any decision epoch. In particular, Bhattacharya and Ephremides [3] show that under the

assumption of independent and identically distributed (i.i.d.) lifetimes, i.i.d. service times,

4

and i.i.d. interarrival times (that are all mutually independent), the “earliest-arrival” policy

is optimal if the lifetime distribution has a non-decreasing failure rate.

There are also several papers on the scheduling of jobs in (stochastic) clearing sys-

tems, see, e.g., Boxma and Forst [5], Coffman, Flatto, Garey, and Weber [9], Emmons

and Pinedo [11], Pinedo [22], Righter [24], Weber, Varaiya, and Walrand [31], and Weiss

and Pinedo [32]. Among these papers, Boxma and Forst [5], Emmons and Pinedo [11], and

Pinedo [22] are the most relevant to our work since they focus on the objective of minimizing

the (weighted) number of tardy jobs. In these three papers, all jobs are available at time

zero (except in Pinedo [22]), they have job-dependent stochastic due dates, and processing

times are stochastic. The objective is to obtain a job sequence that minimizes the mean

number of tardy jobs (i.e., jobs that are not completed by their due date). Two types of

policies were considered in these papers: (static) list scheduling policies and dynamic poli-

cies. Under list scheduling policies, the decision maker arranges all jobs into a list at time

zero, and is not allowed to change this list thereafter. Hence, when a list scheduling policy

is applied, all jobs (even those jobs that are tardy) are processed. Under dynamic policies,

on the other hand, the decision maker is allowed to modify earlier decisions at any time

as the new information becomes available. Pinedo [22] and Boxma and Forst [5] consider

only list scheduling policies, whereas Emmons and Pinedo [11] consider both list scheduling

and dynamic policies. In particular, Pinedo [22] shows that if the processing times of jobs

are independent and exponentially distributed, their release dates (i.e., the times that the

jobs are available for processing) are random, and their due dates are identically distributed,

then the optimal static list policy sequences jobs in increasing order of mean processing times

when the system has a single server. Boxma and Forst [5] study the same problem (except

that all jobs are available for processing at time zero) and identify optimal static list policies

under several sets of conditions on due date and processing time distributions. One of the

results proved by Boxma and Forst [5] states that if all due dates are i.i.d. and a stochastic

ordering exists among the processing time distributions, then the jobs should be sequenced

according to the increasing stochastic ordering, i.e., jobs with stochastically shortest pro-

cessing times should be processed first. Emmons and Pinedo [11] study the same problem

but with multiple servers. They provide a set of special cases for which optimal dynamic

policies or list policies can be identified. One of their results states that if the processing

times are i.i.d. exponential, and the due dates are independent and can be ordered according

to their failure rates, then the optimal preemptive dynamic policy is to process the jobs in

the increasing order of their failure rates.

Although there is a clear connection between our work and the stochastic scheduling

literature reviewed above, none of these papers considers the problem studied in this pa-

5

per. Almost all of the stochastic scheduling problems for clearing systems with an objective

of minimization of number of tardy jobs focus on (static) list policies in contrast to dy-

namic policies that we consider in this paper. In our model, jobs abandon the system once

their “deadline” is reached, and thus they cannot be processed afterwards. Because of this

property, the system state (i.e., the set of jobs in the system) changes after every job aban-

donment. Therefore, there are potential benefits of assigning priorities dynamically in time.

Indeed, we provide several examples in the paper to show that policies that are not dy-

namic in nature may perform very poorly in our case. Furthermore, the majority of papers

on stochastic scheduling aim at identifying conditions that are generally in the form of an

ordering condition among lifetimes and service times, under which a list scheduling policy

is optimal. These conditions typically require the service times and lifetimes of jobs to be

agreeably ordered (i.e., jobs with shorter lifetimes to also have shorter service times), which

does not hold in many practical settings. In the first part of the paper, we identify conditions

under which state-independent policies are optimal. However, the main focus of the paper is

on obtaining good policies for all possible situations (especially when the service times and

lifetimes are not agreeably ordered). Therefore, a significant portion of this paper deals with

obtaining near-optimal policies that would work well under all possible conditions.

Finally, we note that our model in general can be viewed as a queueing system with

reneging (abandonment), and there is a vast literature on this topic. For some recent work

on queueing systems with reneging, see, e.g., Bae, Kim, and Lee [2], Brandt and Brandt [6, 7],

Choi, Kim, and Chung [8], Ward and Glynn [29], and Ward and Kumar [30].

3 General service time and lifetime distributions

In this paper, we consider a single server clearing system initially having N ≥ 2 jobs that

may abandon the system before they receive service. Throughout the paper, we refer to the

maximum time a job can tolerate waiting in the queue as the lifetime of the job. If the

lifetime of a job expires before it is taken into service, then the job abandons the system. We

assume that a job that is already taken into service does not abandon the system. We also

assume that the service is performed in a non-preemptive manner, i.e., once the server starts

processing a job, it cannot start working on another job before completing the processing of

the job that is already in service. This assumption is reasonable within the context of the

patient triage problem, since it is generally not desirable to interrupt a medical procedure.

We let Yi be the random variable representing the lifetime of job i at time zero, and Si

be the random variable representing the service time of job i for i = 1, 2, . . . , N . We also

define Cπ(t) to be the total number of jobs taken into service by time t ≥ 0 when policy

6

π is applied, where π ∈ Π and Π is the set of all admissible, dynamic, and non-preemptive

scheduling (prioritization) policies. A dynamic prioritization policy is a collection of rules

that determines which job the server takes into service at any given decision epoch based on

the state of the system (i.e., the time of the decision epoch and the set of jobs in the system).

(As we show in Proposition 1 below, idling is suboptimal, and hence decision epochs are the

time instances when service completions occur.) Our objective is to identify characteristics of

policies that maximize Cπ(t) stochastically, and hence maximize the expected total number

of jobs served when the system is cleared.

In the remainder of this section, we provide characterizations of the optimal control

problem described above without making any distributional assumptions for service times

and lifetimes. First, note that a standard coupling argument can be applied to prove that

an idling policy (i.e., a policy under which the server may idle in the presence of jobs) can

never be optimal.

Proposition 1 Any idling policy is suboptimal in the sense of maximizing Cπ(t) along any

given sample path.

Based on Proposition 1, in the rest of the paper, we only consider non-idling policies.

We next provide a complete characterization of the optimal policy when service times and

lifetimes of jobs are “agreeably ordered” according to certain stochastic orders. We first

provide definitions of three stochastic orders. Suppose that X and Y are two random vari-

ables. If Pr{X > u} ≤ Pr{Y > u}, for all u ∈ (−∞,∞), then X is said to be smaller

than Y in the sense of usual stochastic orders (denoted by X ≤st Y). On the other hand, if

Pr{X − v > u|X > v} ≤ Pr{Y − v > u|Y > v}, for all u ≥ 0 and v ∈ (−∞,∞), then X is

said to be smaller than Y in the sense of hazard rate orders (denoted by X ≤hr Y). Finally,

let f(t) and g(t) be the densities or probability mass functions of X and Y , respectively. If

f(t)/g(t) is decreasing in t over the union of the supports of X and Y , then X is said to be

smaller than Y in the sense of likelihood ratio orders (denoted by X ≤lr Y). We will need

the following lemma (see, e.g., Lemma 13.D.1 in Righter [23]) to prove Theorem 1.

Lemma 1 Let X and Y be two independent random variables. Then, X ≤lr Y if and only

if (X|min(X, Y) = m, max(X, Y) = M) ≤st (Y |min(X, Y) = m, max(X, Y) = M) for all

m ≤ M .

In other words, given m = min(X, Y) and M = max(X, Y), we have that X ≤lr Y if

and only if P{X = m|m, M} = P{Y = M |m, M} ≥ P{X = M |m, M} = P{Y = m|m, M}.

Note that X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y .

7

Theorem 1 If Y1 ≤hr Y2 ≤hr · · · ≤hr YN and S1 ≤lr S2 ≤lr · · · ≤lr SN , then a non-

preemptive and non-idling policy that prioritizes the job with the smallest index at any deci-

sion epoch maximizes {Cπ(t)}∞t=0 in the sense of usual stochastic orders.

Proof: We use induction on the number of jobs, so suppose the theorem is true when there

are k ≤ N − 1 jobs and consider the case of N jobs. (Note that the theorem holds trivially

when N = 1.) Suppose policy π does not comply with the smallest index (SI) policy given in

Theorem 1 at time 0, i.e., policy π takes job j into service at time 0, where j ∈ {2, 3, . . . , N}.

We will construct a policy γ, which serves job 1 at time 0, and for which Cπ(t) ≤ Cγ(t) for all

t ≥ 0 along any given sample path. The SI policy, which agrees with γ for the first decision

and is optimal thereafter from the induction hypothesis, will then have CSI(t) ≥ Cγ(t) for

all t ≥ 0.

First suppose π does not agree with the SI policy for some later decisions, as well as the

decision at time 0. Then, from the induction hypothesis, we can let γ serve job j at time

0 and then agree with the SI policy for all later decisions, such that Cπ(t) ≤ Cγ(t) for all

t ≥ 0. Therefore, without loss of generality, assume π agrees with the SI policy after the

first decision, and in particular, that π serves job 1 after job j, if job 1 is still available. Let

γ serve job j after job 1, if job j is still available, and let it agree with π (and the SI policy)

thereafter. Let Y ρ
i , ρ = π, γ, denote the remaining lifetime of job i at time 0 under policy

ρ, where i = 1, 2, . . . , k. Note that by the stochastic ordering relation among remaining

lifetimes of jobs, we can couple the random variables so that Y π
1 = y1 ≤ yj = Y γ

j . Because

policy π (γ) serves job j (1) at time 0, and the job that is in service will not abandon, we do

not need Y π
j or Y γ

1 . Let Y γ
i = Y π

i for all i 6= 1, j. Let Sρ
i , ρ = π, γ, denote the service time

of job i under policy ρ, and let Sγ
i = Sπ

i for all i 6= 1, j. From Lemma 1, we can couple

(Sπ
1 , Sπ

j) with (Sγ
1 , Sγ

j) so that m = min{Sπ
1 , Sπ

j } = min{Sγ
1 , Sγ

j } ≤ M = max{Sπ
1 , Sπ

j } =

max{Sγ
1 , Sγ

j } and either Sπ
j = Sγ

1 =: a ∈ {m, M} and Sπ
1 = Sγ

j =: b ∈ {m, M}\{a} (Case I)

or Sπ
1 = Sγ

1 = m ≤ Sπ
j = Sγ

j = M (Case II).

Case Ia: We first consider the case where a < y1. Then π will serve job 1 at time a, and γ

will serve job j. From time a + b on, the states will be the same under both policies, and

we have Cγ(t) = Cπ(t) for all t ≥ 0.

Case Ib: Now suppose y1 ≤ a < yj. Let C ′(t), t ≥ a, be the number of jobs taken into service

under the SI policy starting from time a and assuming the first job completion occurs at time

a, and with the state the same as under π at time a, and with all random variables coupled

to be the same as those under π, except that we assume job 1 is still present at time a, with

remaining life from time a of Y1(a) =st (Y1 − a|Y1 > a). Let π′ be the corresponding policy.

Then, arguing as in Case Ia, Cγ(t) = C ′(t) for t ≥ a, and Cγ(t) = Cπ(t) for 0 ≤ t ≤ a.

8

It remains to show that C ′(t) ≥ Cπ(t) for t ≥ a. Define a new policy π′′ that starts in

the same state as π′ at time a, and that follows the SI policy except that it serves job 1

last (at time τ say), if it is still available. Then, for a ≤ t ≤ τ , Cπ′′(t) = Cπ(t), and for

t ≥ τ , Cπ′′(t) ≥ Cπ(t). Since π′ agrees with the SI policy, from the induction hypothesis,

C ′(t) ≥ Cπ′′(t) for all t ≥ a.

Case Ic: Suppose yj ≤ a. Then from time a on the states will be the same under both

policies, and we have Cγ(t) = Cπ(t) for all t ≥ 0.

Case IIa: Suppose M < y1, and therefore m < yj. At time m+M the states under π and γ

are the same, so Cγ(t) = Cπ(t) for t ≥ m+M . Before time m+M , we have Cγ(t) = Cπ(t) = 1

for 0 ≤ t < m, Cγ(t) = 2 > Cπ(t) = 1 for m ≤ t < M , and Cγ(t) = Cπ(t) = 2 for

M ≤ t < m + M . Thus, we have Cγ(t) ≥ Cπ(t) for all t ≥ 0.

Case IIb: Suppose m < yj and y1 ≤ M . Then we can argue as in Case Ib that Cγ(t) ≥ Cπ(t),

t ≥ 0.

Case IIc: We finally consider the case where yj ≤ m, and therefore, y1 < M . Let C ′(t) be the

number of jobs taken into service by time t under the SI policy starting from time m with

the state the same as under π at time m, and with all random variables coupled to be the

same as those under π, except that we assume job j finishes at time m instead of time M ,

and let π′ be the corresponding policy. Then C ′(t) = Cγ(t) for t ≥ m, and Cγ(t) = Cπ(t),

0 ≤ t < m, so we need to only show that C ′(t) ≥ Cπ(t) for t ≥ m. Note that Cπ(t), t ≥ m,

is the same as if we started with the same state as π′ but idled from time m to M and then

followed the SI policy, and did not count the job completion until time M , so C ′(t) ≥ Cπ(t)

for t ≥ m from Proposition 1 and the induction hypothesis. 2

Theorem 1 implies that if jobs can be ordered in such a way that the one with the shortest

lifetime in the sense of hazard rate orders also has the shortest service time in the sense of

likelihood ratio orders, then giving this job priority for service maximizes the expected total

number of jobs served. We next provide a definition that we will frequently use in the

remainder of the paper.

Definition 1 If Yi ≤hr Yj, then job i is said to be more time-critical than job j, for i, j ∈

{1, 2, . . . , N} and i 6= j.

Using this definition, Theorem 1 states that regardless of the system state, time-critical

jobs with shorter service times in the sense of likelihood ratio orders should always be given

priority for service. Theorem 1 provides us with a criterion as to what makes a job a top-

priority job. This is especially important in the context of patient triage, since it implies that

9

a patient with a certain injury can be given the highest priority irrespective of the number

of other patients if his/her lifetime and service time are shorter than those for any other

patient in the sense of hazard rate and likelihood ratio orders, respectively.

Remark 1 In certain applications, serving different jobs may not bring the same amount

of benefit. For example, in the context of patient triage, certain operations may be riskier

than others in that the chance of survival of a patient after such an operation may be lower

than that for other operations. In such a situation, instead of maximizing the number of

patients taken into service, it is more sensible to maximize the average number of patients

saved by taking into account risk factors associated with the operation of each patient. To

formulate such an objective function, let θi be the fixed reward earned by serving job i,

for i = 1, 2, . . . , N , and let Cπ(t) be the total reward earned by time t under policy π.

(For the patient triage problem, θi may denote the probability of survival of patient i after

he/she is taken into operation.) Proposition 1 trivially holds under this new performance

measure. Furthermore, we can also show that Theorem 1 holds if in addition to the stochastic

ordering conditions on the service time and lifetimes given in Theorem 1, we also have

θ1 ≥ θ2 ≥ · · · ≥ θN . In other words, if serving jobs with stochastically smaller service times

and lifetimes brings larger rewards, then these jobs should be given higher priority no matter

what the state of the system is. �

In most applications, it may not be practically feasible to characterize each job in the

system with its own lifetime and service distribution. For example, for the patient triage

problem, it is common practice to classify patients into at most three or four categories.

Especially when there is a time pressure as in the case of mass casualty events, patients’

conditions are quickly assessed right after the event, and then they are classified into a small

number of priority classes even though each patient has his/her own unique injuries. Based

on this, in the remainder of the paper, we will consider the case where jobs are classified into

only two types, each type having its own lifetime and service time distribution. Let mi be

the number of type i ∈ {1, 2} jobs initially in the system such that m1 + m2 = N .

For the problem with two types of jobs in the system, Theorem 1 implies that a job

type with shorter lifetimes (in the sense of hazard rate orders) and shorter service times (in

the sense of likelihood ratio orders) should always receive priority for service no matter how

many jobs from each type are present in the system. Although this result provides us a

criterion as to what makes a type a top-priority class, a more interesting (perhaps a more

common) case is when time-critical jobs have longer service times. In Sections 4, 5, and 6,

our main focus will be on this case.

10

4 Exponential service time and lifetime distributions

In this section, we study the same model described in Section 3 except that we now assume

that jobs are categorized into two classes and that their service times and lifetimes are

exponentially distributed. For i = 1, 2, let µi > 0 and ri > 0 be the service rate and lifetime

rate for a type i job, respectively. Let also Dπ(m1, m2) denote the expected total number of

jobs taken into service when the system is cleared if scheduling (prioritization) policy π ∈ Π

is applied and mi jobs of type i ∈ {1, 2} are initially in the system. We use a dynamic

programming formulation to find an optimal or near-optimal solution to the optimization

problem stated as

max
π∈Π

Dπ(m1, m2).

We define the state of the system as (x1, x2; Q), where xi is the number of type i jobs in the

system and Q ∈ {P1, P2, R} is the status of the server. When Q = Pi it means that the server

is processing a job of type i ∈ {1, 2}, and when Q = R it means that the server is ready to

process a new job. Let V (x1, x2; Q) be the maximum expected number of jobs served starting

from state (x1, x2; Q). Then, using the convention that V (0, x2; P1) = V (x1, 0; P2) = 0, where

xi = 0, 1, . . . , mi for i = 1, 2 and the notation that IA is the indicator function of event A,

the dynamic programming equations are given as follows:

V (x1, x2; R) = I{x1+x2≥1} + max{V (x1, x2; P1), V (x1, x2; P2)}, ∀ xi = 0, 1, . . . , mi, i = 1, 2,

V (x1, x2; P1) =
µ1V (x1 − 1, x2; R) + (x1 − 1)r1V (x1 − 1, x2; P1) + x2r2V (x1, x2 − 1; P1)

µ1 + (x1 − 1)r1 + x2r2
,

∀ x1 = 1, 2, . . . , m1 and x2 = 0, 1, . . . , m2;

V (x1, x2; P2) =
µ2V (x1, x2 − 1; R) + x1r1V (x1 − 1, x2; P2) + (x2 − 1)r2V (x1, x2 − 1; P2)

µ2 + x1r1 + (x2 − 1)r2
,

∀ x1 = 0, 1, . . . , m1 and x2 = 1, 2, . . . , m2.

We will use this dynamic programming formulation to identify optimal or near-optimal

dynamic prioritization policies that maximize the expected total number of jobs served.

First, note that Theorem 1 implies that for this Markovian system if type 1 jobs have

shorter mean service times and lifetimes than type 2 jobs, then type 1 jobs should be given

priority for service regardless of the system state. This is in agreement with one’s intuition

since there seems to be no reason to give priority to less time-critical jobs when serving them

takes at least as much time as serving more time-critical jobs. Thus, the more interesting

(and realistic) case is when time-critical jobs have longer mean service times, i.e., µ1 < µ2

and r1 > r2. We focus on this case in the remainder of this section.

From our numerical experiments, we observed that the optimal policy gives higher prior-

ity to jobs that are less time-critical and that have shorter service times, when the number

11

of jobs from each type is sufficiently large. As the number of jobs from each type drops,

giving priority to more time-critical jobs that require longer service times becomes a better

strategy. Figure 1 demonstrates this behavior with µ1 < µ2 and r1 > r2. In the context

of emergency response planning, this suggests that depending on the number of patients at

different criticality levels it might be better to give priority to less time-critical patients. This

contradicts the general belief and the common practice that gives priority to time-critical

patients at all times, and it strongly supports the argument that when the number of casual-

ties is high, emergency resources should be allocated to less time-critical patients with shorter

treatment times as the objective is to do the greatest good for the greatest number. (Indeed,

as m1 → ∞ and m2 → ∞, our objective essentially becomes to maximize the throughput,

and hence shortest-expected-processing-time-first rule (SEPT) becomes the optimal policy.)

In order to implement this principle, one needs to first answer the following question: What

number of jobs is considered to be sufficiently high to follow this principle? In the remainder

of this section, we present some results aiming at answering this question.

Figure 1: A typical structure for the optimal policy when µ1 < µ2 and r1 > r2.

0 10 20 30 40 50
0

5

10

15

20

25

30

x
1

x 2

serve type 1
serve type 2

We first present a proposition that gives a necessary condition for an index policy to be

optimal. An index policy is a state-independent policy that gives priority based only on job

type, or index, at any state (x1, x2). For example, SEPT is an index policy that always gives

priority to the job with the largest value of µ. Similarly, the rµ rule of Proposition 2 is the

index policy that always gives priority to the job with the largest value of rµ. Note that

the rµ rule resembles the well-known cµ rule in queueing theory since it gives priority to job

type i with the highest value of riµi. (For a comprehensive literature review on the cµ rule,

the interested reader is referred to Van Mieghem [27].)

12

Proposition 2 If there is an optimal policy among the set of index policies, it must agree

with the rµ rule.

Proof: It is easy to check that V (1, 1; P1) ≥ V (1, 1; P2) if and only if r1µ1 ≥ r2µ2. 2

Note that Theorem 1 is consistent with Proposition 2 because r1 ≥ r2 and µ1 ≥ µ2,

which implies that r1µ1 ≥ r2µ2. We next present four results that will be used in identifying

optimal or near-optimal policies for the case when µ1 < µ2 and r1 > r2. More specifically,

Proposition 3, which is a rather technical result, will be instrumental in the development

of two heuristic policies as we explain in Section 5. Proposition 3 is also used in proving

Propositions 4, 5, and 6, which provide sufficient conditions under which the optimal policy

can be characterized.

In the proof of Proposition 3, we use the following lemma, which states that for a fixed

number of type 1 and type 2 jobs, x1 and x2 in queue, we prefer to have the job in service

be a job with a smaller mean service time. This makes sense because the remaining lifetime

of the job in service is no longer relevant.

Lemma 2 If µ1 ≤ µ2, then we have V (x1 + 1, x2; P1) ≤ V (x1, x2 + 1; P2) for all x1 =

0, 1, . . . , m1 and x2 = 0, 1, . . . , m2.

Proof: We can couple the processing times of the jobs in service for the two states such

that S2 ≤ S1 with probability one, where Si denotes the processing time of a type i job. Let

V0(x1, x2 + 1; P2) be the value function when the starting state is (x1, x2 + 1; P2) and we idle

from time S2 to S1 and then follow the optimal policy. Then, from Proposition 1, we have

V (x1, x2 + 1; P2) ≥ V0(x1, x2 + 1; P2) = V (x1 + 1, x2; P1). 2

Remark 2 Note that in the proof of Lemma 2, we have actually shown a stronger result.

Suppose we have an arbitrary number of types of jobs, with arbitrary lifetime and service

time distributions, and let Vt(x; Pi) be the value function when the numbers of each type of

job are given by the vector x, the current time is t, and a job of type i starts service at time

t. Let also ei be a vector with a one in the ith position and zeroes elsewhere. Then, we have

shown that if Si ≥st Sj, then Vt(x + ei; Pi) ≤ Vt(x + ej; Pj). �

We are now ready to prove Proposition 3. Proposition 3 gives us conditions for the

monotonicity of the policy in the state. To be more specific, it gives us conditions such that

if it is optimal to serve a type i job in state (x1, x2 − 1) and (x1 − 1, x2), then it is also

optimal to serve a type i job in state (x1, x2). Note that these conditions require that the

preferred job agrees with the rµ rule.

13

Proposition 3 (i) Suppose µ1 < µ2 ≤ r2, µ1 ≤ r1 and fix x1 ≥ 1, x2 ≥ 1. If

x1r1 + x2r2 ≥
r1µ2 − r2µ1

µ2 − µ1
(1)

and if V (x1−1, x2; P2) ≥ V (x1 −1, x2; P1), and, for x2 6= 1, if V (x1, x2−1; P2) ≥ V (x1, x2−

1; P1), then V (x1, x2; P2) ≥ V (x1, x2; P1).

(ii) Suppose r1 ≤ µ1 < µ2, r2 ≤ µ2 and fix x1 ≥ 1, x2 ≥ 1. If

x1r1 + x2r2 ≤
r1µ2 − r2µ1

µ2 − µ1
(2)

and if V (x1, x2 − 1; P1) ≥ V (x1, x2 − 1; P2), and, for x1 6= 1, if V (x1 − 1, x2; P1) ≥ V (x1 −

1, x2; P2), then V (x1, x2; P1) ≥ V (x1, x2; P2).

Proof:

(i) We have

V (x1, x2; P2) =
µ2V (x1, x2 − 1, R) + x1r1V (x1 − 1, x2; P2) + (x2 − 1)r2V (x1, x2 − 1; P2)

µ2 + x1r1 + (x2 − 1)r2

≥
µ2(1 + V (x1, x2 − 1, P1)) + x1r1V (x1 − 1, x2; P2) + (x2 − 1)r2V (x1, x2 − 1; P1)

µ2 + x1r1 + (x2 − 1)r2

where the inequality follows because, for the first term, V (x1, x2−1, R) ≥ 1+V (x1, x2−1, P1),

and for the last term, either x2 = 1, so the inequality is trivial, or V (x1, x2 − 1; P2) ≥

V (x1, x2 − 1; P1). Similarly,

V (x1, x2; P1) =
µ1V (x1 − 1, x2, R) + (x1 − 1)r1V (x1 − 1, x2; P1) + r2x2V (x1, x2 − 1; P1)

µ1 + (x1 − 1)r1 + x2r2

≤
µ1(1 + V (x1 − 1, x2, P2)) + (x1 − 1)r1V (x1 − 1, x2; P2) + r2x2V (x1, x2 − 1; P1)

µ1 + (x1 − 1)r1 + x2r2

.

Hence,

V (x1, x2; P2) − V (x1, x2; P1)

≥

(

x1r1

µ2 + x1r1 + (x2 − 1)r2
−

µ1 + (x1 − 1)r1

µ1 + (x1 − 1)r1 + x2r2

)

V (x1 − 1, x2; P2)

+

(

µ2 + (x2 − 1)r2

µ2 + x1r1 + (x2 − 1)r2

−
x2r2

µ1 + (x1 − 1)r1 + x2r2

)

V (x1, x2 − 1; P1)

=
(x1 − 1)r1(r2 − µ2) + (x2 − 1)r2(r1 − µ1) + r1r2 − µ1µ2

(µ1 + (x1 − 1)r1 + x2r2)(µ2 + x1r1 + (x2 − 1)r2)

×(V (x1 − 1, x2; P2) − V (x1, x2 − 1; P1))

≥ 0,

14

where the first inequality follows from Condition (1) and the second follows from Lemma 1

and the conditions that µ1 < µ2 ≤ r2 and µ1 ≤ r1.

(ii) We have

V (x1, x2; P1) =
µ1V (x1 − 1, x2; R) + (x1 − 1)r1V (x1 − 1, x2; P1) + x2r2V (x1, x2 − 1; P1)

µ1 + (x1 − 1)r1 + x2r2

≥
µ1(1 + V (x1 − 1, x2; P2)) + (x1 − 1)r1V (x1 − 1, x2; P2) + x2r2V (x1, x2 − 1; P1)

µ1 + (x1 − 1)r1 + x2r2

where the inequality follows because, for the first term, V (x1−1, x2; R) ≥ 1+V (x1−1, x2; P2),

and for the second term, either x1 = 1, so the inequality is trivial, or V (x1 − 1, x2; P1) ≥

V (x1 − 1, x2; P2). Similarly,

V (x1, x2; P2) =
µ2V (x1, x2 − 1; R) + x1r1V (x1 − 1, x2; P2) + (x2 − 1)r2V (x1, x2 − 1; P2)

µ2 + x1r1 + (x2 − 1)r2

≤
µ2(1 + V (x1, x2 − 1; P1)) + x1r1V (x1 − 1, x2; P2) + (x2 − 1)r2V (x1, x2 − 1; P1)

µ2 + x1r1 + (x2 − 1)r2
.

Hence,

V (x1, x2; P1) − V (x1, x2; P2)

≥

(

µ1 + (x1 − 1)r1

µ1 + (x1 − 1)r1 + x2r2

−
x1r1

µ2 + x1r1 + (x2 − 1)r2

)

V (x1 − 1, x2; P2)

+

(

x2r2

µ1 + (x1 − 1)r1 + x2r2
−

µ2 + (x2 − 1)r2

µ2 + x1r1 + (x2 − 1)r2

)

V (x1, x2 − 1; P1)

=
(x1 − 1)r1(µ2 − r2) + (x2 − 1)r2(µ1 − r1) + µ1µ2 − r1r2

(µ1 + (x1 − 1)r1 + x2r2)(µ2 + x1r1 + (x2 − 1)r2)

×(V (x1 − 1, x2; P2) − V (x1, x2 − 1; P1))

≥ 0,

where the first inequality follows from Condition (2) and the second follows from Lemma 1,

and the conditions that r1 ≤ µ1 < µ2 and r2 ≤ µ2. 2

Proposition 4 If µ1 < µ2 ≤ r2 and µ1 ≤ r1, then for every x1 ≥ 0, the optimal policy has

a threshold, t(x1) (which may be infinite), such that for all x2 ≥ t(x1), it is optimal to serve

a type 2 job.

Proof: We prove the result by induction. Since serving a type 2 job is optimal for x1 = 0,

part (i) of Proposition 3 implies that if there is a state (1, b) such that serving a type 2

job is optimal, then it is also optimal in all states (1, x2) such that x2 ≥ max(b, (r1µ2 −

r2µ1)/[r2(µ2 − µ1)]− r1/r2). Hence, there exists a threshold t(1) such that for all x2 ≥ t(1),

15

it is optimal serve a type 2 job in states (1, x2). Now suppose that serving a type 2 job is

optimal in states (a, x2) for all x2 ≥ t(a). Then, if there is exists a state (a + 1, b) such

that b ≥ t(a) − 1, where serving a type 2 job is optimal, then by part (i) of Proposition

3, we see that serving a type 2 job is also optimal in all states (a + 1, x2) such that x2 ≥

max(b, (r1µ2 − r2µ1)/[r2(µ2 − µ1)] − r1(a + 1)/r2). This completes the proof. 2

In Proposition 5, we show that if in addition to the conditions of Proposition 4 we also

have that prioritizing type 2 jobs is agreeable with the rµ rule, then serving type 2 jobs is

always optimal, i.e., the threshold in Proposition 4, t(x1), is 1 for all x1 ≥ 0.

Proposition 5 If µ1 < µ2 ≤ r2, µ1 ≤ r1, and r1µ1 ≤ r2µ2, then V (x1, x2; P2) ≥ V (x1, x2; P1)

for all xi = 1, 2, . . . , mi, i = 1, 2.

Proof: First, note that Condition (1) is satisfied for all x1, x2 ≥ 1 since µ1 < µ2 and

r1µ1 ≤ r2µ2. Second, r1µ1 ≤ r2µ2 implies that V (1, 1; P1) ≤ V (1, 1; P2), and hence part (i)

of Proposition 3, which holds since µ1 < µ2 ≤ r2 and µ1 ≤ r1, yields that V (x1, 1; P1) ≤

V (x1, 1; P2) for all x1 ≥ 1. Finally, note that by convention, V (0, x2; P1) = 0 ≤ V (0, x2; P2)

for all x2 ≥ 1. Combining this result with the fact that V (x1, 1; P1) ≤ V (x1, 1; P2) for all

x1 ≥ 1 complete the proof once we apply part (i) of Proposition 3. 2

Proposition 6 If r1 ≤ µ1 < µ2 and r2 ≤ µ2, then for every x1 ≥ 1, the optimal policy has

a threshold t(x1) such that for all x2 ≤ t(x1), it is optimal to serve a type 1 job, and t(x1) is

given by

t(x1) =
r1µ2 − r2µ1

r2(µ2 − µ1)
−

x1r1

r2

.

Proof: First note that Condition (2) is equivalent to x2 ≤ t(x1). For the condition to

be satisfied at all (for some x1 ≥ 1, x2 ≥ 1), we must have r2µ2 ≤ r1µ1, which implies

that V (1, 1; P1) ≥ V (1, 1; P2). Hence part (ii) of Proposition 3 yields that V (1, x2; P1) ≥

V (1, x2; P2) for all 1 ≤ x2 ≤ t(1). Note also that by convention, V (x1, 0; P2) = 0 ≤

V (x1, 0; P1) for all x1 ≥ 1. It is easy to see that t(x1) is non-increasing in x1. Hence,

for all x2 ≤ t(x1), we have V (x1 − 1, x2; P1) ≥ V (x1 − 1, x2; P2). Then, applying part (ii) of

Proposition 3 completes the proof. 2

Suppose now that µ1 < µ2 and r1 > r2, i.e., type 1 jobs, which are more time-critical,

have larger mean service times. For this case, Propositions 5 and 6 yield the following

conclusions:

16

• By Proposition 5, if ri ≥ µi for i = 1, 2, and r2µ2 ≥ r1µ1, then it is always optimal to

serve a type 2 job, which is less time-critical and has a smaller mean service time than

a type 1 job. The first condition means that both types of jobs abandon the system

at higher rates than their service rates. On the other hand, the second condition is

the necessary and sufficient condition for the optimality of serving a type 2 job when

x1 = x2 = 1. Hence, if jobs abandon the system at higher rates (relative to service

rates) and if it is better to serve a type 2 job when there is only one of each type, then

type 2 jobs should always be given priority regardless of the system state.

• Proposition 6 implies that if ri ≤ µi for i = 1, 2, then it is optimal to serve a type 1 job,

which is more time-critical and has a larger mean service time, when the number of

jobs in the system satisfy Condition (2). Note that Condition (2) generally holds when

x1 and x2 are small. Hence, Proposition 6 implies that when service is fast (relative

to abandonments) and the number of jobs in the system are sufficiently small, then the

time-critical but slower jobs should be given priority for service.

We end this section with a conjecture. Based on extensive numerical experiments, we

believe that Proposition 5 holds under a set of less restrictive conditions:

Conjecture 1 If µ1 < µ2 and r1µ1 ≤ r2µ2, then V (x1, x2; P2) ≥ V (x1, x2; P1) for all xi =

1, 2, . . . , mi, i = 1, 2.

In other words, we conjecture that as long as the rµ rule is agreeable with SEPT, the rµ

rule is optimal among all policies in Π.

Although we were able to prove this conjecture for states (1, x2), where x2 = 1, 2, . . . , m2,

and states (x1, 1), where x1 = 1, 2, . . . , m1, proving it in its most general form appears to be

a significant challenge. We defer the proof of Proposition 7 to the Appendix.

Proposition 7 The rµ rule is optimal among all policies within Π when it is agreeable with

SEPT and either x1 or x2 is at most 1.

5 Heuristic policies

In this section, we propose two new heuristic policies, namely the triangular and rectangular

heuristics, for state-dependent job prioritization decisions when there are two types of jobs

in the system. We also describe two other heuristics both of which are static policies in the

sense that under these policies priorities do not change with the system state. In Section

6, we compare the performances of these four heuristics along with the performance of the

optimal policy by means of a numerical study.

17

When time-critical jobs have shorter service times (i.e., r1 ≥ r2 and µ1 ≥ µ2 using the

notation of Section 4), Theorem 1 shows that the optimal policy should always give priority

to time-critical jobs (type 1 jobs) regardless of the system state. On the other hand, when

time-critical jobs have longer service times (i.e., r1 > r2 and µ1 < µ2), it is generally not clear

what the best prioritization policy is (except for the cases identified in Propositions 5 and

6). Therefore, we develop heuristic policies for this particular case, and assume that r1 > r2

and µ1 < µ2 in the following discussion. Below, we describe how the heuristic policies work

when service times and lifetimes are exponentially distributed. However, these heuristics can

be also applied in more general settings as we discuss in Section 6.1.2.

The heuristic procedures that we propose, namely the triangular and rectangular heuris-

tics, are primarily based on the structural results given in Section 4 and our observations on

the structure of the optimal policy from numerical experiments. We observed from our ex-

periments that the optimal policy divides the state space into at most two regions as shown

in Figure 1. In general, the optimal policy does not have any obvious monotonic structure

as Figure 1 reveals. However, in many cases, the optimal policy is monotone in the number

of type 1 and type 2 jobs. More specifically, if it is optimal to serve a type 1 job in state

(x1, x2), it is also optimal to serve a type 1 job in state (x1 − 1, x2) or in state (x1, x2 − 1);

similarly, if it is optimal to serve a type 2 job in state (x1, x2), it is also optimal to serve

a type 2 job in state (x1, x2 + 1) or in state (x1 + 1, x2). The triangular heuristic mimics

this behavior of the optimal policy with some support from our theoretical results. The

rectangular heuristic is based on the triangular heuristic, but is easier to implement.

We next describe these heuristic policies in detail.

(i) Triangular heuristic: This heuristic is primarily based on Proposition 3. Condition

(1), or equivalently Condition (2), of Proposition 3 divides the state space into two

regions, one of which roughly has the shape of a triangle. When the system is in state

(x1, x2), the triangular heuristic gives priority to type 1 jobs if (x1, x2) falls inside the

triangle (i.e., if (x1, x2) satisfies Condition (2)), and it gives priority to type 2 jobs

otherwise. Note that Proposition 3 does not give a complete characterization of the

optimal policy, but whether Condition (1) or (2) holds in Proposition 3 can be seen

as an indicator of preference towards one type over the other. Figure 2 (a) shows how

the triangular heuristic works for the example studied in Figure 1.

The triangular heuristic is also insightful. To illustrate, we first rewrite Condition (2)

as follows:
(x1 − 1)r1 + x2r2

µ1
≤

x1r1 + (x2 − 1)r2

µ2
. (3)

The left-hand side of Condition (3) is the mean number of abandonments during the

18

service of a type 1 job, whereas the right-hand side is the mean number of abandon-

ments during the service of a type 2 job in the same state. Hence, in some sense, the

triangular heuristic (myopically) gives priority to jobs with a smaller mean number of

abandonments during service.

Note also that the triangular heuristic is in agreement with all of our analytical results

on the characterization of the optimal policy. More specifically, when r1µ1 ≤ r2µ2

and µ1 < µ2, the heuristic gives priority to type 2 jobs independently of the system

state, which is consistent with Propositions 5 and 7, and Conjecture 1. Similarly, the

heuristic is also in agreement with Proposition 6. Finally, when r1 ≥ r2 and µ1 ≥ µ2,

the heuristic gives higher priority to type 1 jobs in all states, which is consistent with

Theorem 1.

Figure 2: Examples on the structure of the triangular and rectangular heuristics.

0 10 20 30 40 50
0

5

10

15

20

25

30

x
1

x 2

serve type 1
serve type 2

0 10 20 30 40 50
0

5

10

15

20

25

30

x
1

x 2
serve type 1
serve type 2

(a) Triangular heuristic (b) Rectangular heuristic

(ii) Rectangular heuristic: The rectangular heuristic is based on the triangular heuristic

and works similarly. The idea is simply to expand the triangular region associated with

the triangular heuristic to a rectangle by adding another point to the existing three

points and connecting the four points on the state space. Figure 2 (b) shows how

the rectangular heuristic works for the case studied in Figure 1. One advantage of

the rectangular heuristic is its simple structure. It is completely characterized by two

threshold values, i.e., the length and the width of the rectangle. More precisely, in a

given state (x1, x2), if r1 > r2 and µ1 < µ2, then the rectangular heuristic gives priority

to type 1 jobs if and only if 1 ≤ x1 ≤ min{m1, T1} and 1 ≤ x2 ≤ min{m2, T2}, where

T1 =
µ2(r1 − r2)

r1(µ2 − µ1)

and

T2 =
µ1(r1 − r2)

r2(µ2 − µ1)
.

19

T1 is obtained by plugging x1 = T1 and x2 = 1 in Condition (2) and solving it as an

equality, and T2 is obtained similarly by plugging x1 = 1 and x2 = T2 in the same

inequality. Since we assume that r1 > r2 and µ1 < µ2, T1 and T2 will always be non-

negative. Note that when r1µ1 ≤ r2µ2 and µ1 < µ2, the rectangular heuristic prioritizes

type 2 jobs in all states for which x2 ≥ 1, which is consistent with Propositions 5 and

7, and Conjecture 1. On the other hand, if r1µ1 > r2µ2 and µ1 < µ2, the rectangular

heuristic gives a state-dependent policy. In this case, the threshold for type 2 jobs is

higher than the threshold for type 1 jobs, i.e., 1 < T1 < T2.

(iii) rµ-heuristic: This heuristic is studied by Glazebrook, Ansell, Dunn, and Lumley [14]

for a slightly different version of our problem. More specifically, the authors consider

scheduling of jobs in a clearing system with N ≥ 2 jobs initially. Each job is character-

ized by its service rate µ, abandonment rate r, and the positive reward θ that it brings

after service completion. (See Section 2 for more details on the paper by Glazebrook

et al. [14].) The authors propose a heuristic that schedules the jobs in a non-increasing

order of the index θrµ. For our problem, their heuristic is equivalent to the rµ rule.

Glazebrook et al. [14] prove that the rµ-heuristic, which is a state-independent policy,

is asymptotically optimal as the abandonment rates approach zero when the times to

abandonment are exponentially distributed. Note that the rµ-heuristic is identical to

the triangular and rectangular heuristics, and is consistent with Conjecture 1, when it

is also agreeable with SEPT. Also, when r1 ≥ r2 and µ1 ≥ µ2, it gives higher priority

to type 1 jobs, which is consistent with Theorem 1.

(iv) Time-Critical First (TCF) heuristic: This heuristic simply gives priority to jobs

with higher abandonment rates ignoring the service rates as well as the system state.

To be more precise, it gives priority to type 1 jobs if and only if r1 > r2. This

heuristic is not expected to perform well in most cases. However, it is still included

as a benchmark policy since it is commonly applied in daily operations, especially in

situations where the pressure of making quick decisions with lack of prior planning

leads to giving priorities to more urgent jobs with possibly long processing times.

6 Numerical results

In this section, we provide numerical results on the performance of the heuristic policies

described in Section 5 for the case where time-critical jobs have longer service times. In

Section 6.1, we compare the performance of the heuristic policies under various randomly

20

generated scenarios and in Section 6.2, we take a closer look at the effects of certain input

parameters on the performance of the heuristics.

6.1 Comparison of heuristic policies

We performed two sets of numerical experiments. In the first set, we considered jobs with

exponential service times and lifetimes, whereas in the second set, we considered jobs with

deterministic service times and lifetimes that have Weibull distribution. For both sets of

experiments, we can obtain the optimal policy by solving the backward dynamic program-

ming recursions, and hence we can compare the performance of the heuristic policies with

the optimal performance.

6.1.1 Exponential service times and lifetimes

We consider systems where the service times and lifetimes for type i jobs are exponentially

distributed with respective rates µi > 0 and ri > 0 for i = 1, 2. Since we would like to study

many different scenarios with a wide range of system parameters, we have sampled the system

parameters randomly. More specifically, the initial number of jobs mi for each type i ∈ {1, 2}

is drawn independently from a discrete uniform distribution over the set {1, 2, . . . , 100}. We

have also generated the service rate µi of each job type i from a (continuous) uniform

distribution with range [0.5, 2.0]. Similarly, we have generated the abandonment rate ri of

each job type i from a uniform distribution for i = 1, 2. We have considered five subsets of

experiments depending on the range of the abandonment rates, namely [2.0, 5.0], [0.5, 2.0],

[0.1, 0.5], [0.01, 0.1], and [0.005, 0.001]. (Note that in the first two subsets, jobs are very

critical since the abandonment rates are either larger than or close to the service rates. On the

other hand, in the last three subsets, jobs are not very critical since the abandonment rates

are smaller than service rates.) For each subset, we generated 5,000 random scenarios where

r1 > r2 and µ1 < µ2. We excluded the cases for which we already know what the optimal

policy is, based on Proposition 5. For each scenario, we calculated the expected number of

jobs taken into service under each of the four heuristic policies and the optimal policy. Then,

we computed the percentage deviation of the performance of each heuristic from that of the

optimal policy. Based on these 5,000 percentage deviations, we constructed a 95% confidence

interval (C.I.) on the mean; estimated the median, lower and upper quartiles; and determined

the maximum percentage deviation, i.e., the worst performance. For each heuristic, we also

calculated the number of times that the heuristic provided the best performance among the

four heuristics. These results are presented in Table 1. (Note that the values in the last

column of Table 1 do not add up to 5,000 for each subset of experiments due to ties among

heuristics.)

21

Heuristic 95% C.I. Lower quartile Median Upper quartile Maximum Best heuristic in

on the mean

ri ∼Uniform[2.0,5.0]
Triangular 0.011 ± 0.001 0.000 0.001 0.009 2.064 4297 scenarios

Rectangular 0.013 ± 0.001 0.000 0.001 0.011 1.946 3275 scenarios
rµ 7.600 ± 0.179 2.340 5.950 11.512 33.7632 146 scenarios

TCF 7.600 ± 0.179 2.340 5.950 11.512 33.7632 146 scenarios

ri ∼Uniform[0.5,2.0]
Triangular 0.053 ± 0.007 0.000 0.000 0.011 6.304 3990 scenarios

Rectangular 0.042 ± 0.006 0.000 0.000 0.007 6.218 4628 scenarios
rµ 4.873 ± 0.207 0.000 0.000 7.928 37.255 2554 scenarios

TCF 18.214 ± 0.386 6.189 15.656 28.153 57.445 179 scenarios

ri ∼Uniform[0.1,0.5]
Triangular 0.425 ± 0.031 0.000 0.000 0.221 11.264 3678 scenarios

Rectangular 0.372 ± 0.028 0.000 0.000 0.200 11.134 4325 scenarios
rµ 3.072 ± 0.151 0.000 0.000 4.111 30.303 3084 scenarios

TCF 13.049 ± 0.330 2.668 10.055 20.529 52.741 737 scenarios

ri ∼Uniform[0.01,0.1]
Triangular 2.162 ± 0.102 0.000 0.047 2.978 21.659 2893 scenarios

Rectangular 2.077 ± 0.099 0.000 0.033 2.790 21.636 2923 scenarios
rµ 0.581 ± 0.047 0.000 0.000 0.001 20.678 4134 scenarios

TCF 4.117 ± 0.167 0.000 1.161 6.026 38.170 2160 scenarios

ri ∼Uniform[0.005,0.01]
Triangular 0.340 ± 0.025 0.000 0.000 0.016 7.939 3822 scenarios

Rectangular 0.335 ± 0.025 0.000 0.000 0.014 7.939 3831 scenarios
rµ 0.043 ± 0.006 0.000 0.000 0.000 3.573 4681 scenarios

TCF 3.189 ± 0.106 0.096 1.773 4.989 22.323 1199 scenarios

Table 1: Performance of the heuristics for exponential service times and lifetimes (in terms
of the percentage deviation from the optimal performance) when µi ∼Uniform[0.5,2.0] and
mi ∼Uniform{1,2,. . . ,100}, for i = 1, 2.

From Table 1, it can be seen that the performance of the heuristics depend on how fast the

jobs abandon the system. When jobs are very critical (i.e., when ri’s are larger than or similar

to µi’s), then the triangular and rectangular heuristics clearly provide the best performance.

On the other hand, when jobs are not very critical (i.e., when ri’s are small compared to µi’s),

then the rµ-heuristic has the best performance. This is an expected result since rµ-heuristic

was shown to be asymptotically optimal as the abandonment rates approach to zero, see

Glazebrook et al. [14]. However, Table 1 shows that all heuristics (except for the TCF

heuristic, which gives the worst overall performance in all cases) perform reasonably well

when abandonment rates are very small. This is not surprising because when abandonment

rates are very small, jobs are likely to stay in the system for a long time, which makes the

difference between the performance of any two non-idling policy less significant.

Table 1 also reveals that the worst performance for the triangular and rectangular heuris-

tics is approximately 22%, whereas the worst performance is 37% and 57% for the rµ-heuristic

and the TCF heuristic, respectively. This suggests that overall, the triangular and rectan-

gular heuristics seem to be more robust since they do not perform very badly even over the

parameter regions where the rµ-heuristic gives a better performance.

22

6.1.2 Weibull lifetimes and deterministic service times

In this section, our objective is to test the performance of the heuristics under a non-

exponential setting. More specifically, we consider systems where the service time of a

type i job is deterministic and equal to 1/µi, whereas its lifetime has a Weibull distribu-

tion with shape parameter αi > 0 and scale parameter βi > 0. Then, the abandonment

rates are given by ri = αi/(βiΓ(1/αi)) for i = 1, 2, where Γ(i) is the gamma function. The

Weibull distribution is commonly used in modeling lifetimes of humans, and possesses some

nice properties such as the possibility of an increasing failure rate, see, e.g., Section 2.2.2 in

Hougaard [15]. (We choose service times to be deterministic since this allows us to compute

the performance of the optimal policy.)

In Section 5, we described the heuristics under the assumption that the service times

and lifetimes are exponentially distributed. Generalization of these heuristics to systems

with non-exponential lifetimes is not immediate due to the lack of the memoryless property.

Thus, we propose and test the following generalization to all four heuristics: At each decision

epoch, i.e., at the end of each service completion, we calculate the updated abandonment rate,

which is the reciprocal of the mean remaining lifetime, for each job type. Let ri(t) denote

the updated abandonment rate for job type i ∈ {1, 2} at time t ≥ 0. (Note that ri(0) = ri.)

Then, at each decision epoch, the heuristics use the same decision rules as before except that

these ri(t) values are used instead of ri’s. (If the order of ri(t)’s switch at a decision epoch

such that the type with the faster service becomes time-critical, then we apply the optimal

policy characterized by Theorem 1.) For the Weibull distribution with shape parameter αi

and scale parameter βi, i ∈ {1, 2}, we obtain that

ri(t) =
αi

βiΓ(1/αi, (t/βi)αi)
e−(t/βi)

αi ,

where Γ(a, b), which is the incomplete gamma function, is defined as

Γ(a, b) =

∫ ∞

b

ua−1e−udu,

for a > 0 and b ≥ 0.

In our experiments presented in this section, the initial number of jobs mi for each type

i is drawn independently from a discrete uniform distribution over the set {1, 2, . . . , 20}. We

have generated the service rate µi of each job type i from a (continuous) uniform distribution

with range [0.5, 2.0]. For each job type i ∈ {1, 2}, we let αi = 1.5 and then generate the

initial abandonment rate ri(0) from a uniform distribution. We considered five subsets

of experiments depending on the range of the initial abandonment rate, namely [2.0, 5.0],

[0.5, 2.0], [0.1, 0.5], [0.01, 0.1], and [0.005, 0.01]. For each subset, we generated 5,000 random

23

scenarios where r1(0) > r2(0) and µ1 < µ2. (Since in this example the lifetime distributions

for both types of jobs are Weibull with the same shape parameter α, having r1(0) > r2(0)

implies that the lifetime of a type 1 job is smaller than the lifetime of a type 2 job in the

sense of hazard rate ordering, i.e., r1(t) ≥ r2(t) for all t ≥ 0.) We computed the performance

of each heuristic as in the exponential case, see Section 6.1.1. The results are summarized

in Table 2.

Heuristic 95% C.I. Lower quartile Median Upper quartile Maximum Best heuristic in

on the mean

ri ∼Uniform[2.0,5.0]
Triangular 0.015 ± 0.004 0.000 0.000 0.000 3.490 4943 scenarios

Rectangular 0.027 ± 0.007 0.000 0.000 0.000 8.688 4796 scenarios
rµ 3.089 ± 0.203 0.000 0.000 1.258 46.922 3032 scenarios

TCF 19.609 ± 0.488 2.755 15.289 34.561 63.145 207 scenarios

ri ∼Uniform[0.5,2.0]
Triangular 0.163 ± 0.019 0.000 0.000 0.051 14.010 4609 scenarios

Rectangular 0.175 ± 0.019 0.000 0.000 0.056 14.010 4024 scenarios
rµ 4.534 ± 0.191 0.000 0.002 7.609 34.212 2505 scenarios

TCF 17.004 ± 0.384 5.033 14.440 26.546 62.378 428 scenarios

ri ∼Uniform[0.1,0.5]
Triangular 1.129 ± 0.066 0.000 0.007 1.057 19.745 3320 scenarios

Rectangular 1.006 ± 0.063 0.000 0.003 0.813 19.745 3639 scenarios
rµ 1.242 ± 0.077 0.000 0.000 0.738 21.399 3626 scenarios

TCF 7.502 ± 0.261 0.000 3.613 11.815 49.918 1643 scenarios

ri ∼Uniform[0.01,0.1]
Triangular 2.398 ± 0.112 0.000 0.405 3.030 25.039 1997 scenarios

Rectangular 2.313 ± 0.111 0.000 0.326 2.918 25.039 2076 scenarios
rµ 0.017 ± 0.003 0.000 0.000 0.000 3.982 4662 scenarios

TCF 0.614 ± 0.047 0.000 0.000 0.309 23.985 3297 scenarios

ri ∼Uniform[0.005,0.01]
Triangular 0.208 ± 0.012 0.000 0.001 0.203 5.266 2502 scenarios

Rectangular 0.201 ± 0.012 0.000 0.000 0.188 5.266 2555 scenarios
rµ 0.008 ± 0.001 0.000 0.000 0.000 0.514 4446 scenarios

TCF 0.135 ± 0.008 0.000 0.000 0.131 3.259 2673 scenarios

Table 2: Performance of the heuristics for deterministic service times and Weibull life-
times (in terms of the percentage deviation from the optimal performance) when αi = 1.5,
µi ∼Uniform[0.5,2.0], and mi ∼Uniform{1,2,. . . ,20}, for i = 1, 2.

Perhaps the most important observation from Table 2 is that the heuristics that we devel-

oped for the exponential case also perform well in a non-exponential setting. Furthermore,

the general behavior of the heuristics does not appear to be much affected by the distribu-

tional assumption. More specifically, as in the case with exponential distributions, triangular

and rectangular heuristics still provide the best performance when jobs abandon the system

with high rates while the rµ-heuristic is the best when abandonment rates are small. Inter-

estingly, the TCF heuristic yields a more pronounced performance in extreme cases when

compared with its performance under exponential distributions. To be more specific, when

abandonment rates are large, TCF’s performance is worse than its performance for the ex-

ponential case, whereas when abandonment rates are small, its performance is better than

24

its performance for the exponential case.

6.2 Effects of some system parameters on the performance of
heuristics

In this section, we investigate the effects of two system parameters on the performances of

the four heuristic policies under exponential lifetime and service time distributions. These

two parameters are the initial total number of jobs, m1 +m2, and the ratio φ = r2µ2/(r1µ1),

which can be considered as a measure of similarity between the two job types. To observe

the effect of m1 + m2, we first computed m1 + m2 for each of the 5,000 random scenarios

(generated for the experiments presented in Section 6.1.1) and sorted the scenarios in an

ascending order of their m1 + m2 values. Then, we computed the moving average (with a

window size of 1,500) of the percentage deviation of each heuristic from the optimal policy.

To observe the effect of φ, we followed the same procedure except that the window size for

the moving average was set to 500. The moving average plots for m1 + m2 and φ are given

in Figures 3 and 4, respectively. In the interest of space, we present the plots for only three

subsets of our experiments, namely the ones where the ranges for the abandonment rates

are [0.5, 2.0], [0.1, 0.5], and [0.01, 0.1].

From Figure 3, it can be seen that the performances of the rµ and TCF heuristics

worsen with the total number of jobs in the system in all three cases considered. On the

other hand, the performances of the triangular and rectangular heuristics have a tendency

to improve as the number of jobs in the system increases when jobs abandon the system

at a relatively high rate. Together with our conclusions from Section 6.1, this suggests

that the triangular and rectangular heuristics are well-suited for worst-case scenarios, where

the system is overwhelmed with a large number of jobs that abandon the system quickly.

Such scenarios can be typically realized in the wake of mass casualty incidents, which cause

significant number of casualties who are in need of immediate care.

Figure 4 shows the relationship between the performance of the heuristics and the pa-

rameter φ. First, note that the moving average plots for the triangular, rectangular, and rµ

heuristics hit zero after a certain point (when φ is around one). This is due to the fact that

these three heuristics are in fact equivalent and furthermore optimal (which is a numerical

observation) when r2µ2 ≥ r1µ1 and µ1 < µ2 under exponential distributions, see Conjecture

1.

As we have discussed in Section 6.1, the triangular and rectangular heuristics perform

very well when jobs have high abandonment rates. Figure 4 supports this observation but also

suggests that in some cases these heuristics should be preferred even when the abandonment

rates are small. To see this, first note that regardless of whether abandonment rates are small

25

Figure 3: Moving average plots of percentage deviations of heuristics from the optimal with
respect to the number of scenarios that are ordered according to the increasing initial total
number of jobs m1 + m2.

Rectangular and triangular heuristics
ri ∼Uniform[0.5,2.0] ri ∼Uniform[0.1,0.5] ri ∼Uniform[0.01,0.1]

1500 2000 2500 3000 3500 4000 4500 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

triangular
rectangular

1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

triangular
rectangular

1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

triangular
rectangular

rµ and TCF heuristics
ri ∼Uniform[0.5,2.0] ri ∼Uniform[0.1,0.5] ri ∼Uniform[0.01,0.1]

1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

18

20

22

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

rµ
TCF

1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

18

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

rµ
TCF

1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

rµ
TCF

or large, the triangular and rectangular heuristics provide their worst performances when

r2µ2 is small; however, they perform increasingly well as r2µ2 gets closer to r1µ1. (Note that

r2µ2 is close to r1µ1 around the middle of the x-axis.) On the other hand, the rµ heuristic

provides its worst performance when r2µ2/(r1µ1) approaches one. Now comparing the two

plots for which ri ∈ [0.01, 0.1] in Figure 4, we see that even when the abandonment rates are

small but r2µ2/(r1µ1) is close to one, the triangular and rectangular heuristics yield a better

average performance than the rµ and TCF heuristics, and thus are preferable.

7 Conclusions

We considered a clearing system with a single server and a finite number of jobs that may

abandon the system before receiving service. For such a system, we studied the optimal and

near-optimal scheduling of jobs, which are characterized by their service time and lifetime

distributions, with the objective of minimizing the total number of abandonments. We are

mainly motivated by the patient triage problem, which arises in the aftermath of mass casu-

alty events. Our question is: Given the operating/treatment time and lifetime distributions

26

Figure 4: Moving average plots of percentage deviations of heuristics from the optimal with
respect to the number of scenarios that are ordered according to the increasing value of
r2µ2/(r1µ1).

Rectangular and triangular heuristics
ri ∼Uniform[0.5,2.0] ri ∼Uniform[0.1,0.5] ri ∼Uniform[0.01,0.1]

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

triangular
rectangular

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

triangular
rectangular

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

triangular
rectangular

rµ and TCF heuristics
ri ∼Uniform[0.5,2.0] ri ∼Uniform[0.1,0.5] ri ∼Uniform[0.01,0.1]

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

rµ
TCF

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

rµ
TCF

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

P
er

ce
nt

ag
e

de
vi

at
io

n
fr

om
 o

pt
im

al

rµ
TCF

of different patients with different injuries and also given the number of patients, how should

the patients be admitted to a scarce resource (e.g., an operating room) so as to maximize the

total number of patients saved? In practice, there is not a simple answer to this question since

each mass casualty event is unique with challenges that typically cannot be anticipated, and

such events require prompt decisions from human beings working in chaotic environments.

Thus, in this work, we provide some general insights into the problem by identifying the

characteristics of effective prioritization decision rules under different operating conditions.

Using sample path arguments for general service time and lifetime distributions, and a

stochastic dynamic programming approach for exponential service time and lifetime distri-

butions, we identified characteristics of the optimal policy analytically for several cases. For

example, we showed that if jobs can be ordered in such a way that the job with the shortest

lifetime (in the sense of hazard rate orders) also has the shortest service time (in the sense of

likelihood ratio orders), then it should always be given priority for service, regardless of the

state of the system. This result makes sense intuitively, but more importantly, it provides us

with a criterion as to what makes a job a top-priority job. For the patient triage problem,

this implies that regardless of how many patients are in need of treatment, a patient with a

27

certain injury can be given the highest priority if we know that, without any medical inter-

vention, his/her lifetime will be shorter than any other patient in the sense of hazard rate

ordering, and the operation for that specific injury takes a shorter time than all the other

patients’ injuries in the sense of likelihood ratio orders. Nevertheless, the case where time-

critical patients have longer service times appears to be more interesting and realistic, and

hence we devoted a significant portion of the paper to identifying optimal or near-optimal

policies for this case.

When time-critical jobs have stochastically longer service times, the optimal policy is

not easy to characterize except for certain cases. For example, when service and lifetimes

are exponentially distributed and the jobs can be categorized into two classes based on

their mean service time and lifetimes, we were able to identify conditions under which it is

always optimal to give priority to faster jobs, even when they are less time critical. For cases

where we cannot characterize the optimal policy, we developed two state-dependent heuristic

policies and compared them with two benchmark policies (that are not state-dependent) by

means of a numerical study. From our numerical experiments, we gained several important

insights. When the job abandonment rates are small compared to the service rates, as one

would expect, all policies perform reasonably well (with one of the state-independent policies

providing the best performance). On the other hand, when jobs abandon the system at a

faster rate, the state-independent policies perform very poorly, and hence it is extremely

important in this case to employ state-dependent policies such as those proposed in this

paper. For the patient triage problem, these observations imply that when a major emergency

event causes injuries that need to be taken care of very quickly, then it is crucial for a triage

policy to take into account the number of patients who need help. Especially, for worst-case

scenarios, where the event causes a large number of patients who need help immediately,

our state-dependent heuristics appear to provide substantially better performance than the

state-independent policies and have the potential to achieve the greatest good for the greatest

number of people.

Acknowledgement

The work of the first author was supported by the National Science Foundation under Grant

No. CMMI-0715020. The work of the second author was supported by the National Science

Foundation under Grant No. CMMI-0620737.

28

References

[1] Arnold, J. L., M.-C. Tsai, P. Halpern, H. Smithline, E. Stok, and G. Ersoy, “Mass-

casualty, terrorist bombings: Epidemiological outcomes, resource utilization, and time

course of emergency needs (Part I),” Prehospital and Disaster Medicine 18 (2004), No.

3, 220–234.

[2] Bae, J., S. Kim, and E. Y. Lee, “The virtual waiting time of M/G/1 queue with impa-

tient customers,” Queueing Systems 38 (2001), 485–494.

[3] Bhattacharya, P. P., and A. Ephremides, “Optimal scheduling with strict deadlines,”

IEEE Transactions on Automatic Control 34 (1989), No. 7, 721–728.

[4] Bhattacharya, P. P., and A. Ephremides, “Optimal allocation of a server between two

queues with due times,” IEEE Transactions on Automatic Control 36 (1991), No. 12,

1417–1423.

[5] Boxma, O. J., and F. G. Forst, “Minimizing the expected weighted number of tardy

jobs in stochastic flow shops,” Operations Research Letters 5 (1986), No. 3, 119–126.

[6] Brandt, A., and M. Brandt, “Asymptotic results and a Markovian appproximation for

the M(n)/M(n)/s + GI system,” Queueing Systems 41 (2002), 73–94.

[7] Brandt, A., and M. Brandt, “On the two-class M/M/1 system under preemptive resume

and impatience of the prioritized customers,” Queueing Systems 47 (2004), 147–168.

[8] Choi, B. D., B. Kim, and J. Chung, “M/M/1 queue with impatient customers of higher

priority,” Queueing Systems 38 (2001), 49–66.

[9] Coffman, E. G., L. Flatto, M. R. Garey, and R. R. Weber, “Minimizing expected

makespan on uniform processor systems,” Advances in Applied Probability 19 (1987),

177–201.

[10] Doytchinov, B., J. Lehoczky, and S. Shreve, “Real-time queues in heavy traffic with

earliest-deadline-first queue discipline,” Annals of Applied Probability 11 (2001), No. 2,

332–378.

[11] Emmons, H., and M. Pinedo, “Scheduling stochastic jobs with due dates on parallel

machines,” European Journal of Operational Research 47 (1990), No. 1, 49–55.

[12] Frykberg, E. R., “Medical management of disasters and mass casualties from terrorist

bombings: How can we cope?” The Journal of Trauma 53 (2002), No. 2, 201–212.

29

[13] Glazebrook, K. D., “Stochastic scheduling with due dates,” International Journal of

Systems Science 14 (1983), 1259–1271.

[14] Glazebrook, K. D., P. S. Ansell, R. T. Dunn, and R. R. Lumley, “On the optimal

allocation of service to impatient tasks,” Journal of Applied Probability 41 (2004), No.

1, 51–72.

[15] Hougaard, P., Analysis of Multivariate Survival Data, Springer-Verlag, New York, NY,

2000.

[16] Jang, W., and C. M. Klein, “Minimizing the expected number of tardy jobs when

processing times are normally distributed,” Operations Research Letters 30 (2002), 100–

106.

[17] Jiang, Z., T. G. Lewis, and J.-Y. Colin, “Scheduling hard real-time constrained periodic

tasks on multiple processors,” Journal of Systems and Software 19 (1996), 102–118.

[18] Levi, L., M. Michaelson, H. Admi, D. Bregman, and R. Bar-Nahor, “National strategy

for mass casualty situations and its effects on the hospital,” Prehospital and Disaster

Medicine 17 (2003), No. 1, 12–17.

[19] Nocera, A., and A. Garner, “An Australian Mass Casualty Incident triage system for

the future based upon triage mistakes of the past: The Homebush Triage Standard,”

Australian and New Zealand Journal of Surgery 69 (1999), 603–608.

[20] Panwar, S. S., D. Towsley, and J. K. Wolf, “Optimal scheduling policies for a class of

queues with customer deadlines to the beginning of service,” Journal of the Association

for Computing Machinery 35 (1988), No. 4, 832–844.

[21] Peleg, K., L. Aharonson-Daniel, M. Michael, S. C. Shapira, and the Israel Trauma

Group, “Patterns of injury in hospitalized terrorist victims,” American Journal of Emer-

gency Medicine 21 (2003), No. 4, 258–262.

[22] Pinedo, M., “Stochastic Scheduling with release dates and due dates,” Operations Re-

search 31 (1983), No. 3, 559–572.

[23] Righter, R. “Scheduling,” Stochastic Orders, ed. by M. Shaked and J. G. Shanthikumar.

New York: Academic Press (1994), 381–432.

[24] Righter, R., “Job scheduling to minimize weighted flowtime on uniform processors,”

Systems and Control Letters 10 (1988), 211–216.

30

[25] Righter, R., “Expulsion and scheduling control for multiclass queues with heterogenous

servers,” Queueing Systems 34 (2000), 289–300.

[26] Rund, D. A., and Rausch, T. S., Triage, The C. V. Mosby Company, St. Louis, MO,

1981.

[27] Van Mieghem, J., “Dynamic scheduling with convex delay costs: the generalized cµ

rule,” Annals of Applied Probability 5 (1995), No. 3, 808–833.

[28] Van Mieghem, J., “Due date scheduling: asymptotic optimality of generalized longest

queue and generalized largest delay rules,” Operations Research 51 (2003), No. 1, 113–

122.

[29] Ward, A. R., and P. W. Glynn, “A diffusion approximation for a Markovian queue with

reneging,” Queueing Systems 43 (2003), 103–128.

[30] Ward, A. R., and S. Kumar, “Asymptotically optimal admission control of a queue with

impatient customers,” submitted for publication, 2006.

[31] Weber, R. R., P. Varaiya, and J. Walrand, “Scheduling jobs with stochastically or-

dered processing times on parallel machines to minimize expected flow time,” Journal

of Applied Probability 23 (1986), 841–847.

[32] Weiss, G., and M. Pinedo, “Scheduling tasks with exponential service times on non-

identical processors to minimize various cost functions,” Journal of Applied Probability

17 (1980), 187–202.

[33] Xu, S. H., “A duality approach to admission and scheduling control of queues,” Queueing

Systems 18 (1994), 273–300.

[34] Zhao, Z.-X., S. S. Panwar, and D. Towsley, “Queueing performance with impatient

customers,” Proceedings of IEEE INFOCOM’91 (1991), Vol. 1, 400–409.

Appendix

In this Appendix, we prove Proposition 7. We need the following lemma.

Lemma 3 Suppose that µ1 < µ2.

(i) For all x2 ≥ 1, we have

V (0, x2; P2) − V (1, x2 − 1; P1) ≤
(x2 − 1)r2(µ2 − µ1)

µ1(µ2 + (x2 − 1)r2)
.

31

(ii) For all x1 ≥ 1, we have

V (x1 − 1, 1; P2) − V (x1, 0; P1) ≤
(x1 − 1)r1(µ2 − µ1)

µ2(µ1 + (x1 − 1)r1)
.

Proof of Lemma 3: (i) We prove the result by induction on x2. Since V (0, 1; P2) −

V (1, 0; P1) = 0, the result holds trivially for x2 = 1. Next, suppose that the result holds for

x2 − 1. Then, we have

V (0, x2; P2) − V (1, x2 − 1; P1)

=
(x2 − 1)r2(µ2 − µ1)

(µ1 + (x2 − 1)r2)(µ2 + (x2 − 1)r2)
+

(x2 − 1)r2

µ1 + (x2 − 1)r2
(V (0, x2 − 1; P2) − V (1, x2 − 2; P1))

≤
(x2 − 1)r2(µ2 − µ1)

(µ1 + (x2 − 1)r2)(µ2 + (x2 − 1)r2)
+

(x2 − 1)(x2 − 2)r2
2(µ2 − µ1)

µ1(µ1 + (x2 − 1)r2)(µ2 + (x2 − 2)r2)

(by the inductive hypothesis)

=
(x2 − 1)r2(µ2 − µ1)

µ1(µ2 + (x2 − 1)r2)

{

µ1

µ1 + (x2 − 1)r2
+

(x2 − 2)r2(µ2 + (x2 − 1)r2)

(µ1 + (x2 − 1)r2)(µ2 + (x2 − 2)r2)

}

≤
(x2 − 1)r2(µ2 − µ1)

µ1(µ2 + (x2 − 1)r2)
,

where the last inequality follows from the fact that (x2 − 2)r2(µ2 + (x2 − 1)r2) ≤ (x2 −

1)r2(µ2 + (x2 − 2)r2).

(ii) We prove the result by induction on x1. Since V (0, 1; P2) − V (1, 0; P1) = 0, the result

holds trivially for x1 = 1. Next, suppose that the result holds for x1 − 1. Then, we have

V (x1 − 1, 1; P2) − V (x1, 0; P1)

=
(x1 − 1)r1(µ2 − µ1)

(µ1 + (x1 − 1)r1)(µ2 + (x1 − 1)r1)
+

(x1 − 1)r1

µ2 + (x1 − 1)r1

(V (x1 − 2, 1; P2) − V (x1 − 1, 0; P1))

≤
(x1 − 1)r1(µ2 − µ1)

(µ1 + (x1 − 1)r1)(µ2 + (x1 − 1)r1)
+

(x1 − 1)(x1 − 2)r2
1(µ2 − µ1)

µ2(µ2 + (x1 − 1)r1)(µ1 + (x1 − 2)r1)

(by the inductive hypothesis)

≤
(x1 − 1)r1(µ2 − µ1)

µ2(µ1 + (x1 − 1)r1)
. 2

Proof of Proposition 7: (i) We prove the result by induction on x2. For x2 = 1, we

have V (1, 1; P2) − V (1, 1; P1) = (r2µ2 − r1µ1)/(µ1 + r2)(µ2 + r1) ≥ 0. Next, suppose that

32

V (1, x2 − 1; P2) ≥ V (1, x2 − 1; P1). Then, we have

V (1, x2; P2) − V (1, x2; P1)

=
r2µ2 − r1µ1

(µ1 + x2r2)(µ2 + r1 + (x2 − 1)r2)
+

(x2 − 1)r2(µ2 − µ1)

(µ1 + x2r2)(µ2 + r1 + (x2 − 1)r2)

+

(

µ1

µ1 + x2r2
−

r1

µ2 + r1 + (x2 − 1)r2

)

(V (1, x2 − 1; P1) − V (0, x2; P2))

+
µ2 + (x2 − 1)r2

µ2 + r1 + (x2 − 1)r2
(V (1, x2 − 1; P2) − V (1, x2 − 1; P1))

≥
(x2 − 1)r2(µ2 − µ1)

(µ1 + x2r2)(µ2 + r1 + (x2 − 1)r2)

+

(

µ1

µ1 + x2r2

−
r1

µ2 + r1 + (x2 − 1)r2

)

(V (1, x2 − 1; P1) − V (0, x2; P2))

=

(

(x2 − 1)r2 +
x2r1r2 − µ1(µ2 + (x2 − 1)r2)

µ2 − µ1
(V (0, x2; P2) − V (1, x2 − 1; P1))

)

×
(µ2 − µ1)

(µ1 + x2r2)(µ2 + r1 + (x2 − 1)r2)

≥

(

(x2 − 1)r2 −
µ1(µ2 + (x2 − 1)r2)

µ2 − µ1
(V (0, x2; P2) − V (1, x2 − 1; P1))

)

×
(µ2 − µ1)

(µ1 + x2r2)(µ2 + r1 + (x2 − 1)r2)
,

since V (1, x2 − 1; P1) ≤ V (0, x2; P2) when µ1 < µ2 by Lemma 2. Now, the condition that

µ1 < µ2 and part (i) of Lemma 3 complete the proof.

33

(ii) We prove the result by induction on x1. The case with x1 = 1 is already covered in part

(i). Now, suppose that V (x1 − 1, 1; P2) ≥ V (x1 − 1, 1; P1). Then, we have

V (x1, 1; P2) − V (x1, 1; P1)

=
r2µ2 − r1µ1

(µ2 + x1r1)(µ1 + (x1 − 1)r1 + r2)
+

(x1 − 1)r1(µ2 − µ1)

(µ2 + x1r1)(µ1 + (x1 − 1)r1 + r2)

+

(

µ2

µ2 + x1r1

−
r2

µ1 + (x1 − 1)r1 + r2

)

(V (x1, 0; P1) − V (x1 − 1, 1; P2))

+
(x1 − 1)r1

µ1 + (x1 − 1)r1 + r2

(V (x1 − 1, 1; P2) − V (x1 − 1, 1; P1))

≥
(x1 − 1)r1(µ2 − µ1)

(µ2 + x1r1)(µ1 + (x1 − 1)r1 + r2)

+

(

µ2

µ2 + x1r1
−

r2

µ1 + (x1 − 1)r1 + r2

)

(V (x1, 0; P1) − V (x1 − 1, 1; P2))

=

(

(x1 − 1)r1 +
x1r1r2 − µ2(µ1 + (x1 − 1)r1)

µ2 − µ1

(V (x1 − 1, 1; P2) − V (x1, 0; P1))

)

×
(µ2 − µ1)

(µ2 + x1r1)(µ1 + (x1 − 1)r1 + r2)

≥

(

(x1 − 1)r1 −
µ2(µ1 + (x1 − 1)r1)

µ2 − µ1
(V (x1 − 1, 1; P2) − V (x1, 0; P1))

)

×
(µ2 − µ1)

(µ2 + x1r1)(µ1 + (x1 − 1)r1 + r2)
,

since V (x1 − 1, 1; P2) ≥ V (x1, 0; P1) when µ1 < µ2 by Lemma 2. Now, the condition that

µ1 < µ2 and part (ii) of Lemma 3 complete the proof. 2

34

