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Stochastic variational inequalities model a large class of equilibrium problems subject to data
uncertainty. The true solution to such a problem is usually estimated by a solution to its
sample average approximation (SAA) problem. This paper proposed a new method to build
asymptotically exact confidence regions for the true solution that are computable from the
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1. Introduction

Variational inequality problems provide a unified framework for modeling equilib-
rium problems that arise from diverse areas. When the model data are subject to
uncertainty, the problem may be formulated as a stochastic variational inequal-
ity (SVI). Stochastic variational inequalities are also closely related to stochastic
optimization problems.
To define a SVI problem, let (Ω,F , P ) be a probability space, and ξ be a random

vector that is defined on Ω and supported on a closed subset Ξ of Rd. Let O be an
open subset of Rn, and F be a measurable function from O × Ξ to Rn, such that
for each x ∈ O the expectation f0(x) = E∥F (x, ξ)∥ < ∞. Let S be a polyhedral
convex set in Rn. The SVI problem is to find a point x ∈ S ∩ O, called the true
solution, such that

0 ∈ f0(x) +NS(x), (1)

where NS(x) ⊂ Rn denotes the normal cone to S at x:

NS(x) = {v ∈ Rn | ⟨v, s− x⟩ ≤ 0 for each s ∈ S}.

We use ⟨·, ·⟩ to denote the scalar product of two vectors of the same dimension.
In most problems of interest, the function f0 does not have a closed form expres-

sion and it is impossible to evaluate its exact values. A basic approach to solve SVI
problems is the sample average approximation (SAA) method. Let ξ1, · · · , ξN be
independent and identically distributed (i.i.d.) random variables with distribution
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same as that of ξ. Define the sample average function fN : O × Ω → Rn by

fN (x, ω) = N−1
N∑
i=1

F (x, ξi(ω)). (2)

The SAA problem is to find a point x ∈ S ∩O, called the SAA solution, such that

0 ∈ fN (x, ω) +NS(x). (3)

It is well known that the SAA solution will almost surely converge to a true
solution as the sample size N goes to ∞, when certain regularity conditions hold
[2, 3, 9]. The asymptotic distribution of the SAA solution was obtained in [3, 9].
It was shown in [11] that the SAA solutions converge to the set of true solutions
in probability at an exponential rate.
Using the asymptotic distribution of SAA solutions, one can readily obtain an

expression for confidence regions of the true solution. However, this expression
contains a function that depends discontinuously on the true solution. Due to such
discontinuity, the standard procedure of using the SAA solution to replace the
true solution in this expression becomes problematic. To overcome this problem, a
method was proposed and justified in [4] to build asymptotically exact confidence
regions for the true solution, by using a sequence of functions of the SAA solutions
to approximate the above discontinuous function evaluated at the true solution.
The objective of this paper is to propose a new method to build asymptotically

exact confidence regions for the true solution. This new method is more convenient
to implement than the method in [4]. The latter method requires computation of a
weighted sum of a family of functions, while the new method only computes a single
function in this family. Numerical results show that confidence regions generated by
the new method are also more similar to confidence regions that could be generated
in “ideal” situations.
The idea of this new method has some similarity to a method proposed in [1, p.

48], with major differences. To obtain a nice approximation of the aforementioned
discontinuous function evaluated at the true solution, we search within a certain
distance around the SAA solution, to find a point that lies in the lowest dimensional
cell (see Section 2 for the definition of cells), and use the function value evaluated
at this point as the desired approximation. The method in [1] only considers cells of
dimension at least n−1, and uses a prespecified distance around the SAA solution.
Our method considers all cells and uses a distance that depends on the sample
size in a specific manner. The fact that this distance shrinks as the sample size
increases enables us to establish a precise limit theorem to justify the method.
Methods developed in [4] and this paper both require samples to be i.i.d. It is

possible to extend these methods to non i.i.d samples, by imposing conditions to
guarantee certain types of central limit theorems and uniform exponential conver-
gence results to hold.
The paper is organized as follows. Section 2 introduces preliminary results and

assumptions under which the proposed method will work. Section 3 presents the
method and justifies it. Section 4 specializes the method to complementarity prob-
lems and compare numerical results with those in [4].
Throughout this paper, we use Rn, Rn

+ and Rn
++ to represent the n-dimensional

Euclidean space, its nonnegative orthant, and the interior of the nonnegative or-
thant. We use riC to denote the relative interior of a convex set C. For a convex
and closed set C ⊂ Rn and a point z ∈ Rn, ΠC(z) denotes the Euclidean projec-
tion of z onto C, namely the point in C nearest to z in Euclidean norm. We use
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∥ · ∥ to denote the norm of an element in a normed space; unless explicitly stated
otherwise, it can be any norm, as long as the same norm is used in all related
contexts. We use N (µ,Σ) to denote a normal random variable with mean µ and
covariance matrix Σ. Weak convergence of random variables Yn to Y will be de-
noted as Yn ⇒ Y . A function g : Rn → Rm is said to be B-differentiable at a point
x0 ∈ Rn if there is a positively homogeneous function dg(x0) : Rn → Rm, such that

g(x0 + v) = g(x0) + dg(x0)v + o(v).

The above function dg(x0) is the B-derivative of g at x0.

2. Preliminaries and assumptions

This section is a summary of background information, including preliminary results
and the assumptions we make. We refer the reader to [4] for more details.
The variational inequality (1) can be equivalently formulated as an equation.

Let Π−1
S (O) be the set of points z ∈ Rn whose Euclidean projection ΠS(z) onto S

belongs to O, and define a function (f0)S from Π−1
S (O) to Rn as

(f0)S(z) = f0(ΠS(z)) + (z −ΠS(z)). (4)

The function (f0)S defined above is called the normal map induced by f0 and S.
From the above definition, it is not hard to show that a point z satisfies

(f0)S(z) = 0 (5)

if and only if ΠS(z) is a solution to (1). Equation (5) is called the normal map
formulation of (1).
Because S is a polyhedral convex set, the Euclidean projector ΠS is a piecewise

affine function on Rn, that coincides with an affine function on each of a family
of finitely many n-dimensional polyhedral convex sets. This family of sets is called
the normal manifold of S, and each set in this family is called an n-cell (the symbol
n refers to the dimension of these sets). Each k-dimensional face of each n-cell is
called a k-cell in the normal manifold. Each k-cell for k = 0, · · · , n is called a cell.
The relative interiors of all cells in the normal manifold form a partition of Rn. As
an example, if n = 2 and S = R2

+, then the normal manifold of S contains nine
cells, including four 2-cells (the quadrants), four 1-cells (the half-axes) and one
0-cell (the singleton containing only the origin). More information about normal
manifolds can be found in [4–6, 8].
Being piecewise affine, the function ΠS is B-differentiable on Rn. At each z ∈ Rn,

the B-derivative dΠS(z) is a piecewise linear function from Rn to Rn. Moreover,
for all points z in the relative interior of a cell, dΠS(z) is the same function.
When z moves from the relative interior of one cell to that of another, dΠS(z)
changes abruptly. Thus, dΠS(·) is not continuous on boundaries of the cells in the
normal manifold. Let us use S = R2

+ again to illustrate. At any point z ∈ intS,
the B-derivative dΠS(z) is the identity map on R2. At z ∈ {0}×R++, dΠS(z) is a
piecewise linear function with two pieces. The B-derivative at the origin, dΠS(0), is
a piecewise linear function with four pieces. Section 4 contains a detailed discussion
about S = Rn

+, where n is any integer.
The assumptions needed for the method of this paper to work are the same as

those in [4]; we present them below for the sake of completeness. In the rest of this
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paper, we will use X to denote a nonempty compact subset of O. Let C1(X,Rn) be
the Banach space of continuously differentiable mappings f : X → Rn, equipped
with the norm

∥f∥1,X = sup
x∈X

∥f(x)∥+ sup
x∈X

∥df(x)∥. (6)

For a point x ∈ S, we use TS(x) to denote the tangent cone to S at x. Since S is
a polyhedral convex set, the following definition applies:

TS(x) = {v ∈ Rn | there exists t ∈ R++ such that x+ tv ∈ S}.

Assumption 2.1 below will guarantee that the function f0 belongs to C
1(X,Rn) and

that fN converges to f0 almost surely as an element of C1(X,Rn). Assumption 2.2
ensures that (1) has a locally unique solution under sufficiently small perturbation
of f0. The set K defined there is called the critical cone to S associated with z0.
Assumption 2.3 is a standard nondegeneracy condition. Assumption 2.4 implies
that fN converges to f0 in probability at an exponential rate; that is, there exist
positive real numbers β1, µ1,M1 and σ1, such that the following holds for each
ϵ > 0 and each N :

Prob {∥fN − f0∥1,X ≥ ϵ} ≤ β1 exp{−Nµ1}+
M1

ϵn
exp

{
−Nϵ2

σ1

}
. (7)

Assumption 2.1 (a) E∥F (x, ξ)∥2 < ∞ for all x ∈ O.
(b) The map x 7→ F (x, ξ(ω)) is continuously differentiable on O for a.e. ω ∈ Ω,
and E∥dFx(x, ξ)∥2 < ∞ for all x ∈ O.
(c) There exists a square integrable random variable C such that

∥F (x, ξ(ω))− F (x′, ξ(ω))∥+ ∥dF (x, ξ(ω))− dF (x′, ξ(ω))∥ ≤ C(ω)∥x− x′∥,

for all x, x′ ∈ O and a.e. ω ∈ Ω.

Assumption 2.2 Suppose that x0 solves the variational inequality (1) and that
x0 belongs to the interior of X. Let z0 = x0 − f0(x0), L = df0(x0), K =
TS(x0) ∩ {z0 − x0}⊥, and assume that the normal map LK induced by L and
K is a homeomorphism from Rn to Rn.

Assumption 2.3 Let Σ0 denote the covariance matrix of F (x0, ξ). Suppose that the
determinant of Σ0 is strictly positive.

Assumption 2.4 (a) For each t ∈ Rn and x ∈ X, let

Mx(t) = E
[
exp{⟨t, F (x, ξ)− f0(x)⟩}

]
be the moment generating function of the random variable F (x, ξ)−f0(x). Assume

(1) There exists ζ > 0 such that Mx(t) ≤ exp{ζ2∥t∥2/2} for every x ∈ X and
every t ∈ Rn.

(2) There exists a nonnegative random variable κ such that

∥F (x, ξ(ω))− F (x′, ξ(ω))∥ ≤ κ(ω)∥x− x′∥ (8)

for all x, x′ ∈ O and almost every ω ∈ Ω.
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(3) The moment generating function of κ is finite valued in a neighborhood of
zero.

(b) For each T ∈ Rn×n and x ∈ X, let

Mx(T ) = E
[
exp{⟨T, dxF (x, ξ)− df0(x)⟩}

]
be the moment generating function of the random variable dxF (x, ξ) − df0(x).
Assume

(1) There exists ς > 0 such that Mx(T ) ≤ exp{ς2∥T∥2/2} for every x ∈ X and
every T ∈ Rn×n.

(2) There exists a nonnegative random variable ν such that

∥dxF (x, ξ(ω))− dxF (x′, ξ(ω))∥ ≤ ν(ω)∥x− x′∥

for all x, x′ ∈ O and almost every ω ∈ Ω.
(3) The moment generating function of ν is finite valued in a neighborhood of

zero.

Assumption 2.4 above is a special case of a more general condition, which implies

Prob {∥fN − f0∥1,X ≥ ϵ} ≤ C(ϵ) exp {−Nβ(ϵ)}

for some functions C(ϵ) and β(ϵ), see [10–12]. To prove the main result of this paper
we need C(ϵ) and β(ϵ) to be in explicit forms, so we require Assumption 2.4 to hold.
Assumption 2.4 is satisfied, for example, if F (x, ξ) is a bounded random variable
uniformly in x, or if F (x, ξ) is a symmetric random variable with its norm being
stochastically dominated by the absolute value of some normal random variable
[4].
The following theorem is adapted from [4, Theorem 5.1].

Theorem 2.5 : Suppose that Assumptions 2.1 and 2.2 hold. Let Y0 be a normal
random vector in Rn with zero mean and covariance matrix Σ0. Then there exist
neighborhoods X0 of x0 and Z of z0 such that the following hold. For almost every
ω ∈ Ω, there exists an integer Nω, such that for each N ≥ Nω, the equation

(fN )S(z) = 0 (9)

has a unique solution zN in Z, and the variational inequality (3) has a unique
solution in X0 given by xN = ΠS(zN ). Moreover, limN→∞ zN = z0 almost surely,

√
N(zN − z0) ⇒ (LK)−1(Y0), (10)

and

√
NLK(zN − z0) ⇒ Y0. (11)

Suppose in addition that Assumption 2.4 holds. Then there exist positive real
numbers ϵ0, β0, µ0, M0 and σ0, such that the following holds for each ϵ ∈ (0, ϵ0]
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and each N :

Prob {∥xN − x0∥ < ϵ} ≥ Prob {∥zN − z0∥ < ϵ}

≥1− β0 exp{−Nµ0} −
M0

ϵn
exp

{
−Nϵ2

σ0

}
.

(12)

3. A new method to build confidence regions

Using the asymptotic distribution of zN as given in (11), we can obtain an expres-
sion for confidence regions of z0. To this end, suppose Assumption 2.3 holds in
addition to Assumptions 2.1 and 2.2. Then (11) implies

√
NΣ

−1/2
0 LK(zN − z0) ⇒ N (0, In). (13)

Consequently, when N is large, the 2-norm of the left hand side of (13) approxi-
mately follows the χ2 distribution with n degrees of freedom, and the set

{z ∈ Rn | N
[
LK(zN − z)

]T
Σ−1
0

[
LK(zN − z)

]
≤ χ2

n(α)} (14)

defines an approximate (1−α)100% confidence region for z0, where χ
2
n(α) is defined

to be the number that satisfies P (U > χ2
n(α)) = α for a χ2 random variable U

with n degrees of freedom.
By their definitions, Σ0 and LK depend on the true solutions x0 and z0, which

are unknown. We will use the sample covariance matrix of {F (xN , ξi)}Ni=1, denoted
by ΣN in the rest of this paper, to approximate Σ0. As for LK , the situation is
more complicated; we will devote the rest of this section to construction of an
appropriate approximation of it.
Under Assumption 2.1, f0 is continuously differentiable on O (see [4, Theorem

4.1]). As noted in Section 2, ΠS is B-differentiable on Rn. By the chain rule of
B-differentiability, the normal map (f0)S is B-differentiable on Π−1

S (O), with

d(f0)S(z)(h) = df0(ΠS(z))(dΠS(z)(h)) + h− dΠS(z)(h) (15)

for each z ∈ Π−1
S (O) and each h ∈ Rn. The normal map LK that appears in (14) is

known to be exactly d(f0)S(z0) [7]. However, as noted in Section 2, dΠS(z) is not
continuous with respect to z on boundaries of the cells in the normal manifold of
S, so d(f0)S(z) is not continuous with respect to z on the boundaries either. It is
therefore problematic to use d(f0)S(zN ) to approximate d(f0)S(z0).
To build a nice approximation of d(f0)S(z0), we start by building a nice approx-

imation of dΠS(z0). Denote the cells in the normal manifold of S by C1, · · · , Cl,
where l is the number of cells. Recall from Section 2 that the relative interiors
of these cells form a partition of Rn. More specifically, for each z ∈ Rn, exactly
one cell contains z in its relative interior, and this cell has the smallest dimension
among all cells containing z [4, Propostion 5.1]. For each cell Ci, define a function
di : Rn → R by

di(z) = d(z, Ci) = min
x∈Ci

∥z − x∥, (16)

and a function Ψi : Rn → Rn by

Ψi(·) = dΠS(z)(·) for any z ∈ riCi. (17)
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Note that the norm that appears in (16) can be any norm for vectors in Rn, and
that the point z in (17) can be any point in the relative interior of Ci.
Next, define a function g from the set of integers to R, such that

(i) g(N) > 0 for each N ∈ N.
(ii) limN→∞ g(N) = ∞.
(iii) limN→∞

N
g(N)2 = ∞.

(iv) limN→∞ g(N)n exp{−θ0
N

(g(N))2 } = 0 for θ0 = min{ 1
4σ0

, 1
4σ1

, 1
4σ0(E(C))2 }, where

σ1, σ0 are as in (7) and (12) respectively and C is as in Assumption 2.1.

(v) limN→∞
Nn/2

g(N)n exp
{
−θg(N)2

}
= 0 for each positive real number θ.

Note that g(N) = Np for any p ∈ (0, 1/2) satisfies (i) – (v) above. Positive lin-
ear combinations of such functions also satisfy all the above conditions. Another

example is g(N) = N1/2
√
m logN

, where m > n
2θ0

.

Now, for each integerN and any point z ∈ Rn, choose an index i0 by letting Ci0 be
a cell that has the smallest dimension among all cells Ci such that di(z) ≤ 1/g(N),
and define a function ΛN (z) : Rn → Rn by

ΛN (z)(h) = Ψi0(h) for each h ∈ Rn. (18)

The theorem below shows that ΛN (zN ) provides a nice approximation for
dΠS(z0).

Theorem 3.1 : Suppose that Assumptions 2.1, 2.2 and 2.4 hold. For each N ∈ N,
let ΛN (zN ) be as defined in (18) with zN in place of z. Then

lim
N→∞

Prob [ΛN (zN )(h) = dΠS(z0)(h) for all h ∈ Rn] = 1. (19)

Proof : Let Ci(1), · · · , Ci(q) be the cells in the normal manifold of S that contain
z0, and let Ci(q) be the one that contains z0 in its relative interior. By the remark
right above (16), the dimension of Ci(q) is strictly smaller than Ci(1), · · · , Ci(q−1).
The definition of Ψi in (17) implies that

d(ΠS)(z0)(h) = Ψi(q)(h) for each h ∈ Rn. (20)

By Theorem 2.5, there exist positive constants ϵ0, β0, µ0, M0 and σ0, such that
(12) holds for each ϵ ∈ (0, ϵ0] and each N . Let γ0 be the minimum of di(z0)
among all cells Ci not containing z0; we have γ0 > 0. Define γ = min(γ0, 2ϵ0). The
definition of g ensures that limN→∞ g(N) = ∞, so there exists an integer N0, such
that g(N) ≥ max(2/γ, 1) for each N ≥ N0.
An application of (12) to ϵ = γ/2 gives

Prob
{
∥zN − z0∥ <

γ

2

}
≥ 1− β0 exp{−Nµ0} −

2nM0

γn
exp

{
−Nγ2

4σ0

}

for each N . For each cell Ci not containing z0, we have

di(zN ) ≥ di(z0)− ∥zN − z0∥ ≥ γ − ∥zN − z0∥.
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Consequently, for each N ≥ N0,

Prob

{
di(zN ) > 1/g(N) for all Ci not containing z0

}
≥Prob {∥zN − z0∥ < γ/2}

≥1− β0 exp{−Nµ0} −
2nM0

γn
exp

{
−Nγ2

4σ0

}
.

(21)

Next, consider a cell that contains z0, that is, one of the cells Ci(1), · · · , Ci(q).
The following inequality holds for each N and each j = 1, · · · , q,

0 ≤ di(j)(zN ) = d(zN , Ci(j)) ≤ ∥zN − z0∥,

which implies, for each N ≥ N0,

Prob
{
di(j)(zN ) < 1/(2g(N)) for all j = 1, · · · , q

}
≥Prob {∥zN − z0∥ < 1/(2g(N))}

≥1− β0 exp{−Nµ0} − 2nM0g(N)n exp

{
− N

4σ0g(N)2

}
,

(22)

where the last inequality follows from (12).
Now, according to (21) and (22), for each N ≥ N0, the probability that the

family of cells Ci that satisfy di(zN ) ≤ 1/g(N) is exactly {Ci(1), · · · , Ci(q)} is at
least

1−2β0 exp{−Nµ0}−
2nM0

γn
exp

{
−Nγ2

4σ0

}
−2nM0g(N)n exp

{
− N

4σ0g(N)2

}
. (23)

The expression above converges to 1, according to item (iv) in the definition of
g(N). If we let Ci0 be a cell that has the smallest dimension among all cells Ci

that satisfy di(zN ) ≤ 1/g(N), then the probability for the index i0 to be exactly
the same as i(q) is greater than or equal to the quantity in (23). This completes
the proof in view of (20) and the definition of ΨN (zN ). �

According to Theorem 3.1, the probability for ΛN (zN ) to be exactly dΠS(z0)
converges to 1 as N goes to infinity. Thus, with large N , ΛN (zN ) is a good ap-
proximation for dΠS(z0). In comparison to [4], ΛN (zN ) defined here is easier to
compute and has simpler structure, since it coincides with a single function in the
family {Ψi}.
Next, we define for each N ∈ N a function ΦN : Π−1

S (O)× Rn × Ω → Rn by

ΦN (z, h, ω) = dfN (ΠS(z))(ΛN (z)(h)) + h− ΛN (z)(h). (24)

For convenience we will write ΦN (zN (ω), h, ω) as ΦN (zN )(h) in the rest of this
paper. The corollaries below show that ΦN (zN ) provides a good approximation for

d(f0)S(z0), and that the random vector
√
NΣ

−1/2
N ΦN (zN )(zN − z0) approximately

follows the standard normal distribution.

Corollary 3.2: Suppose that Assumptions 2.1, 2.2 and 2.4 hold. For each N ∈ N,
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let ΦN be as defined in (24). Then, there exists a positive real number ϕ, such that

lim
N→∞

Prob

[
sup
h∈Rn

∥ΦN (zN )(h)− d(f0)S(z0)(h)∥
∥h∥

<
ϕ

g(N)

]
= 1. (25)

Proof : The proof follows the same arguments in the proof of [4, Corollaries 5.2].
�

Corollary 3.3: Suppose that Assumptions 2.1, 2.2 and 2.4 hold. Then

√
NΦN (zN )(zN − z0) ⇒ N (0,Σ0). (26)

If Assumption 2.3 holds additionally, then

√
NΣ

−1/2
N ΦN (zN )(zN − z0) ⇒ N (0, In). (27)

Proof : The proof follows the same arguments in the proofs of [4, Corollary 5.2
and Theorem 3.1]. �

As a result of Corollary 3.3, when N is large, the 2-norm of the left hand side of
(27) approximately follows the χ2 distribution with n degrees of freedom, and the
set

{z ∈ Rn | N
[
ΦN (zN )(zN − z)

]T
Σ−1
N

[
ΦN (zN )(zN − z)

]
≤ χ2

n(α)} (28)

defines an approximate (1− α)100% confidence region for z0. The expression (28)
is different from (14), in that it does not depend on z0 and is therefore computable.

4. Implementation in complementarity problems

An important subclass of variational inequalities is the family of complementarity
problems, in which the set S takes the form of Rp

+×Rn−p. This section implements
the confidence region technique to stochastic complementarity problems of the form

0 ∈ f0(x) +NRp
+×Rn−p(x). (29)

The normal manifold of Rp
+×Rn−p consists of a total of 3p cells. Associated with

each partition (I0, I+, I−) of the index set {1, · · · , p} is a cell

C(I0, I+, I−) = {x ∈ Rn | xi = 0, i ∈ I0; xi ≥ 0, i ∈ I+; xi ≤ 0, i ∈ I−}. (30)

The dimension of C(I0, I+, I−) is n − |I0|, where |I0| is the cardinality of I0. For
a point z that belongs to the relative interior of C(I0, I+, I−), the B-derivative of
the Euclidean projector ΠRp

+×Rn−p is given by

(dΠRp
+×Rn−p(z)(h))i =


hi if i ∈ I0 and hi ≥ 0,
0 if i ∈ I0 and hi ≤ 0,
hi if i ∈ I+,
0 if i ∈ I−,
hi if i ∈ {p+ 1, · · · , n}

(31)
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for each h ∈ Rn; see [4, Lemma 6.1]. Proposition 4.1 below provides a formula for
computing ΛN .

Proposition 4.1: Let N ∈ N, z ∈ Rn and let the cell C(I∗0 , I
∗
+, I

∗
−) be a cell of

the smallest dimension among all cells C(I0, I+, I−) such that d(z, C(I0, I+, I−)) ≤
1/g(N). Then, the function ΛN defined in (18) with S = Rp

+×Rn−p is a piecewise
linear function from Rn to Rn. On each set of the form Y ×Rn−p, with Y being an
orthant of Rp, ΛN (z)(·) is represented by the following n× n diagonal matrix:

ΛN (z, Y ) =



λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · λp 0 · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1


,

where for each i = 1, · · · , p,

λi =

{
1 if i ∈ I∗+ or (i ∈ I∗0 and the ith components of vectors in Y are nonnegative)
0 if i ∈ I∗− or (i ∈ I∗0 and the ith components of vectors in Y are nonpositive).

Proof : Let z∗ be a point that belongs to the relative interior of the cell
C(I∗0 , I

∗
+, I

∗
−). The way ΛN is defined in (18) gives ΛN (z)(·) = dΠRp

+×Rn−p(z∗)(·).
Applying the formula (31) with I∗0 , I

∗
+, I

∗
− in place of I0, I+, I−, we find that

(ΛN (z)(h))i =


hi if i ∈ I∗0 and hi ≥ 0,
0 if i ∈ I∗0 and hi ≤ 0,
hi if i ∈ I∗+,
0 if i ∈ I∗−,
hi if i ∈ {p+ 1, · · · , n}

for each h ∈ Rn. Putting this in matrix representation proves this proposition. �

In view of Proposition 4.1, under Assumption 2.1 the function ΦN (z)(·) defined
in (24) is almost surely a piecewise linear function from Rn to Rn. On each set of
the form Y ×Rn−p with Y being an orthant of Rp, it is represented by the following
matrix:

dfN (ΠS(z))ΛN (z, Y ) + In − ΛN (z, Y ),

where ΛN (z, Y ) is as defined in Proposition 4.1.
We implement this method to the numerical example in [4] to compare the per-

formance of both methods. The example is a stochastic linear complementarity
problem

0 ∈ E[F (x, ξ)] +NR2
+
(x), (32)

in which n = 2, d = 6, and F : R2 × R6 → R2 is defined by

F (x, ξ) =

[
ξ1 ξ2
ξ3 ξ4

] [
x1
x2

]
+

[
ξ5
ξ6

]
. (33)
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The random vector ξ follows the uniform distribution over the box [0, 2]× [0, 1]×
[0, 2] × [0, 4] × [−1, 1] × [−1, 1]. For this example, the true solution x0 for (32) is
computable and is given by x0 = 0. As a result, z0 = x0 −E[F (x0, ξ)] = 0.
With sample size N = 10, we obtain the sample average function

f10(x) = M10x+ b10 =

[
0.9292 0.5400
0.7536 2.1111

]
x+

[
−0.1319
−0.2906

]
,

which leads to x10 = (0.0782, 0.1097) and z10 = x10 − f10(x10) = (0.0782, 0.1097).
We choose g(N) = N1/3 to find 1/g(10) = 0.4642. The distance from z10 to any
of the nine cells in the normal manifold of R2 is not larger than 0.4642. The cell
with the smallest dimension among all these cells is the set {0}, which corresponds
to I∗0 = {1, 2} and I∗+ = I∗− = ∅. Thus, Λ10(z10)(·) is exactly dΠR2

+
(0), which is a

piecewise linear map represented by matrices[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
and

[
0 0
0 0

]

in orthants R2
+, R+ × R−, R− × R+ and R2

− respectively. Accordingly, Φ10(z10)(·)
is a piecewise linear map represented by matrices[

0.9292 0.5400
0.7536 2.1111

]
,

[
0.9292 0
0.7536 1

]
,

[
1 0.5400
0 2.1111

]
,

[
1 0
0 1

]
in corresponding orthants. In addition, we obtain the following sample covariance
matrix of F (x10, ξ):

Σ10 =

[
0.4169 0.0137
0.0137 0.1865

]
.

Sets in (28) now have explicit expressions. Figure 1(a) shows boundaries of these
sets generated using the contour function of Matlab. These regions are centered
around z10, marked by ‘×’ in the graph. From the innermost to the outermost, the
curves correspond to boundaries of confidence regions for z0 at levels 0.1, · · · , 0.9
respectively. The true solution z0, known to be 0 for this example, is marked by
‘+’ and lies just beyond the 90% confidence region. Figure 1(b) shows confidence
regions for z0 obtained from a different SAA problem with sample size N = 30,
x30 = 0 and z30 = (−0.0483,−0.0114). The true solution z0 lies within the 20%
region.
Since the true values of z0 and Σ0 are known for this example, the ideal confidence

regions for z0 given in (14) are computable. Figure 2 displays these regions centered
around z10 and z30. To compare sizes of regions in Figure 1 with those in Figure 2,
we find the areas enclosed by the outermost curves in Figures 1(a) and 2(a) to be
0.3454 and 0.3988 respectively, with the difference being about 13% of 0.3988. The
corresponding areas in 1(b) and 2(b) are 0.1305 and 0.1329 respectively, which are
different by about 2% of 0.1329.
Note that the shapes and sizes of confidence regions generated by the proposed

method are more similar to the ideal confidence regions, as comparing to the con-
fidence regions generated in [4]. The reason is that the function ΛN (zN ) here is
with high probability exactly equal to dΠS(z0), whereas ΛN (zN ) defined in [4] is
in general different from dΠS(z0).



October 15, 2012 10:3 Optimization 120817confregNew

12 REFERENCES

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) N = 10, z10 ≈ (0.08, 0.11)
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(b) N = 30, z30 ≈ (−0.05,−0.01)

Figure 1. Confidence regions for z0 constructed by the proposed method

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) N = 10, z10 ≈ (0.08, 0.11)
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(b) N = 30, z30 ≈ (−0.05,−0.01)

Figure 2. Confidence regions for z0 constructed from true f0, z0 and Σ0
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