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A geometrical derivation of the Dirac equation
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Abstract

We give a geometrical derivation of the Dirac equation by considering a spin-12 particle travelling

with the speed of light in a cubic spacetime lattice. The mass of the particle acts to flip the

multi-component wavefunction at the lattice sites. Starting with a difference equation for the

case of one spatial and one time dimensions, we generalize the approach to higher dimensions.

Interactions with external electromagnetic and gravitational fields are also considered. One logical

interpretation is that only at the lattice sites is the spin-12 particle aware of its mass and the

presence of external fields.
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I. INTRODUCTION

There are different ways to derive the Dirac equation. But probably there is no derivation

more elegant than the one Dirac gave in his book.[1] The derivation based on Wigner’s

analysis of the irreducible unitary representation of the “Poincare group” (the covering group

of the inhomogeneous proper othochronous Lorentz group) certainly is also important.[2]

There is another intriguing derivation which Feynman gave (for the SO(1, 1) case with one

spatial dimension and one time dimension) in his class1 and which was given as a problem

in his book with Hibbs[3].

In this paper we give another derivation of the Dirac equation. Our approach bears some

resemblance to Feynman’s and is based on Dirac’s observation that the instantaneous ve-

locity operators of the spin-1
2
particle (hereafter called by the generic name “the electron”)

have eigenvalues ±c and that they anticommute.2 (Hereafter, unless clarity demands oth-

erwise, we set the speed of light c, as well as Planck’s constant h̄, equal to unity.) We

assume spacetime to be “filled” with a four-dimensional cubic lattice with lattice length

∆x = ∆y = ∆z = ∆t = l. While it is natural to take l to be the Planck length (∼ 10−33

cm), we will simply take it to be a length very small compared to the electron’s Compton

wavelength, the only intrinsic length available in the problem for a free electron. For the

resulting difference equation, the zeroth order term in ∆t gives a trivial identity while the

first order term yields the Dirac equation.

It is interesting that the Dirac equation is invariant under rotations and Lorentz trans-

formations, while the underlying spacetime lattice is not. This situation is one which is not

unfamiliar in the spatial dimensions in condensed matter physics. (But a related and more

intriguing result was that found by Snyder[4] more than half a century ago, who showed that

spacetime being a continuum is not required by Lorentz invariance.) In our approach, an

electron’s propagation through spacetime can be visualized as consisting of two steps: the

1 L. Brown, private communication (2001).
2 The Hamiltonian for a free electron is given by H = cαipi + ρ3mc2 (in Dirac’s notation) with anticom-

muting αi and ρ3. The i-th component of the velocity is dxi

dt
= (ih̄)−1[xi, H ] = cαi. Thus dxi

dt
has as

eigenvalues ±c , corresponding to the eigenvalues ±1 of αi. This result is actually implied by the uncer-

tainty principle. Dirac[1] also shows that cαi consists of two parts, a constant part c2piH
−1, connected

with the momentum by the classical relativistic formula, and an oscillatory part whose frequency is high,

being at least mc2/πh̄.
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electron transfers from one spatial lattice site to a neighboring site in one unit of time (thus

travelling with the speed of light) and at a lattice site the electron (its multi-component

wavefunction, to be more precise) is “flipped” by a mass operator3 and interacts with exter-

nal fields.

In the next section, we consider the case of one spatial dimension (and one time dimen-

sion). We treat the case of higher spatial dimensions in Section III. Interactions with external

electromagnetic and gravitational fields are considered in Section IV. Further discussions are

given in the last Section.

II. SO(1, 1): (1 + 1)-DIMENSIONAL CASE

We assume that the electron of mass m moves with the speed of light from one lattice site

to a neighboring (spatially left or right) site with time t always increasing on the “cubic”

spacetime (z,t) lattice. The wavefunction has two components

ψ(z, t) =







ψ+(z, t)

ψ−(z, t)





 , (1)

where ψ+ denotes the component arriving from the event (z −∆t, t−∆t) while ψ− means

arriving from (z +∆t, t−∆t).

Next we assume that, at the lattice site (z, t), the arriving components are partially

turned around by a unitary matrix:







ψ+(z, t)

ψ−(z, t)





 = F







ψ+(z −∆t, t−∆t)

ψ−(z +∆t, t−∆t)





 , (2)

with the “flip operator” F defined by

F ≡ e−iFm∆t. (3)

Here F is a hermitian 2×2 matrix which we call the “flip matrix” and give the most obvious

form

F = σx ≡ σ1 =







0 1

1 0





 , (4)

3 This is in consonance with the mass term being equivalent to a helicity flip.
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with σ1 being the first Pauli matrix. We will approximate Eq. (2) by a differential equation

by first writing






ψ+(z −∆t, t−∆t)

ψ−(z +∆t, t−∆t)





 = T ψ(z, t), (5)

with the “transfer” operator T given by

T = e−∆t( ∂

∂t
+σ3

∂

∂z ), (6)

where σ3 ≡ diag(1,−1) is the third Pauli matrix. Then the difference equation Eq. (2)

takes the form

ψ(z, t) = FT ψ(z, t). (7)

The difference equation becomes a differential equation if we limit ourselves to the zeroth

order (given by the identity ψ(z, t) = ψ(z, t)) and the first order term in ∆t. The first order

equation is

i
∂

∂t
ψ(z, t) = mσ1ψ(z, t)− iσ3

∂

∂z
ψ(z, t), (8)

the Dirac equation4 in (1 + 1) dimensions! There is no spin in the SO(1, 1) case, the little

group of pµ being trivial. In passing we mention that, for the Dirac equation to hold to

all orders in ∆t, due to the fact that σ1 and σ3 do not commute with each other, it is

necessary to replace FT in Eq. (7) by their “symmetrical” product e−∆t(imσ1+
∂

∂t
+σ3

∂

∂z
). We

will not pursue this issue any further and will assume that ∆t is sufficiently small that higher

order terms are negligible, i.e., the Dirac equation is a good approximation to the original

difference equation.

III. HIGHER SPATIAL DIMENSIONS

We start by reminding ourselves that, for the Dirac equation, the velocity operators

1
ih̄
[~x,H ] = c~α not only have eigenvalues ±c, but they also anticommute with each other.5

The latter fact makes the generalization of our approach to more than one spatial dimension

4 In our representation of the Dirac matrices, the positive-energy spinor for the plane-wave solution takes

the form, aside from a normalization constant, u(p) ∼ (−σ1

√

p2 +m2 − iσ2p −m)u(0), with u(0) being

the two-component spinor (1,−1), and the negative-energy spinor v(p) ∼ (σ1

√

p2 +m2 + iσ2p−m)v(0),

with v(0) = (1, 1).
5 Here an analogy with spin can be made. Just as one cannot specify all three components of the spin

simultaneously in quantum mechanics without running into inconsistencies (of predicting a spin
√
3 times
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non-trivial. Before we proceed to the (3 + 1)-dimensional case, let us first discuss the two

spatial dimensional SO(2, 1) case.

As in the preceeding section (for the SO(1, 1) case), we use σ3 to give the dependence

on the z coordinate and σ1 for the flip operator. Of the three Pauli matrices, we have only

σ2 left; so let us call the second spatial coordinate the y coordinate. Now the problem is to

express the dependence of ψ on y in the sense that σ3 gives the dependence on z.

To solve this problem we appeal to rotational invariance and make explicit use of the

spin-1
2
property of ψ. Let R be the rotation over π/2 from the y axis to the z axis. Then

U(R), which represents this rotation, is given by U(R) = 1√
2
(1 − iσ1). Thus, to the σ3

∂
∂z

term in the “transfer” operator T we add

U−1(R)σ3
∂

∂y
U(R) = σ2

∂

∂y
, (9)

and obtain

i
∂

∂t
ψ(y, z, t) =

(

mσ1 − iσ2
∂

∂y
− iσ3

∂

∂z

)

ψ(y, z, t). (10)

Note that the flip operator, which is used in the preceeding section to invert the z-motion,

also inverts the y-motion. In Dirac’s notation[1], we identify σ1 = αm, σ2 = α2, σ3 = α3.

Now we recall the general rule[5] that spinors in 2n dimensions and in 2n+1 dimensions

have 2n components. Thus for the case of three spatial dimensions and one temporal dimen-

sion (SO(3, 1)), we need 4-spinors. And we need, besides αm, α2, α3, an extra α, all four

of which anticommute with one another and have eigenvalues ±1. Following Dirac[1], we

introduce two independent sets of Pauli matrices ~ρ and ~σ. The ρ’s and the σ’s anticommute

among each set, whereas the ρ’s and the σ’s commute. As we want to make αm look like a

flip matrix, we pick

αm = ρ1σ1 =





















0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0





















. (11)

We complete the set (by the same argument we have used above for the SO(2, 1) case) with

α1 = ρ2σ1, α2 = ρ3σ1, α3 = σ31. (12)

bigger in some directions), one cannot specify all three components of the instantaneous velocity simul-

taneously without running into inconsistencies of predicting a tachyonic speed of
√
3 times the speed of

light.
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Here 1 is the 2 × 2 unit matrix. In passing, we mention that it is easy to treat the case of

(4 + 1)-dimensional spacetime, as we can now identify α4 with σ21.

For the case of (3 + 1) dimensions, the equation we obtain is

i
∂

∂t
ψ =

(

αmm− α1i
∂

∂x
− α2i

∂

∂y
− α3i

∂

∂z

)

ψ. (13)

It is of relevance to remark that the last three terms on the right hand side of Eq. (13)

approximate the small finite steps of motion with the speed of light before the event (x, y, z, t)

is reached. The term αmm represents the unitary transformation e−iFmdt which takes place

at that event (see Eqs. (2) and (3)). Thus the electron is not aware of the fact that it has a

mass until it hits a lattice site. If it has no mass, then it is not flipped and it moves at the

constant speed of light. If it is massive and is at “rest”, then it must be that the electron

zigzags around with the speed of light and returns to its original spatial lattice site and

wanders around again and returns again etc.

IV. INTERACTIONS WITH EXTERNAL FIELDS

To put the Dirac equation in a covariant form, we follow the usual procedure of writing

αm = γ0 (with (γ0)2 = 1) and multiplying Eq. (13) by γ0 to yield

(iγµ∂µ −m)ψ = 0, (14)

where (µ running over 0, 1, 2, 3)

γµ ≡ γ0αµ, (15)

with α0 ≡ I, the identity matrix and ∂µ ≡
(

∂
∂t
, ∂
∂x
, ∂
∂y
, ∂
∂z

)

. From the way we have derived

the Dirac equation, we can trace the iγµ∂µ term to the “transfer” of the electron at the

speed of light between the lattice sites while the m term comes from the “flip” unitary

transformation at the lattice sites.

The introduction of an electromagnetic field Aµ is straightforward by using the prescrip-

tion of minimal substitution in Eq. (14)

i∂µ ⇒ i∂µ + eAµ. (16)

Although the eαµAµ term goes together with the αµ∂µ term in the minimal subsitution rule,

it is tempting to keep the ∂µ term identified with the transfer between lattice sites and put
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the eαµAµ term together with the Fm flip term as taking place at the lattice sites. (But

we should keep in mind that, since the Dirac matrices do not commute among themselves,

beyond the first order term, there is a difference between associating the interaction term

with the “transfer” operator T or the “flip” operator F .6)

To incorporate gravitational interactions one needs the tetrad (or vierbein) formalism[6].

One introduces at every event x a set of local inertial coordinates with a tetrad eµa of

axes labelled by the Minkowski index a, b, c running over 0, 1, 2, 3.[7] Then the metric in

any general noninertial coordinate system is given by gµν = eaµηabe
b
ν in terms of the flat

Minkowski metric ηab. Gravitational interactions are introduced via the substitution rule

γa∂a ⇒ γaeνa(∂ν −
1

4
iωbcνσ

bc), (17)

where ωb
aν = (∂νe

µ
a + Γµ

νλe
λ
a)e

b
µ in terms of the affine connection Γµ

νλ and σbc = 1
2
i[γb, γc]. At

every spacetime lattice site labelled by x, we have a tetrad eµa . In our interpretation, the

electron travels with the speed of light between lattice sites; this is represented by γaeνa∂ν .

Then at the lattice site there is a unitary transformation which, in addition to the mass

“flip”, now contains the interaction term γaeνaωbcνσ
bc.

V. DISCUSSIONS

We have presented a novel derivation of the Dirac equation, hoping to shed new light

on the physics of the electron. Motivated by the distinct possibility that the underlying

spacetime is discrete at small scales, we have started with a discrete “cubic” lattice. The

resulting Dirac equation emerges as the lowest nontrivial order of approximation. Thus the

observed Lorentz invariance does not preclude the existence of a discrete spacetime at small

scales.

Is our approach useful? We think so. (1) The very fact that the underlying spacetime is

discrete means that there is automatically an ultraviolet cutoff which may be used to ame-

liorate divergence problems in nonrenormalizable theories like (perhaps) quantum gravity.

(2) Our starting point is a difference equation rather than a differential equation. While dif-

ference equations are more tedious to deal with analytically, they may hold some advantages

in numerical calculations.

6 For the SO(1, 1) case, the Aµ term can be incorporated into the flip operator in Eq. (2).
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We conclude with some speculations and a couple of open questions. In the sce-

nario we have proposed, the electron travels between lattice sites with the speed of

light. Only at the lattice sites does the electron “feel” its mass and perhaps also the

presence of all external fields.7 (Since it is a Yukawa-type interaction which, via the

Higgs mechanism, generates mass for the electron, it seems reasonable to assume that

at least Yukawa-type interactions take place only at the lattice sites where the mass

operator makes its presence felt.) But if gravitational interactions also take place mainly

at the lattice sites, does that mean spacetime vertices somehow play an important role

in concentrating curvature? And if so, how is this description of geometry and topology

related to the Regge calculus[8], for example? These problems deserve further investigations.
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