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AbstractWe consider a basic problem in the design of reliable networks, namely,that of �nding a minimum-weight 2-connected subgraph spanning agiven set K of vertices in a planar graph. We show a relationshipbetween this problem and that of �nding shortest trails and cyclesenclosing K, and derive a polynomial-time algorithm in the case whenthe vertices of K all lie on the same face.Key words: network survivability; Steiner tree; planar graph; two-connected1Supported in part by NSF grant No. CCR-9200572



Network designers are becoming more aware of the necessity for buiding survivabil-ity into the design of a transportation or communications network [9]. This involvesconstructing the network so as to withstand a certain degree of failure in its verticesor edges and still continue to provide the required degree of performance. We considerin this note a basic survivability criterion for a network: namely, that its terminal ver-tices can continue to communicate after the failure of any one edge (any one vertex) inthe network. With this in mind we de�ne the 2-Edge-Connected (2-Vertex-Connected)Steiner Tree Problem | which will be referred to as 2EST (2VST) | to have as input(G;w;K), where G = (V;E) is an undirected graph, w = (we : e 2 E) is a set ofnonnegative edge weights, and K is a set of terminal vertices in G. The objective isto �nd the minimumweight subgraph B of G which spans K and is 2-edge-connected(2-vertex-connected). 2-connected Steiner tree problems have enjoyed considerableattention [2, 5, 7, 8, 9, 13]. Both 2EST and 2VST are known to be NP-complete, evenwhen G is planar, K = V , and all weights are 1, since they can be used to determinethe existence of a Hamiltonian circuit in a planar graph [4].The standard Steiner tree problem has the same input as 2EST and 2VST, butthe solution subgraph is required to be merely a spanning (1-connected) subgraph forK (the vertex and edge versions in this case are the same). This problem has beenstudied quite extensively; see [6] for a full account. It is also NP-complete when G isplanar, but does have a polynomial-time solution when in G is K-planar | that is Ghas some planar embedding with K lying on the same face [3, 10].For the remainder of the discussion we consider instances where G is plane, thatis, planar with a speci�ed embedding in the plane. An enclosing walk for K in G isa closed path | with possibly repeated edges and vertices | whose enclosed regioncontains K. An enclosing trail (cycle) is an enclosing walk with no repeated edges(vertices). Shortest enclosing walks and cycles have been studied in [11], and shortest1



enclosing trails and cycles have been studied in [1]. In the latter paper a polynomial-time algorithm is found for the shortest enclosing trail and shortest enclosing cycleproblems. In this paper, we show the relationship between 2EST (2VST) and �ndingshortest enclosing trails (cycles) for K in G. Monma, Munson, and Pulleyblank in[8] note that in the case where G is K-planar the solution to 2VST is a cycle passingthrough all vertices of K, and they wonder whether this fact can be used to �ndan e�cient algorithm for 2VST in this case. We give an a�rmative answer to theirquestion. The main result of this note is the following:Lemma Let � be a shortest enclosing trail (cycle) for K in plane graph G. If � passesthrough all vertices of K, then it is in fact an optimal solution for 2EST (2VST). Inparticular, if K lies entirely on the exterior face of G then the shortest enclosing trail(cycle) for K in G is the optimal solution to 2EST (2VST).Proof For the �rst part of the theorem, let B be an optimal solution to 2EST(2VST) for instance (G;w;K). Then the boundary of B can be traversed clockwisevia a noncrossing walk W , by starting at any boundary edge and iteratively choosingthe next adjacent edge so that only the exterior of B lies immediately to the left ofW . By the construction of W it follows that if W has a repeated edge (vertex) x,then removal of x will disconnect B into vertex-nonempty components, contradictingthe connectivity of B. Thus W is a trail (cycle), and further, the weight of B is atleast as large as the weight of W . But since � passes through all of the vertices of Kand has no repeated edges (vertices), then � is feasible to 2EST (2VST), and since� is the shortest enclosing trail (cycle), then its weight is no greater than that of B.Thus � is in fact optimal to 2EST (2VST).For the second part of the theorem, note that if K lies on the exterior boundaryof G then any shortest enclosing trail (cycle) � for K must pass through all of thevertices of K, and so from the above discussion � will be the optimal solution to 2EST2



(2VST).Corollary 2EST and 2VST can be solved in O(jV j3 log jV j) time on instances whereG is K-planar.Proof Let F be the face containing all of the vertices of K. Reembed G so that Fis the exterior face. Now use the O(jV j3 log jV j) algorithm in [1] to �nd the shortestenclosing trail (cycle) for K with respect to this embedding. By the lemma this willbe the optimal solution to 2EST (2VST).We note that even if G is not K-planar, the lemma in this paper gives an e�cientway of constructing a possible solution to 2EST (2VST). Simply �nd a shortest en-closing trail (cycle) for K in G, and check whether it in fact passes through all of thevertices of K. If so, then it is a solution to 2EST (2VST).Additional RemarksIt would be useful to include negative edge weights when considering instances of2EST or 2VST, since it may be pro�table to include connections between other ver-tices when constructing the network. The importance of the nonnegativity assumptionon e�cient solutions to 2EST or 2VST depends upon how one wants these additionalconnections to be made. As it stands, the solution requires all pairs of spanned ver-tices to be 2-connected, not just those in K. If edge weights are nonnegative thenthe optimal solution can also be assumed to be minimal, so that any solution that2-connects K will in fact 2-connect all of its spanned vertices. The addition of negativeedge weights to either problem, however, renders the problem NP-complete even onK-planar graphs, again being reducible from the planar Hamiltonian circuit problem(brie
y, by replacing each vertex by a cycle of negatively weighted edges, and settingK = ;). 3



A variant of the problem would require that only the pairs of vertices of K be2-connected, and that any additional edges are of value solely with respect to the pairof vertices they connect. In particular, as long as K is 2-connected any additionalnegatively-weighted edges can be added without violating the feasibility of the solu-tion. This version of the problem can be reduced to the 2EST or 2VST problem withnonnegative weights: simply replace all of the negative weights by zeroes, �nd theoptimal solution to 2EST or 2VST, and then add back any negatively weighted edgesnot already in the solution. The resulting set of edges is then optimal to the modi�edproblem. The results in this paper again apply to the instance with the modi�edweights, and in particular this problem can also be solved in O(jV j3 log jV j) time onK-planar graphs.One �nal potential application we need to address in this context is to the problemof �nding Steiner hulls for 2EST and 2VST problems. A Steiner hull for an instance(G;w;K) of 2EST or 2VST is a subgraph H of G that is known to contain a solutionto 2EST or 2VST; that is, any solution for instance (H;w;K) will also be a solutionfor instance (G;w;K). The motivation here is that using H instead of G considerablyreduces the size of the graph in which the Steiner tree is found, perhaps even to thepoint whereH isK-planar. It turns out that the shortest enclosing walk forK enclosesa Steiner hull for the standard Steiner tree problem [10], and also for certain higheredge connectivity problems | including 2EST | in the case where an edge is allowedto appear multiple times (with corresponding multiple cost) in the optimal solution[12]. A analogous compelling supposition in view of the results of these papers and thetreatment here would be that a shortest enclosing trail (cycle) � for K will enclose aSteiner hull for 2EST (2VST). This, unfortunately, is not the case, as is demonstratedin the instance given in the �gure below. The terminal set is K = ff; gg. The uniqueshortest enclosing walk for K | which also happens to be a trail and cycle | is4



� = b� d� e� c� h� b. The unique optimal solution for both 2EST and 2VST forthis instance, however, is the cycle b� a� c� g� e� d� f � b, which is not enclosedby �. It does not appear, moreover, that the right embedding for G will alleviatethis problem in general. We leave to future research methods for constructing \good"Steiner hulls for 2EST and 2VST along these lines.
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