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Abstract

We demonstrate that dispersion-managed solitons are less likely to expe-
rience critical broadening under the influence of random dispersion fluctua-
tions than are solitons of the integrable nonlinear Schrödinger equation, and
that this robustness increases with map strength from the constant-dispersion
(integrable) limit to the large-map-strength limit. To achieve this, we exploit
a separation of scales in dispersion-managed soliton dynamics to implement
an importance-sampled Monte Carlo approach that determines the probabil-
ity of rare broadening events. This approach reconstructs the tails (i.e., the
regions of practical importance) of probability distribution functions with
an efficiency that is several orders of magnitude greater than conventional
Monte Carlo simulations. We further show that the variational approach
with an appropriately scaled ansatz is surprisingly good at capturing the ef-
fect of random dispersion on pulse broadening; where it fails, it can still be
used to guide very efficient simulation of the original equation.

1 Introduction

The interaction between chromatic dispersion and nonlinearity in optical fiber has
been the subject of considerable investigation since the communications industry
first began its migration from electronics to optics. The derivation of the non-
linear Schrödinger (NLS) equation [6] and the subsequent demonstration [10] of
NLS solitons as effective bit carriers in optical fiber helped fuel this research, and
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focused particular attention on ways in which the two influences could be manip-
ulated to allow higher carrying capacities in optical fiber.

Problems such as Gordon-Haus jitter and four-wave mixing have rendered the
conventional NLS soliton increasingly less useful, especially with the introduction
of more dense transmission formats using wave-division-multiplexing (WDM)
and time-division-multiplexing (TDM). This has led researchers to experiment
with the physical values of dispersion [7] and nonlinearity [15] in the fiber, the
most notable success being the development of dispersion management. In its
simplest form, this is a piecewise-constant, periodic variation in the dispersion
value of the fiber, with high local dispersion and low average dispersion. In TDM
systems, dispersion management causes neighboring pulses to oscillate greatly in
width, mitigating their interaction through the Kerr nonlinearity. In WDM sys-
tems, dispersion management also causes pulses in different frequency channels
to travel back and forth through each other during this oscillation, again mitigating
four-wave mixing and cross-phase modulation. Moreover, the interaction between
dispersion management and nonlinearity has been shown numerically to lead to
another form of stable pulse [12], referred to as a dispersion-managed (DM) soli-
ton. Considerable study has been made of these DM solitons to determine their
robustness to various types of disturbance.

One important example of these is found in the deviations of a fiber’s disper-
sion value from its nominal or average value. In particular, random fluctuations
of measurable magnitude have been shown to be present in optical fiber [4,9] and
these fluctuations can lead to pulse disintegration if strong enough to prevent the
soliton from resting in its nonlinear potential [1]. By analyzing the low-order mo-
ments obtained from a Gaussian ansatz in the limit of large map strength, a recent
study of DM solitons has suggested that stronger map strengths stabilize the pulse
width against dispersion fluctuations [5]. It is of practical interest to confirm this
robustness in the original partial differential equation (PDE) and to see how it ex-
tends into the moderate and weak map strength regimes, to the limiting case of an
NLS soliton.

Furthermore, in the absence of forward-error correction, deployable system
designs require that bit errors occur very infrequently, given that typical tolerances
are as low as one bit error for every 109 or 1012 transmitted bits. This suggests
that the most important feature of a parameter’s probability distribution function
(pdf) is not its center or, equivalently, its first few moments, but rather its tails.
Given the considerable computational effort required to resolve these tails using
conventional numerical methods, there is a pressing need for alternative, low-
dimensional system representations and for faster and more intelligent numerical
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approaches. Emphasis should be placed on the latter in particular, since low-
dimensional ordinary differential equation (ODE) reductions are often rendered
invalid by the large-deviation events that they would otherwise be used to capture.

In this article, we demonstrate numerically how the robustness of solitons
to random fluctuations in dispersion increases with increasing dispersion map
strength, over the full range from constant-dispersion nonlinear Schrödinger (NLS)
solitons to DM solitons with strong dispersion maps. We thereby corroborate and
extend the results of Ref. [5], essentially connecting them to the Kepler prob-
lem limit studied in Ref. [2]. The key to our approach is our exploitation of a
separation of scales in the dynamics of DM solitons; by averaging over the fast
dynamics, we obtain slow equations which can be used in a systematic way to
obtain the optimal biasing of random dispersion for use in instantiations of the
stochastic PDE.

It is important to note that, unlike in previous studies, we confirm robust-
ness in the tails of the distribution, a region inaccessible to conventional numeri-
cal methods. Furthermore, we compare the results obtained through simulations
of the (DM) NLS equation with those obtained through simulations of a low-
dimensional reduction to determine their correspondence. Finally, we demon-
strate that a straightforward application of importance sampling can be used to
reduce the computational expense of generating pdfs for the pulse width.

1.1 Basic equations and measure

Picosecond pulses propagating in a dispersion-managed fiber evolve according to
the dispersion-managed NLS equation, given in dimensionless form by

iuz +
1
2

d(z)utt + |u|2u = 0. (1)

Here, we take z to be propagation distance in dispersion map spans, t to be time
relative to a typical pulse width t0, d to be dispersion relative to a characteristic
dispersion strength set by t0 and the map span, and u to be the electromagnetic field
amplitude rescaled to set the nonlinear coefficient to unity. We have chosen this
rescaling to allow us to concentrate on the varying component of the dispersion,
d(z), while preserving the effect of nonlinearity for the comparison cases.

The dispersion map d(z) consists of a mean component d̄ and a two-step map
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dp(z) comprised of the following:

dp(z) =











+d̂ 0 ≤ z < 1/4

−d̂ 1/4 ≤ z < 3/4

+d̂ 3/4 ≤ z < 1

, (2)

where dp(z+1) = dp(z) for all z ≥ 0. To implement an idealized model of random
dispersion, we add a Gaussian-distributed white noise element to give d(z) = d̄ +
dp(z)+dr(z), with

〈dr(z)dr(z
′)〉 = Dδ(z− z′). (3)

The strength D of this random process is a measurable physical parameter.
Note also that these fluctuations are “frozen” into the fiber and do not change
with time. This reflects the fact that while correlation lengths in a fiber’s disper-
sion value are determined by the length scales of deformations in the cylindrical
geometry, for instance, correlation times are determined by environmental condi-
tions such as daily changes in temperature. Such changes occur over much slower
time scales than the propagation time for information through an optical link, so
that the statistical properties of the fluctuations are essentially static.

In broad terms, a pulse can fail to be detected and lead to a bit error as a
result of three possible mechanisms: a change in energy, a change in position, or
a change in width. We study the third of these by considering an obvious measure
of mean-square pulse width,

τ ≡ 1
P

�
t2|u|2dt, (4)

that is insensitive to changes in the pulse energy, P = � |u|2dt. To measure the
effect of random dispersion on τ, we take the difference between ∆τ and its refer-
ence value in the absence of random dispersion:

∆τ =
1
P

�
t2|u|2dt − 1

P0

�
t2|u0|2dt. (5)

Here, u(z, t) and u0(z, t) are the perturbed and unperturbed pulse envelopes, re-
spectively.
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1.2 Representation of NLS and DM solitons

If d(z) = d̄ is constant, then Eqn. 1 is integrable and supports a four-parameter
family of solitons. We are interested in only one of these parameters, so we write

u0(z, t) = η sech(t/Tsech)exp(iη2z/2+ iφ), (6)

where η =
√

d̄/Tsech. Equation 4 then gives

τ =
π2T 2

sech

12
=

π2T 2
FWHM

48[ln(1+
√

2)]2
, (7)

where TFWHM is the full width at half-maximum. It should be noted that the
moment ∆τ is insensitive to parameters contained in the phase of Eqn. 6.

When d̂ > 0, Eqn. 1 is no longer integrable; nevertheless, solutions that are
periodic to within a rotating phase have been shown numerically to exist. When
d̂ � d̄, these solutions assume a Gaussian core,

u0(z, t)≈ a(z)exp [−t2/2T 2
G(z)+ iφ(z, t)], (8)

where the z-dependence of TG reflects the breathing. In this case,

τ ≈ 1
2

T 2
G =

T 2
FWHM

8ln2
. (9)

Between these two limits, DM solitons have no closed functional form; their
shapes, and therefore the transformation from TFWHM to τ, can only be obtained
numerically [13]. As the dispersion map strength increases from zero, the periodic
solution continuously deforms between the two limits discussed above. Figure 1
illustrates this transition from hyperbolic secant to Gaussian with increasing map
strength at fixed TFWHM.

1.3 Low-dimensional reduction

In order to obtain a low-dimensional reduction of the NLS and DM soliton dy-
namics, we insert the following ansatz into the Lagrangian density of Eqn. 1:

u(z, t) = a(z) f

(

t
T (z)

)

exp
(

iλ(z)+ i
M(z)
T(z)

t2
)

, (10)
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Figure 1: NLS/DM solitons with average dispersion fixed at d̄ = 0.3, at four differ-
ent map strengths. Solid line is d̂ = 0 (NLS), dashed line is d̂ = 2, dashed-dotted
line is d̂ = 6, dotted line is d̂ = 10. The widths are fixed at TFWHM = 2.06. Optical
power is plotted against time in normal scale (a) and logarithmic scale (b).

where T (z) ≡ TFWHM(z) and where f (x) is defined to have unit full-width at half-
maximum and unit L2 norm. This gives

T ′(z) = 2d(z)M(z) and M′(z) =
Γd(z)
2T 3(z)

− EΩ
4T 2(z)

, (11)

with a2(z)T (z) = � |u|2dt ≡ E. The evolution of the phase λ(z) is not relevant for
our purposes. The constants are based on integrals of f (x):

Γ =
� [ f ′(x)]2 dx

� x2 f 2(x)dx
and Ω =

� f 4(x)dx
� x2 f 2(x)dx

. (12)

In the limit of zero dispersion management (i.e., the classical NLS equation), these
constants evaluate to

Γ =
64
π2

(

ln(
√

2+1)
)4

and Ω =
32
π2

(

ln(
√

2+1)
)3

, (13)

while in the opposite limit of large dispersion management, they evaluate to

Γ = 16(ln2)2 and Ω = 8

√

2
π
(ln2)3/2. (14)

For DM solitons with low or moderate dispersion management, these constants
must be evaluated numerically using the periodic pulse form.
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2 Importance sampling

Importance sampling is a technique wherein the probability distribution functions
used to generate the random Monte Carlo samples are biased to make errors occur
more frequently than would be the case otherwise [17, 18]. Before we delve into
the implementation of importance sampling for random dispersion fluctuations,
let us briefly present the basic ideas in a general setting.

Let X denote a collection of random variables (RVs) identifying a particular
system realization. A measurable quantity y(X) can be associated with each of
these realizations. (In our case, X is a matrix containing the values of a noise
process discretized in t,z at all gridpoints along a fiber, and y is a final pulse
parameter such as amplitude, timing, or, in this case, width.) Suppose that we are
interested in calculating the probability P that y(X) falls in some prescribed range
at the end of the fiber line. This probability can be represented as the expectation
value of an indicator function I(y(X)), such that I(y) = 1 if the random variable y
falls in the prescribed range and I(y) = 0 otherwise. That is, the probability P is
represented by the multi-dimensional integral,

P =

�
I(y(x))pX(x)dx = E[I(y(X))] , (15)

where pX(x) is the joint probability density function (pdf) of the RV matrix X ,
E[ · ] denotes the expectation value with respect to pX(X), and the integral is over
all allowed noise configurations. In the vast majority of interesting cases, a direct
calculation of the integral in Eq. (15) is impossible. One then often resorts to
Monte Carlo simulations to produce an estimator P̂ for P, replacing the integral in
Eq. (15) with

P̂mc =
1
M

M

∑
m=1

I(y(Xm)) , (16)

where M is the total number of Monte Carlo samples, and each Xm is drawn from
pX(x). Equation (16) simply expresses the relative number of samples falling in
the range of interest. If one is interested in low-probability events (where P � 1),
however, an impractically large number of samples is often necessary in order to
register even a single event, and an even larger number is required in order to
obtain an accurate estimate. In these cases, importance sampling can be used to
improve the efficiency of the Monte Carlo approach. We first rewrite the proba-
bility P in Eq. (15) as

P =
�

I(y(X))r(x)p∗(x)dx = E∗[I(y(X))r(X)] , (17)
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where E∗[ · ] denotes the expectation value with respect to the biased distribution
p∗(x), and where r(x) = pX(x)/p∗(x) is called the likelihood ratio [17]. As before,
we then estimate the corresponding integral via Monte Carlo simulations; that is,
we write an importance-sampled Monte Carlo estimate for P as

P̂is =
1
M

M

∑
m=1

I(y(X∗
m))r(X∗

m) , (18)

where now the samples X ∗
m are drawn according to p∗(x). By design, the estimator

P̂is is unbiased; i.e., E∗[P̂is] = P. Naturally, if p∗(x) ≡ pX(x) (that is, for unbiased
Monte Carlo simulations), we have r(x) = 1, and Eq. (18) agrees with Eq. (16).
The use of a biasing pdf allows the desired regions of sample space to be visited
much more frequently. At the same time, the likelihood ratio automatically adjusts
each contribution so that all of the different realizations contribute as appropriate
to the final estimate.

The crucial step when applying importance sampling is to determine a biasing
distribution p∗(x) that reduces the variance of the estimator P̂is. Use of the ideal
biasing distribution requires knowledge of the very distribution we are seeking to
calculate; other biasing distributions vary in effectiveness depending on how well
they approximate this distribution. A particularly simple and intuitive option is to
increase the overall noise variance, in an attempt to increase the probability of gen-
erating errors. It is well-known, however, that this biasing method (often referred
to as variance scaling) is only effective in low-dimensional systems [17]. In gen-
eral, in order for importance sampling to be effective, p∗(x) should concentrate
the Monte Carlo samples near the regions that are most likely to generate rare
events of interest, which in our case means determining the noise instantiations
most likely to produce large width variations at the fiber output. We will use this
knowledge to bias the mean of each noise distribution, giving p∗(x) = p(x− b),
where b = b(z). The problem is thereby reduced to finding the optimal mean
biasing b.

If one seeks to reconstruct a broad region of the pdf for the quantity of inter-
est, no single choice of biasing distribution can be expected to capture with high
efficiency all the regions of sample space that give rise to the events of interest.
In this case, several different biasing distributions p∗q(x) can be used, and their re-
sults combined using a method known as multiple importance sampling [14, 19].
With this technique, a weight wq(x) is associated with each biasing distribution.
An importance-sampled estimator for P is then written as

P̂mis =
1
Q

Q

∑
q=1

1
Mq

Mq

∑
m=1

wq(X
∗
mq)I(y(X

∗
mq))rq(X

∗
mq) , (19a)
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where Q is the total number of biasing distributions, Mq is the number of samples
drawn from p∗q(x), X∗

mq is the mth such sample and rq(x) = pX(x)/p∗q(x). Several
strategies are possible for selecting the weights; the estimator P̂ will be unbiased
as long as ∑Q

q=1 wq(x) = 1 for all x. A particularly simple and effective choice is
the balance heuristic [19]:

wq(x) =
Mq p∗q(x)

∑Q
q′=1 Mq′ p∗q′(x)

. (19b)

Note that Mq p∗q(x) corresponds to the expected number of hits from the qth distri-
bution. Thus, the sample weight dictated by the balance heuristic is given by the
likelihood of having realized the sample using the qth distribution relative to the
likelihood of having realized the sample at all.

2.1 Biasing based on fast dynamics

Determination of the optimal mean biasing begins with the understanding that
DM solitons manifest themselves in finite-dimensional form as periodic solutions
of Eqns. 11. In this context, an optimal biasing of the noise process dr(z) means
a deterministic function db(z) that represents the most likely noise instantiation
leading to a given width deviation T (zf)−T (0) = Tf−Tp at the end of a fiber line,
denoted by z = zf, where (Tp,0)T is the initial condition (in a symmetric map) that
gives a periodic solution of Eqns. 11.

Our assumption of simple Gaussian-distributed noise means that the probabil-
ity of observing a noise instantiation given by db(z) is inversely proportional to the
squared L2 norm of db(z). In other words, the most likely such noise to produce a
prescribed deviation Tf −Tp is that which minimizes

||db(z)||2 ≡
� zf

0
db(z)

2 dz (20)

under the constraint that d(z) = d̄ +dp(z)+db(z) satisfies what is now a boundary
value problem (BVP) given by Eqns. 11 with initial condition (Tp,0)T and termi-
nal condition T (zf) = Tf. This is a nonlinear optimal control problem which, given
a sufficiently small target deviation Tf − Tp from the periodic solution, could be
approximated well by linearizing about the periodic solution. Our interest, how-
ever, is in determining the optimal biasing for large (i.e., O(1)) deviations. We
therefore resort to an iterative approach using successive linearizations. The jth

iteration begins with a linearization about the solution (Tj−1,Mj−1)
T obtained by
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numerically solving Eqns. 11 with d(z) = d̄ + dp(z)+ dj−1(z), where dj−1 is the
linear optimization result from the previous iteration:

(

T
M

)

=

(

Tj−1(z)
Mj−1(z)

)

+

(

tj(z)
mj(z)

)

, (21)

The dispersion is then written as d(z) = d̄ + dp(z)+ dj−1(z)+ ∆dj, where ∆dj =
dj(z)− dj−1(z). The nonlinear control problem is thus approximated by the opti-
mization (minimization) of ||dj(z)||2 under the constraint that the following linear
BVP has a solution:

L

(

tj
mj

)

= ~fj−1∆dj ≡
(

2Mj−1

Γ/2T 3
j−1

)

∆dj, (22)

where
(

tj
mj

)∣

∣

∣

∣

z=0
=

(

0
0

)

and
(

tj
mj

)∣

∣

∣

∣

z=zf

=

(

Tf−Tj−1(zf)
m̃

)

, (23)

with m̃ unspecified and with linear operator

L =

(

d/dz −2
(

d̄ +dp(z)+dj−1(z)
)

3Γ
2T 4

j−1(z)

(

d̄ +dp(z)+dj−1(z)
)

− EΩ
2T 3

0 (z)
d/dz

)

. (24)

The solution to this Lagrange multiplier problem is

dj(z) =
~vT (z;zf)~fj−1(z)

||~vT (s;zf)~fj−1(s)||2

(

Tf −Tj−1(zf)+

� zf

0
~vT (s;zf)~fj−1(s)dj−1(s)ds

)

,

(25)

where ~v(z;ζ) is the Green’s function for the nonhomogeneous linear problem
above, satisfying

L†~v(z;ζ) =

(

1
0

)

δ(z−ζ) (26)

with boundary condition~v(zf;ζ) = (0,0)T .
This procedure, which can be regarded as a Newton-Raphson iteration, is ini-

tialized with the periodic solution for (T0(z),M0(z))
T and d0(z) ≡ 0, and termi-

nates at j = k with db(z) ≈ dk(z) when |Tk(zf)− Tf| is suitably small. We must
naturally be concerned about the convergence properties of this procedure, and
about the risk of finding a local rather than global optimizer. The scope of this
paper is to discuss the application of importance sampling to the case at hand,
however, so we will not address these issues here. We simply comment that the
method converged to a reasonable solution in all cases contained in this article.
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2.2 Biasing based on slow dynamics

Since one of our goals is to deduce simple biasing rules for the application of
importance sampling to critical broadening events in solitons, we note that we
can avoid the above numerical optimization routine by exploiting a disparity in
the time scales associated with the linear breathing of DM solitons and with their
nonlinearity-induced phase rotations. Eqns. 11 can be thus be treated perturba-
tively using a multiple scales approach to reflect the fact that the dominant pulse
dynamics lives on a torus characterized by the two time scales. The fast time scale
produces a coupled nonlinear system that captures the linear evolution of Eqn. 1:

T ′ = 2dp(z)M and (27)

M′ =
Γdp(z)

2T 3 , (28)

with integration constants T and M representing the values of T and M, respec-
tively, at the beginning of each symmetric dispersion map segment. These equa-
tions integrate to produce closed, periodic trajectories. The equations for the slow
nonlinear envelope are

T ′ = 2D(T ,M )M +K(T ,M )T and (29)

M ′ =
D(T ,M )Γ

2T 3 −K(T ,M )T , (30)

with

D(T ,M ) = d̄ +dr(z)+
EΩF(T ,M )

d̂Γ3/2

(

1
T 2 +

4M 2

Γ

)−3/2

, (31)

K(T ,M ) =
2EΩ
d̂Γ

(

1
T 2 +

4M 2

Γ

)−1/2




1
√

4+ s2
−
− 1
√

4+ s2
+



 , (32)

and

F(T ,M ) = sinh−1(s+/2)− sinh−1(s−/2) (33)

+(s−− s+)





1
√

4+ s2
−

+
1

√

4+ s2
+



 , (34)
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where

s± =
4√
Γ

T M ±
√

Γd̂
2

(

1
T 2 +

4M 2

Γ

)

.

We refer the reader to Ref. [16] for a more complete derivation of these equations.
The term dr(z) in Eqn. 31 merits a brief explanation. Formally, this term is

the original random term dr(z) averaged over each unit period of the dispersion
map. This produces a piecewise-constant, Gaussian-distributed random variable
with zero mean and variance D, i.e., a different random number drawn for each
dispersion map to represent the average random dispersion contribution for that
map. In practice, however, the O(1) variation of this random term is faster than
the slow dynamics described by Eqns. 29 and 30, and it is therefore reasonable
to approximate this process by one that is identical to the original process, dr(z).
The fact that the random term enters the slow dynamics through a simple integral

� z dr(s)ds, rather than occurring with a nontrivial kernel arising from the fast dy-
namics, will be significant in determining the correct biasing to effect importance
sampling.

Having determined the slow evolution of the soliton width T at each return
point of the dispersion map, we can now proceed with the optimal biasing calcu-
lation. Again, this amounts to a nonlinear control problem for Eqns. 29 and 30
(although the ODEs are autonomous in this case, unlike Eqns. 11). Rather than
repeating the numerical procedure used in Sec. 2.1, we seek a simpler biasing rule
by linearizing about the fixed point of the slow equations. We will see that even
the first order approximation often does a very good job in obtaining the proper
biasing toward large width events.

We first note that, in the absence of random dispersion, a fixed point of Eqns. 29
and 30 occurs at M = M̄ = 0 and T = T̄ , where T̄ satisfies

T̄ 3F(T̄ ,0) = −Γ3/2d̄d̂
EΩ

. (35)

An analysis of this equation shows that at least one such point must exist. This
fixed point corresponds to a periodic orbit of Eqns. 11, and therefore to a (DM)
soliton. In order to obtain the most probable routes to large deviations of T , and
therefore of T , we must find the most likely instantiations of dr that provide these
large deviations. By linearizing, we again reduce the nonlinear system to a simpler
optimization problem, with the goal of minimizing ||db(z)||2 under the constraint
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that the linear nonhomogeneous BVP given by

Ł
(

T − T̄
M

)

=

(

0
Γdb(z)/2T̄ 3

)

(36)

has a solution with boundary conditions
(

T − T̄
M

)∣

∣

∣

∣

z=0
=

(

0
0

)

and
(

T − T̄
M

)∣

∣

∣

∣

z=zf

=

(

(∆T )targ
M f

)

, (37)

where M f is left unspecified and

Łψ ≡
(

d/dz −g(T̄ )

h(T̄ ) d/dz

)

(38)

with

g(T̄ ) =
8EΩT̄

Γ
(

4+ Γd̂2

4T̄ 4

)3/2
and (39)

h(T̄ ) =
3Γd̄

2T̄ 4
− EΩ

T̄ 3

(

4− Γd̂2

4T̄ 4

)

(

4+ Γd̂2

4T̄ 4

)3/2
. (40)

The result of this Lagrange multiplier problem is

db(z) =
4(∆T )targT̄ 3

Γ

√

h
gzf

[

1− sin(2
√

ghzf)

2
√

ghzf

]−1

sin
[

√

gh(zf− z)
]

.

As a final word about this calculation, it should be noted that the functional
form of db(z) obtained in this section is based solely on the slow dynamics of
Eqns. 29 and 30; formally, this db has no dependence on the fast dynamics of
linear Eqns. 27 and 28. That this is the case is simply a reflection of the fact
that the random process obtained on the slow scale in Eqn. 31 is obtained as a
straightforward integral of the random process on the fast scale. Generically, one
must do a similar optimization as the one performed above to obtain the correct
variation of db on the fast scale as well as on the slow scale (and, indeed, on
every scale as far as the perturbation theory is carried). In this case, however, the
optimization is trivial and results in a constant optimal biasing over the fast scale.
To see an example where a stochastic parametric driving term must be biased
on both scales, one could consider a parametrically driven Duffing oscillator, for
example.
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3 Results and discussion

In order to gauge the effectiveness of the different biasing techniques used in the
application of importance sampling, to determine the accuracy with which our
ODE reduction captures the broadening of solitons due to random dispersion, and
to establish the impact of increasing map strength on robustness to random dis-
persion fluctuations, we have numerically integrated Eqn. 1 using an NLS soliton
and three different DM solitons. To ensure a fair comparison among the differ-
ent solitons as bit carriers in a fixed-rate communication line, the pulses have all
been chosen to have a full width at half-maximum of TFWHM = 2.06. Their rela-
tive peak values in Fig. 1 clearly show the well-studied “power enhancement” that
arises from increased map strength. The pulses are propagated to a distance of
z = 10, corresponding to ten maps in the dispersion-managed cases. The strength
of the random dispersion component is set at D = 0.01, and the continuous ran-
dom process is approximated by a delta-correlated discrete process with standard
deviation σ2 = D/∆z, where ∆z is the (fixed) discrete numerical evolution step in
a pseudo-spectral 4th-order Runge-Kutta method.

3.1 Comparison of biasing methods

The mean-biasing profiles obtained using the Newton-Raphson iteration applied
to the ODEs given by Eqns. 11 and those obtained using the linearized average
evolution given by Eqns. 30 agree quite well, as demonstrated by Fig. 2. These
profiles represent the prescribed mean-biasing for four different target values of
∆τ, one of which is ∆τ = 0, i.e., unbiased Monte Carlo simulations. Predictably,
the biasing technique based on average evolution does not capture the fast-scale
oscillations seen in the biasing yielded by the full optimization; however, it clearly
reproduces the slow behavior which is presumably most important in obtaining
the large excursions of ∆τ necessary for successful implementation of importance
sampling.

These biasing profiles were used in importance-sampled Monte Carlo simu-
lations on the ODE model given by Eqns. 11, and recombined using the balance
heuristic described above to form the pdfs depicted in Fig. 3. It is evident from this
comparison that the biasing profiles produce pdfs that agree exceedingly well with
each other, down to probabilities well below 10−12. Furthermore, the accuracy of
these pdfs is confirmed by comparison with unbiased Monte Carlo simulations of
Eqns. 11, indicated by the squares in Fig. 3. It is important to note that, despite
a reduction of two orders of magnitude in the number of runs, the importance-
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Figure 2: Biasing profiles generated using a Newton-Raphson iteration applied to
the fast dynamics (dashed lines) and using the linearized average equations (solid
lines), with four different targets of ∆τ, in the cases (a) d̂ = 0 (NLS), (b) d̂ = 2,
(c) d̂ = 6, and (d) d̂ = 10.

sampled simulations reach several orders of magnitude farther into the tails of the
pdfs.

3.2 Validity of ODE reductions

These ODE (Eqns. 11) results are compared with full PDE (Eqn. 1) simulations
in Fig. 4. As in the case of the ODE simulations, the PDE simulation results
using either of the ODE-based biasing techniques described above compare very
well to each other, and to the unbiased PDE simulations. It is interesting to note,
however, that while the PDE and ODE simulations agree well in either the zero-
map limit (i.e., the case of integrable NLS) or in the large-map-strength limit
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Figure 3: Mean-square width pdfs for NLS soliton, soliton with d̂ = 2, soliton
with d̂ = 6 , and soliton with d̂ = 10 (from broadest to narrowest). Squares repre-
sent 107 unbiased Monte Carlo simulations, dashed lines represent 4×105 biased
simulations based on fast dynamics, and solid lines represent 4×105 biased sim-
ulations based on slow dynamics.

(d̂ = 10), this agreement is particularly bad in the case of small but finite map
strength (d̂ = 2). In this case, the pdfs obtained using the PDE simulations diverge
noticeably from the pdf obtained from ODE simulations. Moreover, even though
the ODE reduction is not adequate in capturing the effect of random dispersion
directly, it can successfully be used in guiding simulations of the PDE. Finally,
almost all of the curves show relatively poor agreement between the PDE and
ODEs when comparing the region over which ∆τ < 0. While it is not immediately
clear why this should be the case, these ”narrowing” events are not the events in
which we are interested.

3.3 Effect of increasing dispersion map strength

Finally, Fig. 5 demonstrates that increasing dispersion map strength strongly mit-
igates the effect of random dispersion on soliton broadening. This increased ro-
bustness continues from the NLS limit of no dispersion management to the strong-
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dispersion-map limit. In addition, the importance-sampled PDE simulations af-
ford the observation that this robustness is not only in the first few moments of
the distributions, but persists well into the tails, where the critical events that de-
termine bit error ratios are to be found.

The increased robustness to dispersion fluctuations is a fundamental charac-
teristic of the nonlinear oscillator, given in Eqns. 11, that dominates the behavior
of NLS and dispersion-managed solitons, as noted in Ref. 5. It is not simply a re-
flection of the well-known power enhancement experienced by solitons when the
dispersion map strength is increased. Whereas power enhancement buffers a soli-
ton against external noise, in this case the forcing is parametric, and is therefore
unaffected by an increase in soliton ”mass”. To better illustrate this point, Fig. 5
includes the χ2 distribution that results from a Gaussian pulse with TFWHM = 2.06
launched in Eqn. 1 with the nonlinear term removed. The pdf has the same form
regardless of the amplitude (i.e., mass) of the Gaussian pulse.

4 Conclusion

We have analyzed the effect of random dispersion fluctuations on the mean-square
width of solitons of the dispersion-managed nonlinear Schrödinger equation, from
the integrable limit to the limit of large dispersion map strength. We have demon-
strated that the increased robustness shown in Ref. 5 to hold for low-order mo-
ments of the width distribution upon increasing map strength persists well down
into the tails of the pdf, which is the most relevant region for the determination of
bit error ratios.

In order to study the tails of the pdf, we have applied importance sampling in
the generation of biased Monte Carlo simulations, where we have used a reliable
ODE reduction (Eqns. 11) of Eqn. 1 to obtain the correct mean-biasing. We have
shown that, while the ODEs themselves can often be used to capture the effects of
random dispersion, they are sometimes inadequate. In those cases, they can still
be used to guide simulations of the PDE so as to increase the efficiency of pdf
regeneration by several orders of magnitude.

Furthermore, we have used a separation of scales in the low-dimensional dy-
namics of DM solitons to obtain a simple, closed-form mean-biasing formula
which appears to be equally as effective as the true mean-biasing obtained nu-
merically from the ODEs.
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Figure 4: Comparison of pdfs obtained from simulations of Eqn. 1 (PDE) and
Eqns. 11 (ODEs). Dashed (solid) lines represent 4×103 importance-sampled PDE
simulations using mean-biasing based on fast (average) ODE dynamics, circles
represent 4× 105 importance-sampled ODE simulations, and squares represent
1× 103 unbiased PDE simulations, in the following cases: (a) d̂ = 0 (NLS), (b)
d̂ = 2, (c) d̂ = 6, and (d) d̂ = 10.
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Figure 5: Effect of increasing map strength on soliton broadening caused by ran-
dom dispersion fluctuations in Eqn. 1. Solid line is d̂ = 0 (NLS), dashed line is
d̂ = 2, dashed-dotted line is d̂ = 6, dotted line is d̂ = 10. The solid straight line
shows exact width broadening in the linear Schrödinger equation for a Gaussian
pulse with TFWHM = 2.06 and arbitrary amplitude.
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