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Flight delays have been a growing issue and they have reached an all-time high in recent years, with the

airlines’ on-time performance at its worst level in 2007 since 1995. The goal of this paper is to build stochastic

models of airline networks and utilize publicly available data to answer the following policy questions: Which

are the bottleneck airports in the US air-travel infrastructure? How would increasing airport capacity at

these airports alleviate delay propagation? What are the appropriate metrics for measuring the robustness

of airline schedules? How could these schedules be made more robust? Which flight in an aircraft rotation

is a bottleneck flight? The contribution of this paper is two-fold. First, we develop stochastic models, using

empirical data, to analyze the propagation of delays through air-transportation networks. Second, our anal-

ysis enables us to make policy recommendations regarding managing bottleneck resources in the air-travel

infrastructure.

1. Introduction

Flight delays have been a growing issue and they have reached an all-time high in recent years. In

2007, the airlines’ on-time performance was at its worst level since 1995 when the U.S. Department

of Transportation (DOT) first started to collect detailed on-time performance data1. According to

the DOT, a flight is considered delayed if it arrives at the destination gate 15 minutes or more

after its scheduled arrival time. The statistics show that approximately 24% of a total of 7,455,458

commercial flight operations in the US in 2007 were delayed (based on the DOT definition of a

delayed flight).

1 Airlines have reported on-time performance to DOT since 1987. Monthly reports are released in the Air Travel
Consumer Report.
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Flight delays have a significant impact on the US economy. A recent report by the Joint Economic

Committee of the US Congress, chaired by Senator Charles Schumer (Schumer and Maloney 2008),

has estimated that the total cost to the US economy due to flight delays was as much as $41

billion in 2007. This includes an estimated $19 billion in operating costs to the airlines, as well

as $12 billion in passenger delay costs. The report also estimated that flight delays resulted in

consumption of 740 million additional gallons of jet fuel, costing an additional $1.6 billion in fuel

costs, and releasing an additional 7.1 million metric tons of climate-disrupting carbon dioxide in

the atmosphere. In another study, Ball et al. (2010) have estimated the total cost of all US air

transportation delays in 2007 at $31.2 billion, including $16.2 billion in passenger delay costs and

a $2.2 billion cost from loss of welfare incurred by passengers who avoided air travel as a result of

delays. The goal of this paper is to propose solutions for improving the reliability of the air-travel

infrastructure through Operations Research based models.

Typically, block-time, or travel-time of a flight, is defined as the elapsed time between pushback

from departure gate to arrival at the destination gate. Flight delays are typically attributed to

two factors: (i) the randomness in the intrinsic travel time for a scheduled flight (which does not

include delays caused due to any other flight in the airline’s network), and (ii) the propagation of

this randomness through the air-travel network and infrastructure. We call the delay caused due

to a spill-over from the previous flight of the aircraft as total propagated delay (see §3 for precise

definitions). We model both of these factors that cause travel delays. The randomness in travel time

is affected by independent and collaborative decisions made by multiple agencies within the air-

transportation network such as airlines, airports, and regulatory agencies like the Federal Aviation

Administration (FAA). For example, airport capacity, which is driven by several factors such as

number of runways, weather disruptions, etc., has a significant impact on the total travel time.

Airline scheduling and resource utilization decisions impact congestion at airports, which in turn

affect the total travel time. Since most airline flight networks are tightly coupled, and resources

such as airports are shared across networks, any delay caused within the system (either due to

a single flight delay or a ground-stop at an airport) propagates across the entire transportation

network and impacts the performance of the air-transportation infrastructure as a whole. While

delay propagation models have been studied in the past literature, it is important to note that

most of these models are deterministic in the sense that a given delay on a specific flight (called the

root flight) is propagated through the network by assuming that there are no delays on subsequent

flights in the network (Kondo 2008, AhmadBeygi et al. 2008, 2010). In other words, these models
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replace the block-time random variable by the scheduled block-time for subsequent flights in the

network. The key contribution of our modeling approach, however, lies in defining and constructing

a stochastic model of delay propagation, which convolves a stochastic root delay with stochastic

travel times of subsequent flights in an aircraft rotation to compute the propagated delay in the

airline network.

The goal of our research is to answer the following policy questions by building stochastic models

and utilizing publicly available data. Which are the bottleneck airports in the US air-travel infras-

tructure (i.e., airports that cause most delay propagation)? How would increasing airport capacity

at these airports alleviate delay propagation? What are the appropriate metrics for measuring the

robustness of airline schedules? How could these schedules be made more robust? Which flight in

an aircraft rotation is a bottleneck flight (and, hence, deserves managerial attention)?

To answer these questions, we collected publicly available data from several data sources includ-

ing the FAA, the Bureau of Transportation Statistics (BTS), and aircraft manufacturer web sites.

Our primary data source is the on-time performance data set published by the BTS. We collected

data on approximately 21 million domestic flights flown by major airlines over a three year period

(2005-2007). We first build a stochastic model of intrinsic (i.e., non-propagated) travel time by

analyzing factors that affect this travel-time such as route, airport, airline, congestion, etc. This

intrinsic travel time distribution is then combined with a stochastic model of delay propagation

to obtain the network impact of a delayed flight. We show that the deterministic approach, used

in the prior literature, overestimates the root propagated delay and the total propagated delay in

an airline network. These stochastic models are then utilized to define several metrics of airline

network robustness.

Our analysis reveals that all airlines have negative block-time buffers (i.e., scheduled block-

times are not enough to cover actual block-times) built in their schedule, potentially driven by

the 15 minutes buffer used by the DOT in reporting on-time performance. We evaluate airlines

based on the magnitude of delay propagation in their networks, and recommend that airlines

should judiciously allocate schedule block-time and ground-time buffers by analyzing the stochastic

propagation of delays. We also construct a metric to identify “bottleneck” flights in airline networks.

Airlines should focus their managerial attention on such bottleneck flights to improve the robustness

of their schedules. Our airport analysis reveals that the top five airports in the US with the most

network impact are Atlanta, Chicago O’Hare, Dallas Fort Worth, Phoenix, and Los Angeles (LAX).

Our stochastic model is then applied to study the impact of alleviating congestion at these airports.
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Using our stochastic models, we build the marginal network delay impact curve, as a function of

the reduction in congestion (increase in capacity at congested airports). Our analysis reveals that

a 15% increase in capacity at these airports will result in an average reduction in network delays

by approximately 10%. In addition, we show that the highest network delay reduction is obtained

within the first 5% capacity increase.

Our paper is organized as follows. In §2, we briefly review the literature on airline flight delays

and schedule robustness. §3 explains the data used in the study and the stochastic models devel-

oped. Different measures for robustness and service reliabilities based on our stochastic models are

introduced in §4. In §5, we develop policy recommendations to improve the reliability of the air-

transportation infrastructure. §6 concludes the paper with a brief summary of findings and policy

implications.

2. Literature Review

This paper draws on three streams of research on airline flight delays and schedule robustness: (i)

research identifying factors that affect block-times for better block-time estimation, (ii) modeling

flight delay propagation, and (iii) and developing performance metrics that consider flight schedule

robustness.

Factors that have an impact on block-times have been a subject of much discussion recently in

both academia and popular press. In a Wall Street Journal article, McCartney (2007, August 13)

explains airlines’ decision of using smaller airplanes as one of the reasons of increased congestion

and delays at airports. The same author reports that scheduled block-times are higher compared

to 10 years ago although planes can fly faster and navigate better with more advanced technology

(McCartney 2007, May 29), (McCartney 2010, February 4). This block-time inflation (i.e., schedule

padding) is explained by increased variability in the air-travel infrastructure, airlines’ efforts to

improve their on-time rankings, and slower flying speeds of smaller regional jets preferred by

airlines. Recently, Ball et al. (2010) show that in 2007, the total schedule buffer of 9,526 million

minutes cost the airlines $3.7 billion and passengers $6 billion. They define the schedule buffer

as the extra time added into the schedule by airlines to reduce the impact of potential delays. In

this paper, we provide tools to airline schedulers to intelligently allocate block-times to flights and

reduce the overall cost of schedule padding without disrupting the passenger service. Academic

research regarding block-time forecasting mostly focuses on individual segments of block-times.

Shumsky (1995) uses a linear regression model to predict taxi-out times, while Mueller and Chatterji

(2002) compare different distributions for departure, arrival, and en route delays. Hebert and Dietz
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(1997), Willemain et al. (2003), and Tu et al. (2008) are among others who study the estimation

of different segments of block-times. In contrast, we construct a probabilistic model of total block-

time instead of breaking it up into segments such as departure delay, taxi-times, air-time, etc., and

propose several explanatory variables to predict the total block-time. Unlike most of the studies

mentioned above, which focus on specific airports and shorter time periods, our model uses data on

all the domestic flights by all major airlines flown in the US during 2005 through 2007 consisting

of more than 21 million observations.

This study contributes to the robust airline scheduling literature (for a review, see Ball et al.

(2007) and Barnhart and Cohn (2004)) by developing a stochastic model of delay propagation and

using publicly available industry-wide data. Researchers have conducted several studies regarding

modeling flight delay propagation. AhmadBeygi et al. (2008) and Lapp et al. (2008) analyze how a

flight delay propagates through the network using a tree structure (i.e., propagation tree). Ahmad-

Beygi et al. (2010) propose a method that reduces delay propagation by redistributing existing

slack in the flight schedule. Lan et al. (2006) and Lan (2003) formulate a delay propagation problem

as a mixed integer programming problem. The computational results based on their model reveal a

considerable reduction in total propagated delays and in the number of disrupted passengers. The

distinction between our study and these studies is in the modeling of block-times of downstream

flight legs. We use a stochastic model of block-times of all flight legs, whereas these papers assume

deterministic block-times given a random delay for the root flight. In this paper, we show that

the deterministic approach used in the prior literature overestimates the impact of expected total

propagated delay in the airline network, and, hence, our stochastic model is a better suited for

capturing network robustness.

Studies that analyze flight schedule robustness metrics mainly develop new performance measures

and compare them to the existing performance measures. Caulkins et al. (1993) argue that the

DOT on-time performance metric is deficient in the sense that it does not take the differences

across airports into account. In a recent paper, Forbes et al. (2012) find evidence that some airlines

misreport some of their flights’ arrival times so that the flight is counted as on-time in the DOT

on-time ranking. Besides, this misreporting (or gaming) can be aggravated by employee bonus

programs which reward employees based on the airline’s position on the DOT ranking. In this paper,

we develop new on-time performance metrics that will not provide airlines an undue advantage

by utilizing the gaming behavior indicated in Forbes et al. (2012). Bratu and Barnhart (2005)

propose two alternative flight-based delay metrics that can be more useful in reflecting passenger



Arıkan, Deshpande, and Sohoni: Building Reliable Air-Travel Infrastructure
6

disruptions: the percentage of flights that are delayed more than 45 minutes and the percentage

of canceled flights. In another study, Wu (2006) generates a schedule reliability index for flights

which reflects both inherent and propagated delays. Using a flight schedule information of an

anonymous airline, it is shown that the proposed sequential optimization algorithm, which re-

allocates ground times between rotation legs through a simulation model, improves the overall

schedule reliability. Carey (1999) also develops new measures of reliability from analytical models

which can be applicable to various forms of scheduled transportation. Our approach in this area of

research is to distinguish the intrinsic delay attributable to the flight itself and the total propagated

delay from previous flights, which is then used to define different measures of schedule robustness.

3. Data and Model

The data for our analysis comes from several sources such as the data published by the BTS, the

FAA, and aircraft manufacturers. For our analysis we consider Airline On-time Performance data

for all domestic flights within the US. The BTS is the primary source for these data. Additional

data regarding aircraft types and other details were obtained from Aircraft Registry Database,

Deregistered Aircraft file, and Aircraft Reference file for aircraft specific variables. These databases

are maintained by the FAA. Besides, we used FAA Operations & Performance Data2, the DOT’s

Domestic Airline Fares Consumer Report Table 63, T-100 Domestic market data , T-100 Segment

(All Carriers) data published by the BTS4.

Although we only analyzed domestic flights (and their schedules), we also considered incoming

and outgoing international flights while calculating the congestion variables5. Inclusion of this

data is critically important especially for airports with significant international flight activity. Our

data set has approximately 21 million observations over a three year period from 2005-2007 (one

observation for each commercial scheduled flight flown by a major carrier in the US).

For every flight in our data set, we compute the scheduled block-time (Qi) as the difference

between the scheduled arrival time of the flight and its scheduled departure time. The actual

block-time (DL
i ) is computed as the difference between the actual arrival time of the flight and

its scheduled departure time. The actual block-time is comprised of several components including

2 This data contains detailed information regarding departure (arrival) capacities and actual number of departures
(arrivals) of ASPM airports (77 US airports that have significant activity).

3 Contains information regarding the average fares for all city-pair markets that average at least 10 passengers each
day.

4 T-100 data sets contain information regarding seats available and the number of enplaned passengers for each origin
destination pair during any month.

5 The details of the calculation of congestion variables are available in online appendix E.
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taxi-out time, en route time, and taxi-in time. Each of these components is subject to different

causes of delay and the total block-time delay is the sum of all individual component delays. It is

noteworthy that our definition of actual block-time differs from the traditional definition mentioned

earlier in §1 because the latter ignores the impact of flight delays propagated through the system

and departure delays associated with the concerned flight.

An airline network is coupled by the resources that are shared across the network. In particular,

any given aircraft for an airline typically flies multiple flights over the course of a day, and hence a

delay on one flight can potentially spill-over, or propagate, from one flight to the next. Each flight

is operated by a particular aircraft, which is identified uniquely by its tail number, and an aircraft

rotation is a sequence of flights operated by a particular tail number. In our model, an aircraft’s

rotation begins with the first revenue flight after a major maintenance, or a lay-over of more than

five hours at an airport, and ends with the last flight operated before the aircraft returns for its

next maintenance or remains on the ground for several hours. Throughout our analysis, we assume

that airline crews remain with the aircraft. We acknowledge that unavailability of crew schedule

information publicly remains a limitation of our analysis. We discuss this assumption in greater

detail in §6.
As mentioned earlier, any flight delay is composed of the following two components, (i) that

which is attributable (intrinsic) to the flight itself, i.e., intrinsic delay, and (ii) that which was

caused by a “spill over” from a previous flight in the aircraft’s rotation, i.e., total propagated delay.

A conceptual representation of the coupling of flights on an aircraft rotation and spill-overs is

presented in Figure 1. We refer to the actual block-time of a flight, ignoring any spill-overs, as

the intrinsic block-time of the flight (Di). The time duration between the next flight’s scheduled

departure time, on an aircraft rotation, and the earlier flight’s scheduled arrival time is referred

to as the scheduled turn-around or ground-time (Gi). In order to compute Gi, from the on-time

performance data set, we first sorted the data by airline, tail number and scheduled departure

time so that all aircraft rotations are grouped together. Then, for each flight i, we computed Gi

by subtracting the scheduled arrival time of flight i − 1 from the scheduled departure time of

flight i. A snapshot of one such aircraft rotation flown on September 24, 2007 by Delta Airline’s

aircraft with tail number N980DL is shown in the online Appendix A. We computed the minimum

time to turn an aircraft (Ti) by analyzing ground times at different airports for different types of

aircraft for each airline. First, we grouped the actual ground-times for each flight flown in 2005 and

2006 by airline, aircraft model, and departure airport. We then calculated the 5th percentile value
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(in minutes) across all actual ground-times for each airline, aircraft model, and departure airport

combination. The turn-around time for the corresponding flight i, in 2007, was assumed to be this

5th percentile value. Note that the time to turn an aircraft around shows considerable differences

across airports and across aircraft models. In Tables 7 and 8 in the online appendix A, we show the

average turn-around times at some airports and some aircraft models respectively. The buffer time

available on ground for flight i, Bi, is calculated by subtracting Ti from Gi for all flights except

the first flight on the rotation. Note that the Bi value of the first flight of any rotation is assumed

to be zero. Thus, the spill-over, Li, from flight i− 1 to flight i is given by

Li = [DL
i−1 − (Qi−1 +Bi)]

+. (1)

Moreover, for any flight i in the rotation, we have

DL
i =

no spill-over︷︸︸︷
Di +

spill-over=Li︷ ︸︸ ︷
[DL

i−1 − (Qi−1 +Bi)]
+ . (2)

The first term in (2) captures a flight’s own (intrinsic) random block-time and the second term

captures any spill-over incurred due to a delay on a previous flight in the aircraft rotation.

We use several terms and definitions throughout this paper. For ready reference, we provide a

detailed list of the terms used and their definitions in Table 5. Keeping these definitions in mind,

it is easy to see that there are three cases to consider between any two consecutive flights in an

aircraft rotation: (i) previous flight is on-time so there is no spill-over to current flight, (ii) previous

flight is not on-time but there is no spill-over to current flight since the lateness of the earlier flight

can be absorbed by Bi, and (iii) previous flight is not on-time and Bi is not long enough which

creates the spill-over Li for flight i. The graphical representation of these three cases is shown in

Figure 1.

Finally, we define the arrival delay of any flight i (ADi), including any spill-over from a previous

flight in the aircraft rotation, as

ADi = [DL
i −Qi]

+ = [Di +Li −Qi]
+,

=
[
Di −Qi +

[
DL

i−1 − (Qi−1 +Bi)
]+]+

,

=

[
Di −Qi +

[
Di−1 − (Qi−1 +Bi)+

[
. . .+ [D1 − (Q1 +B2)]

+
. . .

]+]+
]+

. (3)

As can be seen in (3) the arrival delay of flight i is dependent on the intrinsic block-time of all

previous flights on the rotation, Dj,1≤ j < i, through the spillover variables Lj,1< j ≤ i. However,

if Lj = 0 for some j < i, then it is equivalent to treating the rotation as beginning from flight j
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Figure 1 Illustration of spill-overs in an aircraft rotation

instead of the first flight. Using this insight, the arrival delay of flight i can be decomposed into

the arrival delay impact (ADIj,i) of all flights j < i on flight i as follows:

ADIj,i =ADi −ADi(Lj+1 = 0). (4)

Here, ADi(Lj+1 = 0) represents the arrival delay of flight i conditional on a zero spillover Lj+1 from

flight j to j+1. Thus, the Net Impact of any flight j < i on the arrival delay of flight i (NIADj,i)

can be found as follows:

NIADj,i =ADIj,i −ADIj−1,i (5)

Thus, the total propagated delay (TPDi) by any flight i, on an aircraft rotation, is defined as

the additional delay caused on flight i due to the spill-over from the previous flight i− 1, and is

computed as

TPDi = [Di +Li −Qi]
+ − [Di −Qi]

+ =ADi −ADi(Li = 0) =ADIi−1,i. (6)

Therefore, the total arrival delay of a flight, ADi, is the sum of the intrinsic delay, [Di −Qi]
+,

and the total propagated delay, TPDi.

As we indicated in §1, in the prior literature, the models are deterministic and focus on computing

the root propagated delay which is the delay caused by the root flight. Specifically, AhmadBeygi
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et al. (2008) develop a heuristic approach to compute the impact of the root propagated delay

on all future/subsequent flights which share the same aircraft and crew resources. This set of

future/subsequent flights, which share the same aircraft and crew resources, form a propagation tree.

To compute the root propagated delay, their deterministic approach assumes that all subsequent

flights in the propagation tree operate according to the planned schedule with no intrinsic delays,

i.e., the actual block-times equals the scheduled block-times for these flights. The complexity in

their model arises from the fact that they include crew schedule related delays, too. A similar

deterministic approach is described in Kondo (2008) where the root propagated delay, due to a

root flight, is computed using deterministic block-times for all future flights included in the aircraft

rotation. However, Kondo (2008) does not consider crew schedules.

The key contribution of our modeling approach lies in constructing a stochastic model of total

delay propagation, which convolves a stochastic root delay with stochastic block-times of subse-

quent flights on an aircraft rotation to compute the total propagated delay in the airline network.

To this end, we first show that a deterministic analysis overestimates the root propagated delay

and the total propagated delay. We first formally define root propagated delay, (RPDi), as the net

impact of the root flight (which we consider as first flight of the rotation) on the arrival delay of

flight i using our notation in (5).

RPDi =NIAD1,i. (7)

We state the impact of the assumption of all subsequent flights (j)— following the root flight—

operating as per schedule in Theorem 1.

Theorem 1. A deterministic analysis, which assumes Dj =Qj,1< j ≤ i,

(i) overestimates the expected RPDi, and also

(ii) overestimates the expected total propagated delay TPDi.

The proofs of all theorems are provided in the online appendix B.

Similarly, one can use the deterministic approach to estimate the arrival delay of flight i, which

consists of the sum of the intrinsic arrival delay and the total propagated delay for flight i. The

impact of this approach is stated in Theorem 2 in the online appendix B. Thus the key difference

between our approach and past literature lies in (i) a focus on total propagated delay which

captures the impact of all previous flights on an aircraft’s rotation, instead of root propagated

delay which only captures the impact of a delay on the first flight; and (ii) a stochastic, instead of

deterministic, model of delay propagation. Thus, we relax the assumption that the actual block-

times on subsequent flights are deterministic, as assumed in prior literature. Theorems 1 and 2
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demonstrate that our stochastic approach is well suited for estimating arrival delays and propagated

delays within aircraft rotations, and hence developing other network robustness measures. We build

on this idea in the rest of this paper.

To elucidate the different notations we introduced in this section and also Theorem 1, we provide

an example rotation (with 3 flights) below in Table 1. In this example, the scheduled block-times

of all flights are the same whereas the realized intrinsic block-times are different. A root delay of

twenty minutes on the first flight is propagated into subsequent flights. However, the net impact of

the root delay on flight 3 is only five minutes, since the intrinsic block-time of flight 2 and flight 3 is

less than the scheduled block-time which creates an additional buffer. In contrast, the deterministic

approach would have estimated the impact of root delay on flight 3 at 20 minutes. This example

illustrates how the deterministic approach may overestimate the root propagated delay.

i Qi Bi Di Li ADi AD3(Li = 0) ADIi,3 NIADi,3 RPD3 RPD3 (deterministic)
Flight 1 1 100 0 120 0 20 5 5 5
Flight 2 2 100 0 90 20 10 0 5 0
Flight 3 3 100 0 95 10 5 0 - - 5 20

Table 1 Flight rotation example to illustrate Theorem 1

Before using the data for our analysis, we cleaned the data to eliminate several bad observa-

tions. Details of the data cleaning methodology, with examples of bad data, are available in online

appendix A.

3.1. A stochastic model of actual block-time and delay propagation

In this sub-section we focus on describing two stochastic models that capture the coupling across

an airline’s network: (i) a stochastic model of the intrinsic block-time, Di, for a scheduled flight

which captures factors such as airport capacity and schedule congestion, and (ii) a stochastic model

of the actual block-time, DL
i , which includes delay propagation through the airline network.

To do so, first, we build on the model developed in Deshpande and Arıkan (2012), where the

authors show that the intrinsic block-time of a flight follows a log-Laplace distribution. Deshpande

and Arıkan (2012) provide a methodology for estimating the mean, μ̂, and the standard deviation,

σ̂, of the log-Laplace distribution. Variables that impact the mean of the intrinsic block-time,

Di, distribution include flight route, airline, aircraft type, congestion at origin and destination

airport, etc. The variance of the block-time distribution is composed of three components: an

origin airport shock, a destination airport shock, and a carrier dependent idiosyncratic shock. We
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describe essential details of the regression model developed in Deshpande and Arıkan (2012) in

online appendix C.

Second, we develop a new delay propagation model that allows us to capture the ripple effect of

flight delays through the network. To analyze the delay propagation in the network, we focus our

attention on aircraft rotations. As shown in (2), the total block-time distribution of a flight is a

convolution of the intrinsic block-time distribution of a flight and the spill-over distribution.

However, the distribution of the actual block-time, DL
i is not easy to characterize, since it is

the convolution of a log-Laplace distribution and the spill-over distribution. There does not exist

a simple distribution that characterizes DL
i . Hence, we make the simplifying assumption that DL

i

also follows a log-Laplace distribution with parameters μ̃i and b̃2i . The challenge, however, is to

estimate the parameters of the resulting (assumed) log-Laplace distribution. Next, in Proposition

16, we use a novel two-moment approximation to estimate the parameters μ̃i and b̃2i of the total

block-time distribution.

Proposition 1. Matching the first two moments of the actual block-time distribution in (2) gives:

b̃2i = (−1− 2A)+
√
(4A+1)(A+1) (8)

where A=
Var[DL

i ]

E[DL
i
]2

and

μ̃i = ln
(
E[DL

i ](1− b̃2i )
)
. (9)

Our block-time model presented in online appendix C, captures the correlation in block-times of

flight i− 1 and i through the common shock term of the common destination/origin airport of

flight i−1/i. However, an implicit assumption behind the approximation presented in Proposition

1 is that the block-time distributions of consecutive flights are not correlated. We validate this

assumption by conducting a simulation study using our data. The details of this study are avail-

able in online appendix D where we show that our independence assumption is computationally

reasonable for our large data set.

There are several advantages of using the above two-moment approximation. First, the above

approach provides a tractable analytical expression for the actual block-time DL
i . Second, the above

approximation can be applied recursively to a string of flights on an aircraft rotation to compute

the distribution of each flight on an aircraft rotation. Thus, it easily captures the cumulative effect

of prior accumulated propagated delays on a given flight i by keeping track of a single random

6 Explicit representations for E[DL
i ] and Var[DL

i ] are available in the online appendix B. μ̃i and b̃2i for any flight i can
be computed using (8) and (9) recursively starting from the first flight on any rotation where μ̃1 = μ̂1 and b̃21 = b̂21.
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variable DL
i−1 of the previous flight, instead of having to keep track of the intrinsic block-time

distributions of all previous flights on the rotation. Third, the above computational procedure is

extremely efficient. Evaluating the actual block-time distributions and the corresponding on-time

arrival probability for each of the 7.4 million flights flown in 2007 took less than an hour on our

desktop computer. This is very important, since suggesting policy changes requires estimating the

impact of changes to the entire network consisting of millions of flights. This would be very difficult

to do with other computational approaches such as simulation of the entire system. A detailed

discussion on the accuracy of the above approximation is provided in §3.2.
These aforementioned stochastic models allow us to separate any flight delay into the two com-

ponents mentioned earlier, i.e., the root delay and the propagated delay. To this end, we define the

two respective probabilistic metrics OTPFI
i and OTPFL

i as follows:

OTPFI
i =Pr(Di <Qi) : On-time probability without including the late aircraft delay Li

(i.e., OTP intrinsic to the flight),

OTPFL
i =Pr

(
DL

i <Qi

)
: On-time probability of flight i including the late aircraft delay Li.

We use the stochastic models described in this section to develop network robustness measures

and service levels in §4.

3.2. Accuracy of the Second Moment Approximation

In this sub-section we focus on testing the accuracy of the second moment approximation pro-

posed in the earlier sub-section. Our analysis compares the two-moment model generated on-time

arrival probability with the true underlying on-time arrival probability estimated using a simu-

lation experiment. We use randomly selected 14 rotations flown in 2007 from Southwest, Delta,

American, Continental, Frontier, JetBlue, and Mesa Airlines (two rotations from each major air-

line). We picked one short (3 or 4 flights) and one long (between 6 and 9 flights) rotations from

each airline, so in total we have 76 flights in this simulation study.

For each flight i in these rotations, 60,000 intrinsic block-times are randomly generated from a

log-Laplace distribution with parameters μ̂i and b̂i. Comparing the scheduled arrival time and the

simulated actual arrival times, each simulated flight in the rotation is assigned an indicator variable

of 0 or 1 depending on whether the flight arrived on time or not (i.e., 1 represents an on-time arrival

and 0 represents a delayed flight). For each flight in these rotations, simulated on-time averages are

calculated across 60,000 replications using the on-time indicators. Then, these simulated on-time
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averages (i.e., simulated on-time probabilities) are compared to the estimated on-time probabilities

which are calculated by using μ̃i and b̃i obtained from our two-moment approximation.

Tables 2 and 3 display the details of the rotations used and the results of the simulation study

explained above. The maximum difference between the simulated on-time probabilities and the

estimated on-time probabilities is equal to 0.1257 among these 76 flights. The median absolute

difference between the simulated on-time probabilities and the estimated on-time probabilities is

equal to 0.01765 while the mean absolute difference is equal to 0.0295. The simulated on-time

probabilities turn out to be very close (i.e., within 4% range) to the estimated on-time probabilities

for most of the flights selected.

The accuracy of the two moment approximation method has been well studied in the multi-

echelon inventory literature (Graves 1985). While the airline context is different than multi-echelon

inventory management, our model has parallels to multi-echelon inventory models. Given the com-

putational efficiency of our two-moment approximation, as compared to simulation, for performing

calculations for millions of flights in our data set, we proceed with this approximation for the rest

of the paper.

4. Robustness and Service Reliability Measures for Airline Networks

DOT measures a flight to be on-time as long as the flight arrives at its destination no more than

15 minutes after its scheduled arrival time. Airlines are typically ranked based on the aggregate

(average) on-time performance of all the flights in their network. This DOT metric is relatively easy

to compute and provides a basis for measuring airline performance. However, with such a measure,

as a basis for comparison, several important issues remain unanswered. We list two important

issues below:

1. The DOT aggregate measure does not distinguish between the nature of airline operations,

network structures, and markets served by individual airlines.

2. The DOT metric focuses on each flight separately and does not distinguish between the

delays attributable to the flight itself and the additional delays due to spill-overs propagated (total

propagated delays) through the network. Consequently, the aggregate-level DOT metric does not

allow us to clearly explain the negative externality imposed by a poorly operated resource on the

rest of the network.

In this section our goal is to develop measures that help us describe and quantify the aforemen-

tioned effects of (i) intrinsic delays and (ii) total propagated delays. Let OTPF
DOT

a represent the

aggregate on-time performance computed, for any airline a’s network, using the DOT definition
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Rotation1-Southwest Airlines Rotation5-American Airlines
On-time Prob. On-time Prob. Absolute On-time Prob. On-time Prob. Absolute

Pos. (Estimated) (Simulated) Difference Pos. (Estimated) (Simulated) Difference
1 0.7023 0.7001 0.0022 1 0.5922 0.5909 0.0013
2 0.7086 0.7310 0.0223 2 0.2808 0.3043 0.0235
3 0.3670 0.4080 0.0410 3 0.2712 0.3316 0.0604
4 0.7952 0.7845 0.0107 4 0.5735 0.5819 0.0083
5 0.5400 0.5629 0.0229 5 0.2084 0.2542 0.0458
6 0.7003 0.7000 0.0003 6 0.2425 0.3421 0.0996

Rotation2-Southwest Airlines 7 0.3615 0.2857 0.0758
On-time Prob. On-time Prob. Absolute 8 0.5321 0.6578 0.1257

Pos. (Estimated) (Simulated) Difference 9 0.3270 0.3271 0.0001
1 0.8290 0.8266 0.0024 Rotation6-American Airlines
2 0.5451 0.5488 0.0037 On-time Prob. On-time Prob. Absolute
3 0.2618 0.2986 0.0367 Pos. (Estimated) (Simulated) Difference
4 0.4772 0.5799 0.1027 1 0.5227 0.5228 0.0001

Rotation3-Delta Airlines 2 0.3565 0.3740 0.0175
On-time Prob. On-time Prob. Absolute 3 0.2157 0.2546 0.0390

Pos. (Estimated) (Simulated) Difference 4 0.2830 0.2862 0.0032
1 0.4590 0.4597 0.0007 Rotation7-Continental Airlines
2 0.4146 0.4389 0.0243 On-time Prob. On-time Prob. Absolute
3 0.4146 0.4485 0.0339 Pos. (Estimated) (Simulated) Difference
4 0.2608 0.2734 0.0126 1 0.6397 0.6368 0.0029
5 0.1529 0.1602 0.0072 2 0.4874 0.5298 0.0425
6 0.1241 0.1409 0.0168 3 0.3097 0.3312 0.0215

Rotation4-Delta Airlines 4 0.3636 0.4421 0.0785
On-time Prob. On-time Prob. Absolute 5 0.3874 0.4454 0.0580

Pos. (Estimated) (Simulated) Difference 6 0.6220 0.6265 0.0045
1 0.6692 0.6665 0.0028 7 0.2392 0.2516 0.0124
2 0.6574 0.6617 0.0042 8 0.1097 0.1116 0.0018
3 0.3798 0.3888 0.0090

Table 2 Results of the Simulation Study (First 7 Rotations)

of on-time performance, i.e., using the additional 15 minutes buffer beyond the scheduled arrival

time of a flight. Recollect our definitions of OTPFL
i and OTPFI

i in §3 which are different from the

metrics published by the DOT since we do not use the 15 minutes buffer beyond the scheduled

arrival time. Let OTPF
L

a represent the aggregate on-time performance computed for any airline a’s

network excluding the 15 minutes buffer, and OTPF
I

a represent the aggregate intrinsic (excluding

the total propagated delays) on-time performance computed for any airline a’s network. Using the

distributional parameters μ̃i and b̃i developed in (8) and (9), we rewrite the expressions for the

corresponding service metrics (represented by these probabilities) as

OTPFL
i =L

(
ln (Qi)− μ̃i − γ̂

b̃i

)
, (10)

OTPFDOT
i =L

(
ln (Qi +15)− μ̃i − γ̂

b̃i

)
, and (11)

OTPFI
i =L

(
ln (Qi)− μ̂i − γ̂

b̂i

)
(12)
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Rotation8-Continental Airlines Rotation12-JetBlue Airlines
On-time Prob. On-time Prob. Absolute On-time Prob. On-time Prob. Absolute

Pos. (Estimated) (Simulated) Difference Pos. (Estimated) (Simulated) Difference
1 0.5717 0.5709 0.0008 1 0.2700 0.2707 0.0007
2 0.4892 0.5121 0.0228 2 0.4011 0.4650 0.0639
3 0.1906 0.2048 0.0142 3 0.6546 0.6751 0.0205
4 0.0614 0.0751 0.0137 Rotation13-Mesa Airlines

Rotation9-Frontier Airlines On-time Prob. On-time Prob. Absolute
On-time Prob. On-time Prob. Absolute Pos. (Estimated) (Simulated) Difference

Pos. (Estimated) (Simulated) Difference 1 0.7733 0.7706 0.0028
1 0.7309 0.7284 0.0025 2 0.5624 0.5645 0.0021
2 0.7510 0.7522 0.0012 3 0.4700 0.5103 0.0403
3 0.6603 0.6732 0.0130 4 0.5191 0.5552 0.0360
4 0.5019 0.5172 0.0153 5 0.5020 0.5421 0.0401
5 0.3788 0.4045 0.0257 6 0.5257 0.5833 0.0576
6 0.4530 0.5337 0.0808 7 0.3787 0.4372 0.0586

Rotation10-Frontier Airlines Rotation14-Mesa Airlines
On-time Prob. On-time Prob. Absolute On-time Prob. On-time Prob. Absolute

Pos. (Estimated) (Simulated) Difference Pos. (Estimated) (Simulated) Difference
1 0.6446 0.6415 0.0032 1 0.6041 0.6022 0.0019
2 0.5921 0.5965 0.0043 2 0.5949 0.6123 0.0173
3 0.5532 0.5787 0.0256 3 0.6622 0.6800 0.0178
4 0.5471 0.6212 0.0741 4 0.3906 0.4463 0.0557

Rotation11-JetBlue Airlines
On-time Prob. On-time Prob. Absolute

Pos. (Estimated) (Simulated) Difference
1 0.8031 0.8014 0.0017
2 0.4275 0.4296 0.0022
3 0.3371 0.3890 0.0518
4 0.3616 0.4602 0.0986
5 0.4117 0.4998 0.0882
6 0.2396 0.2746 0.0350
7 0.3330 0.4344 0.1014
8 0.2951 0.3649 0.0698

Table 3 Results of the Simulation Study (Last 7 Rotations)

where L represents the CDF of the Laplace distribution with parameters (0,1)7 and γ̂ represents

the median of all residuals of the regression model described in the online appendix C. Let A
represent the set of airlines in our data set and Fa denote the set of flights operated by a particular

airline a∈A. Let Ra denote the set of aircraft rotations that belong to airline a∈A.

Using (10)-(12), we define network measures of on-time performance for each airline a as follows:

OTPF
L

a =

∑
i∈Fa

OTPFL
i

|Fa| , (13)

OTPF
DOT

a =

∑
i∈Fa

OTPFDOT
i

|Fa| , and (14)

7 L(x) = 0.5[1+ sgn(x)(1− exp(−|x|))]
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OTPF
I

a =

∑
i∈Fa

OTPFI
i

|Fa| . (15)

To begin, we demonstrate the inflation of on-time performance due to the use of the 15 minutes

buffer in the DOT definition of on-time performance. In Figures 2 and 3, we illustrate how airline

performances would vary if the metric OTPF
L

a , i.e., without the use of the additional buffer of 15

minutes, were used instead of the metric using the 15 minutes buffer (OTPF
DOT

a ).
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Figure 2 OTPF
DOT

a for different US airlines.
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Figure 3 OTPF
L

a for different US airlines.

First, note that there exists a significant difference in the two OTPF metrics as shown in Figures

2 and 3 . The average OTPF, without including a 15 minute buffer, across all airlines is 47.75%,

while the average OTPF metric including a 15 minute buffer is 73.70%. The DOT OTP metric

can be misleading to passengers who are not aware about the definition of OTP used by DOT. Its

impact can be particularly severe on passengers who are planning itineraries with short connection

times (e.g. 30 minutes). As an example, we found flights in our data set whose OTP performance

drops from 80% to 50% by removing the 15 minute buffer, which could have a significant impact

on passengers making short connections. A careful analysis needs to be conducted on what metric

should be reported by the DOT to the public.

Also, as is observable above, some airlines are able to use the 15 minutes buffer, available to

them under the DOT measure, quite effectively. For example, the OTP performance for Southwest

Airlines improves under OTPF
DOT

a . On the contrary, airlines such as JetBlue, improve their posi-

tion, vis-à-vis other airlines, under OTPF
L

a . Our observations suggest that providing an additional

buffer does not address the issue of operational challenges faced by airlines, which are inherent

to their network structures and markets served. The additional buffer may provide some airlines
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a leeway in hiding some of their inefficiencies and improving their position in the DOT on-time

performance rankings. Consequently, OTPF
L

a suffices as an on-time performance metric without

providing airlines undue advantage.

Next, we define robustness measures for an airline flight network. Each of these measures quantify

the delay externality imposed on a flight, or a resource using a set of flights, due to tight coupling

of the flights within an airline’s network.

4.1. The average drop in on-time arrivals due to spill-overs

We begin by defining a robustness metric, OTPDa, that measures the average network impact

(drop) on a flight’s on-time performance due to spill-overs (i.e., late arrival of aircraft from its

previous flight) for any airline a∈A.

OTPDa =OTPF
I

a −OTPF
L

a ∀ a∈A. (16)

We illustrate the impact of spill-overs (Li’s) in Figure 4. Earlier, in Figure 3 we plotted OTPF
L

a

for each airline in our data set. In Figure 4, we plot OTPDa to illustrate the impact of spill-overs. It
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Figure 4 Average drop in on-time performance (OTPDa) due to spill-overs.

can be inferred from Figure 4 that the impact of spill-overs should not be overlooked. The average

drop in on-time performance of almost all airlines is more than 5% and it is 8% or more for more

than half of all airlines in our data set. Thus, from an airline’s perspective, the need of identifying

and controlling total propagated delays, to improve operational performance is an important issue.
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This fact is well known amongst practitioners, however, later in §5, we discuss how airlines can

address this issue by allocating ground and block-time buffers differentially.

4.2. The fraction of expected delay attributable to spill-overs

Earlier in §4.1 we analyzed the impact of spill-overs. We next quantify the magnitude of the total

propagated delays. For any airline a∈A and any flight i∈Fa, this robustness metric, FEPDi, mea-

sures the average fraction of total expected arrival delay, observed on flight i, which is attributable

to the spill-over effect from previous flights in the aircraft rotation. Essentially, it allows us to

separate the average magnitude of the expected delay externality imposed on any flight i.

FEPDi =
E(DL

i −Qi)
+ −E(Di −Qi)

+

E(DL
i −Qi)+

, where i∈Fa. (17)

Using (17) we define FEPDa as the average fraction of expected total arrival delay attributable to

propagated delay effects, for each airline a∈A, and is computed as

FEPDa =

∑
i∈Fa

(
E(DL

i −Qi)
+ −E(Di −Qi)

+
)

∑
i∈Fa

E(DL
i −Qi)

+
∀ a∈A. (18)

We plot FEPDa in Figure 58 for all airlines in our data set. Figure 5 shows that the fraction of
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Figure 5 Fraction of expected delay due to propagated delays (FEPDa) for different US airlines.

average delay, attributable to spill-over effects, ranges from 24% to 39% for most airlines.

8 We excluded Hawaiian Airlines with FEPDa value of 0.59 from this figure as it is an outlier on this chart.
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4.3. Bottleneck flights

Recollect our definition of an aircraft rotation in §3. Let us denote an aircraft rotation by r. We first

define the notion of a bottleneck flight within an aircraft rotation. Let OTPFL
i,j denote the on-time

probability of flight j, within a particular aircraft rotation, assuming that the aircraft rotation

begins with flight i < j instead of the first flight in that rotation. Consequently, OTPFL
1,j =OTPFL

j

and OTPFL
1,i = OTPFL

i . Now suppose N(r) denotes the set of flights in the aircraft rotation r

(string of flights in rotation r), then the network impact of flight i (based on the drop in on-time

arrival probability), NIPi, is defined as the cumulative drop in on-time probability of subsequent

flights in an aircraft rotation that is attributable to flight i, and is computed as follows:

NIPi =

|N(r)|∑
j=i+1

(
OTPFL

i+1,j −OTPFL
i,j

)
. (19)

We now define the bottleneck flight of any rotation in terms of the network impact based on

expected arrival delay. Recollect our definition of the net impact of flight i < j on the arrival delay

of flight j that was represented by NIADi,j in §3. Let E[NIADi,j] denote the expected value of this

net impact on the arrival delay. Then, the network impact of flight i (based on the expected arrival

delay), NIDi, is defined as the cumulative increase in the expected arrival delay of subsequent

flights in an aircraft rotation that is attributable to flight i, and is computed as follows:

NIDi =

|N(r)|∑
j=i+1

E[NIADi,j ] (20)

A bottleneck flight, within a rotation aircraft r, is then defined as the flight with the largest network

impact. Let BNFLr denote the position of the bottleneck flight within its rotation, i.e.,

BNFLr = arg max
1≤i<|N(r)|; i∈r

{NIPi} . (21)

Using our data set, we compute the frequency with which a flight at a particular position in any

flight rotation, across all rotations for all airlines, is the bottleneck flight, as defined by (21). We

denote this frequency value as BNFLp, where the index p denotes the position of a flight in the

aircraft rotation. Anecdotal evidence (Ross and Swain 2007) suggests that a natural question, for

airline managers, to ask is: Do these bottleneck flights correspond to earlier flights in the day? We

count the bottleneck flights, across all airlines, within a particular departure time slot t and denote

the corresponding frequency of occurrence as BNFLt. Figure 6 plots the frequency of occurrence,

BNFLp, for different flight positions, p, within any aircraft rotation. As is observable in this figure,

the first 4 flights in any rotation have a higher probability of being the bottleneck flights. In
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Figure 6 BNFLp, computed across all airlines, for

different flight positions.
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Figure 7 BNFLt, computed across all airlines, for

different departure times.

Figure 7, we plot BNFLt for different departure times t. Figure 7 suggests that mid-day flights,

10:00 a.m. through 6:00 p.m., also have a reasonable probability (6 to 7%) of being bottleneck

flights. Consequently, early morning flights are not significantly more likely to be bottleneck flights.

Plausible reasons for mid-day flights becoming bottleneck flights are the increased schedule density

and reduced airport capacity. Our observation suggests that airlines must tightly manage almost

all their flights throughout a day to reduce their delay impact. This requires well controlled and

better managed ground and air operations.

5. Analysis and policy implications

The goal in this section is to compare major airlines and airports in the US based on the robust-

ness measures developed in §4 and to develop a few recommendations for improving the overall

operational performance of the domestic air transportation system. We begin by analyzing airline

on-time performance and related policy implications.

5.1. Airline on-time performance analysis

On-time performance is a combination of total propagated delays and intrinsic flight delays. Earlier,

in §4 we argued that it is important to separate the effect of total propagated delays and showed

how we could decompose their impacts. From an airline’s perspective it is important to control

both of these effects to improve the overall on-time performance. To capture the impact of such

propagated delays, in §4.1 and §4.2, we developed two robustness measures OTPDa and FEPDa.

These metrics allow us to measure airlines’ performances based on the average total propagated

delays observed within their networks, i.e., how “tightly coupled” are these airline networks. By

“tightly coupled” we mean how much slack is available, in the form of block- and ground-time
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buffers within the airline network, to absorb propagated delays.

Thus, the first issue airlines face is the allocation of ground- and block-time buffer within air-

craft rotations. Different airlines, depending on their network structures and the nature of service

provided, allocate these buffers differentially. In Figures 8 and 9 we show the average ground-time
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Figure 8 Average ground-time buffer allocation.
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Figure 9 Average block-time buffer allocation.

buffer and block-time buffer for different airlines in our data set. The trade-offs for allocating block-

time and ground-time buffers are complex. Increasing block-time buffer can increase planned costs

substantially and reduce resource utilization, while decreasing block-time could directly impact the

flight’s on-time performance, i.e., OTPFL
i . Increasing ground-time buffer is relatively less expensive

but decreases resource utilization. Moreover, allocation of these buffers also depends on several

other factors pertaining to the airline’s flight schedule (network). For example, consider the case

of Southwest Airlines. Southwest Airlines allocates low ground-time buffers yet maintains suffi-

cient block-time buffers. Southwest Airlines is predominantly a point-to-point carrier, i.e., does

not sell a large fraction of passenger itineraries with connections, and mostly operates to and

from lesser congested airports. This allows Southwest Airlines to tightly control its ground-time

buffers to maintain high resource (such as aircraft and ground equipment) utilization. Allocating a

slightly higher buffer on block-times allows Southwest Airlines to maintain a high OTPFL
a . At the

other extreme, consider the example of Northwest Airlines. Northwest Airlines maintains a much

larger ground-time buffer yet does not allocate large buffer on its block-time. Plausible reasons are

the hub-and-spoke network, congested hub airports, and larger fraction of connecting passenger

itineraries at hub airports. For example, hub-and-spoke networks create banks in their schedule to

enable passenger connections, which naturally leads to higher ground-time buffers.
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The second important issue concerning airlines is the identification of bottleneck flights. Earlier,

in §4.3 we developed a metric to identify a bottleneck flight by isolating the impact of a particular

flight in propagating delays through the network. As we showed in Figures 6 and 7, bottleneck

flights are spread throughout the day, i.e., need not correspond to the earlier flights in the day.

Ross and Swain (2007) indicate that airline planners focus on the “first” flights of the day to

prevent propagated delays. While that is a good strategy, focusing on bottleneck mid-day flights

is essential, too.

From a policy perspective, we make several recommendations based on our analysis. Our analysis

shows that airlines carry very small block-time buffers for their flights, with all airlines averaging

negative block-time buffers. This implies that, on the average, the scheduled block-time allocated

for a flight is not sufficient to cover the actual block-time. We speculate that this scheduling

behavior is partly in response to how on-time performance is measured and reported by the DOT,

i.e., by adding a 15 minutes buffer to the scheduled arrival time. This analysis shows that the DOT

should carefully evaluate which metric gets reported to the public and whether a 15 minute buffer

is necessary in measuring OTP.

Moreover, the inclusion of such buffers can be misleading from a passenger’s standpoint. For

example, consider a two-flight passenger itinerary wherein both the flights are of short duration

and the connection time between flights is relatively small. In this case, it is possible that both

individual flights may perform very well when evaluated independently using the DOT on-time

performance metric, however, the passenger itinerary on-time performance may be extremely poor

due to insufficient connection time. As a percentage of actual flight time, the total passenger delay

can be large when both the flights in the itinerary are short haul flights. Consequently, it may be

useful to consider a passenger-centric performance metric to compare airline performance in addi-

tion to single flight on-time performance measures. For example, comparing airline networks based

on the on-time performance (on-time completion probability) of multi-leg passenger itineraries

may be useful. Such a metric would also help distinguish carriers serving markets with a larger

proportion of multi-leg itineraries versus carriers serving markets with single leg itineraries. In this

regard, since our stochastic model generates the entire probabilistic distribution of actual block-

time, it can be very useful in computing passenger connection probabilities and multi-leg on-time

performance measures.

If providing accurate information to passengers is of importance, particularly to those with short

connections, an immediate conclusion is to modify the measurement of on-time performance of
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flights so that on-time truly means “on-time”, i.e., a flight should be considered delayed if it arrives

past its scheduled arrival time. If this metric were to be adopted by the DOT, airlines could react

by simply adding buffers to all flights (which can significantly increase their cost, as shown by Ball

et al. (2010) ). However, if airlines carefully balance their buffers, by focusing on bottleneck flights

as discussed below, a change in the DOT metric can help achieve better OTP performance without

increasing buffers and associated cost.

Our model also provides guidelines to airlines on which bottleneck flights they should focus in

order to minimize the network impact. We constructed a network impact metric for each flight i

using our stochastic model (i.e., NIDi). In order to make their schedules more robust, airlines could

allocate larger resources (crew, block-times, etc.) to flights that have large network impact and

less resources to non-bottleneck flights. From a policy standpoint, airlines could consider allocating

ground- and block-time buffers differentially for bottleneck flights. Since airlines are typically bud-

get constrained, in terms of the overall scheduled block-time minutes across the network, reducing

the block- and ground-time buffers around non-bottleneck flights and reallocating the same to bot-

tleneck flights could improve the overall network performance without incurring additional costs

due to increased block-time buffers.

Finally, our stochastic model is well suited to isolate the impact of spill-overs on schedule robust-

ness. Separating intrinsic block-time from total block-time helps identify the spill-over accurately

for any aircraft rotation. This is important for airline practitioners since it is well known that

spill-overs are highly dependent on the sequence of flights flown in an aircraft rotation.

5.2. Airport congestion analysis

Airports are a critical resource in air transportation networks and impact airline operations sub-

stantially. To understand their impact on the total propagated delays through the entire airline

network, we compute the average values of overall on-time performance of flights, and intrinsic on-

time performance of flights, within every departure time window t. We represent these by OTPF
L

t

and OTPF
I

t respectively, computed across all airlines in our data set, where t represents a particu-

lar departure time window. These plots are shown in Figures 10 and 11 respectively. As is readily

observable from Figure 10, the average on-time performance steadily decreases throughout the day

until 6:00 p.m. and begins to improve thereafter. However, if we remove the impact of spillovers

from prior flights (Figure 11), the performance of flights improves between 9:00 a.m. and 1:00 p.m.

These observations suggest two important issues: (i) total propagated delays get worse as the day

progresses, and, (ii) even after adjusting for spillovers, on-time performance worsens as the day
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progresses. Airport and airspace congestion together with the scheduling practices of most airlines

contribute to this performance. In this section, we focus on the impact of airport congestion. To

this end, we compare airports in our data set on two dimensions, (i) largest network impact (vol-

ume), and (ii) largest network impact per flight. Let S denote the set of airports in our data and

Fs represent the set of all flights departed from or arrived to airport s∈ S in 2007. Then, the total

network delay for each airport s, TNDs, based on the total network impact of all flights i ∈ Fs,

NIDi (see, §4.3 for definition), is computed as follows:

TNDs =
∑
i∈Fs

NIDi. (22)

We also normalized the above total network delay metric by considering the total number of flights

affected to obtain a per flight network delay for each airport s (PFNDs), i.e.,

PFNDs =
TNDs

|Fs| . (23)

We calculated the total network delay (TNDs) and per flight network delay (PFNDs) separately

for each airport in our data set using all 2007 domestic U.S. flights and then sorted all airports

from highest to lowest in each network delay scale. Figures 12 and 13 display the top 10 airports

in each list.

As is observable from Figures 12 and 13, the top five airports in the US based on TNDs are ATL

(Atlanta Hartsfield-Jackson), ORD (Chicago O’Hare), DFW (Dallas Fort Worth), PHX (Phoenix

Sky Harbor), and LAX (Los Angeles), while the top five airports which have the largest PFNDs

are JFK (New York JFK), HNL (Honolulu), EWR (Newark Liberty), SEA (Seattle Tacoma), and

ORD (Chicago O’Hare). From a resource allocation perspective, for improving overall operational
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Figure 12 Top 10 U.S. airports with largest TNDs.
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Figure 13 Top 10 U.S. airports with largest PFNDs.

performance of the flight networks of all airlines, alleviating the congestion at these airports is

essential.

To analyze the impact of airport congestion on the airline networks, we picked top four airports

namely ORD, ATL, DFW, and PHX based on TNDs. In addition, we added two more airports,

EWR9 and JFK10, considering their position in the PFNDs metric. We increased these airports’

9 EWR is the third airport behind JFK and HNL in terms of PFNDs and sixth airport in terms of TNDs.

10 JFK is top airport based on PFNDs but is not in the top 5 airports list based TNDs.
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capacities by 15%, separately one-by-one, and then measured the network impact of increasing their

capacities. First, by increasing the capacity at any airport, all flights arriving to and departing from

that airport experience reduced delays due to lower congestion at that airport. In addition to this

direct impact, our model also captures the indirect impact of increasing the airport capacity, i.e.,

reduced spill-overs on subsequent flights flown by the aircraft on its subsequent route. Specifically,

to compute how increasing capacity affects delays (and network impact) we did the following: We

first recomputed the congestion variables for each flight in the network affected by the capacity

change. This necessitates re-computation of the actual block-time distributions of all the flights

in the network (all airlines), i.e., we need to re-compute the total network impact of each flight i

(NIDi) and then re-calculate the total network delay of each airport s (TNDs) based on these new

estimates.

In Table 4, we provide the total network delay reduction of increasing the capacity by 15% at

these six airports.

Total Network
Current Total Delay After 15% Total Network
Network Delay, Capacity Increase Delay Reduction Network Delay

Airport TNDs (in minutes) (in minutes) (in minutes) Reduction (%)
ORD 4,101,722 3,703,083 398,639 9.72
ATL 4,707,561 4,207,576 499,985 10.62
DFW 2,414,278 2,226,295 187,984 7.79
PHX 1,956,013 1,800,993 155,019 7.93
EWR 1,827,784 1,653,668 174,116 9.53
JFK 1,574,898 1,411,594 163,305 10.37

Table 4 Change in TNDs of 6 airports with 15% capacity increase.

As can be seen, the total network delay is different at different airports. The total network delay

reduction in flight delays by adding capacity at Atlanta Hartsfield-Jackson airport is the largest

both in terms of total minutes and percentage reduction. Atlanta Hartsfield-Jackson airport is

followed by Chicago, O’Hare airport.

We also conducted a sensitivity analysis for Chicago O’Hare airport (ORD) to examine the

effects of different capacity changes on the total network delay. The percentage of capacity increase

and corresponding total network delay is displayed in Figure 14. Although a careful observation of

this figure reveals diminishing returns for each additional capacity increase, the decreasing trend is

not far from linear. Specifically, by using linear interpolation, we observe that for each additional

one percent increase in capacity (up to 5% capacity increase), the total drop in expected arrival



Arıkan, Deshpande, and Sohoni: Building Reliable Air-Travel Infrastructure
28

����������

����������

����������

��	�������

��
�������

��

�
��

��
�
��

��
�
��

�

����������

����������

����������

��� �� �� 	�� 	�� 
��

��

���
�
����� !���
"�

Figure 14 Total network delay of Chicago O’hare airport at different capacity levels.

delays is about 30,000 minutes; while each additional one percent capacity increment between 5%

and 10% capacity increase levels leads to about 26,000 minutes total reduction in expected arrival

delays. This kind of sensitivity analysis can be replicated for other airports using our model and

a cost-benefit model can be established as a decision support tool for policy makers. While we

do not include the cost of adding capacity at each airport, our model provides a new tool for

evaluating investments in either capacity expansions at each airport, or in evaluating the benefits

of new technologies (e.g., modernized landing and tracking technologies, En Route Automation

Modernization program (ERAM), and etc.) assessed by the FAA under its Air Traffic Control

(ATC) and Next Generation (NextGen) modernization program. Since, our model is at a micro

(flight) level, the benefits of such capacity expansion proposals on network delays can be easily

evaluated (ATC Modernization and NextGen: Near-Term Achievable Goals 2009).

6. Concluding Remarks

Flight delays have been a growing issue and they have reached an all-time high in recent years,

with the airlines’ on-time performance at its worst level in 2007 since 1995. A recent report by the

Joint Economic Committee of the US Congress (Schumer and Maloney 2008) has estimated that

the total cost to the US economy due to flight delays was as much as $41 billion in 2007.

The goal of this paper was to build stochastic models and use publicly available data to examine

the impact of airline network structures and schedules on the reliability of the air-travel infrastruc-

ture. Our analysis focused on answering the following questions: Which are the bottleneck airports

in the US air-travel infrastructure (i.e., airports that cause most delay propagation)? How would

increasing airport capacity at these airports alleviate delay propagation? What are the appropriate
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metrics for measuring the robustness of airline schedules? How could these schedules be made more

robust? Which flight in an aircraft rotation is a bottleneck flight (and, hence, deserves managerial

attention)?

We make several policy recommendations based on our analysis. Our analysis suggests that the

DOT on-time metric can significantly inflate true on-time performance and can be misleading,

particularly to passengers with short connections. If providing accurate information to passengers

is desirable, then the DOT OTP metric should be modified so that on-time really means “on-

time”, i.e., the 15 minute buffer provided in the on-time metric should be eliminated. A careful

cost benefit analysis of this proposal, as discussed in section 5, needs to be conducted. We also

provide an analysis of alleviating the impact of congestion by augmenting airport capacities at

different airports. This can be implemented through a variety of ways such as adding runways, using

modernized landing techniques, better equipment, and etc. Our analysis shows that alleviating the

impact of congestion at Atlanta Hartsfield-Jackson and Chicago O’Hare airports would provide

the largest network benefits to the domestic air-travel system.

From the airlines perspective, our stochastic model is well suited to isolate the impact of spill-

overs on schedule robustness. Separating intrinsic block-time from total block-time helps identify

the spillover accurately for any aircraft rotation. This is important for airline practitioners since

it is well known that spillovers are highly dependent on the sequence of flights flown in an aircraft

rotation. Our model also provides guidelines to airlines on which bottleneck flights they should

focus to minimize the total network impact. In order to make their schedules more robust, airlines

should allocate larger resources (e.g., crew, block-times, etc.) to flights that have a large network

impact.

As indicated in Ball et al. (2010), airlines have been padding their schedules and this consequently

increases the planned costs of airline operations. Airlines should intelligently allocate their resources

(e.g., block-times) to flights. As a future avenue of research, our stochastic model can be used to

allocate ground-time and block-times optimally across different flights without exceeding a budget

constraint (i.e., total block-time that can be allocated across the entire network). This optimization

model can provide potential benefits in terms of reducing total network arrival delays. Another

potential future research idea is to compute the passenger on-time arrival probability which is

driven by airline network structures, as well as connecting itineraries taken by passengers. Since

a sample of this data is also publicly available, a new metric that computes passenger on-time

arrival probability can be developed and a passenger-centric schedule robustness measure can be
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computed.

Our modeling approach has a few limitations. We did not explicitly model delays due to crew

and ground resources/gates/baggage. The lack of available data precludes us from incorporating

such constraints into our models. This limitation may not be as severe as one thinks for three

reasons. First, our block-time probabilistic distribution models are agnostic to the reason behind

a flight disruption and hence the aggregate impact of crew related disruptions are captured in

our model. Second, most domestic carriers have reserve crews readily available to cover for crew

disruptions (see Sohoni et al. (2006)). Finally, many airlines, recognizing the potential for crew

related disruptions, now often build crew rotations so that crew members stay with the same

aircraft for most of their duty periods (see Mercier et al. (2005) and Ehrgott and Ryan (2002)).

Our analysis, however, can be sharpened at the flight level if crew information was available.

Overall, the contribution of this paper is two-fold. First, we develop stochastic models, using

empirical data, to analyze the propagation of delays through air-transportation networks. A key

feature of our analysis is that we utilize data available on the entire US domestic network consisting

of all airports and all major airlines, instead of focusing on a few airports or a few airlines. Another

key feature of our model is that we conduct analysis at a micro (individual flight) level, instead

of an aggregate level. Such a model is useful in evaluating the impact of changes made to one

part of the system on the entire network. Also, our stochastic models allow us to develop three

important robustness measures for airline networks. Second, our analysis enables us to make policy

recommendations regarding managing bottleneck resources in the air-travel infrastructure, which

if addressed, could lead to improvement in air-travel reliability.
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Appendix A: Tables and Cleaning Up the Data

CRS ACTUAL CRS ACTUAL
ORIGIN DEST DEP-TM DEP-TM ARR-TM ARR-TM

BHM ATL 6:00 AM 5:57 AM 7:50 AM 7:54 AM
ATL IND 8:45 AM 8:40 AM 10:18 AM 10:14 AM
IND ATL 10:58 AM 10:50 AM 12:33 PM 12:15 PM
ATL DCA 1:20 PM 1:17 PM 2:59 PM 2:54 PM
DCA ATL 4:00 PM 3:57 PM 5:53 PM 5:35 PM
ATL IND 6:55 PM 6:52 PM 8:32 PM 8:22 PM

ACTUAL TURN- BUFFER-TM GROUND-TM
BLOCK-TM (Qi) BLOCK-TM (DL

i ) AROUND-TM (Ti) (Bi) (Gi) POSITION
50 min 54 min 30 min 0 min - 1
93 min 89 min 38 min 17 min 55 min 2
95 min 77 min 31 min 9 min 40 min 3
99 min 94 min 38 min 9 min 47 min 4
113 min 95 min 30 min 31 min 61 min 5
97 min 87 min 38 min 24 min 62 min 6

Table 6 A snapshot of aircraft rotation data: Delta Airline’s aircraft with tail number N980DL flown on

September 24, 2007

Airport Avg. Turnaround Time
New York JFK 42.36 min

Miami 38.17 min
Chicago O’Hare 36.44 min

Baltimore 31.73 min
Indianapolis 31.14 min

Chicago Midway 26.9 min
Houston William P. Hobby 24.02 min

Dallas Love Field 19.3 min

Table 7 Average turn-around times of some airports across all aircraft types

Model Num. of Seats Avg. Turnaround Time
Boeing 737-2 104-118 26.68 min
Boeing 757-2 200-234 41.05 min
Boeing 767-3 218-350 52.39 min
Airbus A-319 124-156 33.87 min
Airbus A-320 148-180 35.47 min

McDonnell Douglas DC-9 90-125 26.47 min

Table 8 Average turn-around times of some aircraft models across all airports

We cleaned up bad data and eliminated some flights with the following conditions: (i) scheduled

departure time of an aircraft from an airport is earlier than its scheduled arrival of the previous

flight to the same airport, (ii) same aircraft flying on the same route successively on the same day

(duplicate records, e.g., Flight 1: IND-PHL, Flight 2: IND-PHL, and Flight 3: PHL-JFK), and (iii)
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an aircraft arrives to an airport and the next flight of the same aircraft is from a different airport

in less than 5 hours. By excluding these bad observations (probably due to data entry errors), the

total number of valid flights between 2005 and 2007 dropped down to 20,684,721 from 21,735,733

(See Tables 9, 10, and 11 below for examples of bad data). In addition, we assumed that if an

aircraft stays idle at an airport for more than 5 hours, the next flight of the same aircraft is the

first flight of its next rotation.

ACTUAL ACTUAL
ORIGIN DEST DATE DEP-TM ARR-TM ACTUAL-DIFF POSITION

ATL LAS 1/30/2005 8:36 13:25 35:48 1
LAS ATL 1/30/2005 14:20 21:00 0:55 2
ATL FLL 1/30/2005 16:15 17:52 0:00 .
ATL FLL 1/30/2005 22:33 0:15 1:33 3
FLL ATL 1/31/2005 6:50 8:54 6:35 1

Table 9 A duplicate record

ACTUAL ACTUAL
ORIGIN DEST DATE DEP-TM ARR-TM ACTUAL-DIFF POSITION

VPS ATL 1/15/2005 6:10 AM 8:40 AM . 1
ATL CHA 1/15/2005 1:35 PM 2:10 PM 4:55 2
CHA ATL 1/15/2005 3:00 PM 3:55 PM 0:50 3
PFN ATL 1/15/2005 6:20 PM 8:21 PM . .
ATL VPS 1/15/2005 10:00 PM 10:20 PM 6:05 1

Table 10 Wrong origin or destination

ACTUAL ACTUAL
ORIGIN DEST DATE DEP-TM ARR-TM ACTUAL-DIFF POSITION

ORD IAH 2/09/2007 13:00 15:21 0:55 1
IAH ORD 2/09/2007 16:27 . . 2

Table 11 Missing data

Appendix B: Proofs

Proof of Theorem 1.

Proof. Recollect that deterministic models assume that all the downstream flights operate as

planned, i.e., do not incur any intrinsic delays. However, our stochastic model allows for incorpo-

rating such delays. Consider a rotation with n flights. Our goal is compute the additional delay,

caused on flight i due to the root propagated delay, i.e., NIAD1,i.
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We first consider a deterministic analysis wherein we assume that all future flights do not incur

any intrinsic delays. Thus, the the deterministic estimate of root propagated delay can be written

as,

RPDi =

(
AD1 −

i∑
k=2

Bk

)+

, (24)

where Bk is the buffer, i.e. scheduled ground-time, before flight k. However, with a stochastic

model, the propagated delay is computed as

RPDi =

(
AD1 −

i∑
k=2

Bk +
i∑

k=2

(Dk −Qk)

)+

.

Now notice that if Dk > Qk for any consequent flight, then this is flight k’s intrinsic delay. The

additional impact of flight k’s intrinsic delay on flight i’s arrival delay is attributed to flight k itself

(i.e., NIADk,i) and is not attributed to the root propagated delay (i.e., NIAD1,i). Consequently, we

ignore such cases and rewrite the stochastic propagated delay as

RPDi =

(
AD1 −

i∑
k=2

Bk +
i∑

k=2

(Dk −Qk)
−

)+

=

(
AD1 −

i∑
k=2

Bk −
i∑

k=2

(Qk −Dk)
+

)+

. (25)

It is readily verifiable that in (25),
i∑

k=2

(Qk −Dk)
+ ≥ 0. Consequently, RPDi computed using (25) is

smaller than RPDi computed using (24), for every realization of the random variable Dk,1<k≤ i.

Hence, the deterministic model overestimates the impact of (root) propagated delay of the root

flight 1. This proves part (i) of Theorem 1.

To prove part (ii), recollect that for a given Li = li, the total propagated delay is given by

TPDi =ADi − [Di −Qi]
+
where ADi = [Di + li −Qi]

+
. Then,

E(TPDi|Li = li) = E[Di + li −Qi]
+ −E[Di −Qi]

+ (26)

Note that [Di+ li−Qi]
+− [Di−Qi]

+ ≤ li for every realization of the random variable Di. Also, a

deterministic approximation to the expected total propagated delay substitutesDi =Qi in equation
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26. Thus the deterministic approximation estimates the total propagated delay as li. Since, the

expected stochastic total propagated delay cannot exceed li, the deterministic model overestimates

the expected total propagated delay.

�

It is also noteworthy that while computing the root propagated delay, the deterministic models

typically assume that the scheduled block-time Qi = E(Di) in addition to the assumption that

all subsequent flights operate as per schedule. One issue with doing so is that the model may

underestimate the expected arrival delay of subsequent flights in an airline network. Note that the

arrival delay of a flight is the sum of the intrinsic delay of a flight and the total propagated delay.

While the deterministic approach overestimates the total propagated delay, as shown in Theorem

1, the deterministic approach underestimates intrinsic delays since E(Di−Qi)
+ ≥ 0. We next show

that the net result of the deterministic approach is to underestimate arrival delays. Moreover, the

magnitude of the underestimation of the expected arrival delay is maximum for “small” spill-overs

(which is the case for most spill-overs in our data set). We formalize these results in Theorem 2

below.

Theorem 2. Consider any flight i in an aircraft rotation. For any given Li = li, let the magnitude

of difference of the expected arrival delay of flight i under a stochastic model and an equivalent

deterministic model be denoted by the difference Δ(li) =EDi
(ADi|Li = li)−max{0,E(Di)+ li −Qi}

where EDi
(·) denotes the expectation over the intrinsic block-time Di . Then,

(i) a deterministic model of delay propagation underestimates E (ADi), i.e., Δ(li)≥ 0, and

(ii) Δ(li) is decreasing in li if Qi =E(Di).

Proof of Theorem 2.

Proof. Let f(·) and F (·) denote the pdf and cdf of Di. To prove part (i) consider an aircraft

rotation with two consecutive flights i− 1 and i. We prove the result for any value of Qi. Using

our notations defined earlier let E (ADi) denote the expected arrival delay of flight i. From (3)

we have ADi = [Di + li − Qi]
+ = max{0, (Di + li −Qi)}. Notice that ADi is a piece-wise linear
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convex function of the random variable Di. In a deterministic model of delay propagation, Di

would be replaced by E (Di). From Jensen’s inequality we know that if f(X) is a convex function

of X, then E(f(X))≥ f(E(X)). Thus, we must have E (ADi|Li = li)≥max{0, (E (Di)+ li −Qi)}

implying that any deterministic model underestimates arrival delays of subsequent flights. This

result holds for any flight i on an N flight rotation for a given realization Li = li.

Now to prove part (ii) notice that

EDi
(ADi|Li = li) =

∫ ∞

Qi−li

(x−Qi + li)f(x)dx, (27)

=E(Di)−Qi + li −
∫ Qi−li

0

(x−Qi + li)f(x)dx. (28)

Therefore, when Qi =E(Di)

Δ(li) =E(Di)−Qi + li −
∫ Qi−li

0

(x−Qi + li)f(x)dx− (E(Di)+ li −Qi) ,

=−
∫ Qi−li

0

(x−Qi + li)f(x)dx.

Evaluating the partial derivative with respect to li we get

∂
∂ li

Δ(li) =−F (Qi − li), (29)

≤ 0. (30)

Thus, Δ(li) is decreasing in li when Qi =E(Di). �

Proof of Proposition 1.

Proof. Deshpande and Arıkan (2012) showed that log(Di)∼Laplace
(
μ̂i,2b̂

2
i

)
, so

Di∼log-Laplace
(

eμ̂i

1−b̂2
i

, e2μ̂i

(
1

1−4b̂2
i

− 1

(1−b̂2
i
)2

))
. Given (2) and assuming two consecutive flights are

independent, we have

E[DL
i ] =E[Di] +E[DL

i−1 − (Qi−1 +Bi)]
+, (31)

Var[DL
i ] = Var[Di] +Var[DL

i−1 − (Qi−1 +Bi)]
+. (32)
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We assume that DL
i−1 follows a log-Laplace distribution with parameters μ̃i−1 and b̃i−1 so that

DL
i ∼log-Laplace

(
eμ̃i

1−b̃2
i

, e2μ̃i

(
1

1−4b̃2
i

− 1

(1−b̃2
i
)2

))
. Let f̃i−1(x) denote the PDF of DL

i−1. Then,

E[DL
i−1 − Q̃i−1]

+ =

∫ ∞

Q̃i−1

(x− Q̃i−1)f̃i−1(x)dx

where

f̃i−1(x) = exp(−μ̃i−1)
1

2b̃i−1

⎧⎪⎪⎨⎪⎪⎩
x

1−b̃i−1

b̃i−1 exp
(
−μ̃i−1

1−b̃i−1

b̃i−1

)
, 0<x< exp(μ̃i−1)

x
−

1+b̃i−1

b̃i−1 exp
(
μ̃i−1

1+b̃i−1

b̃i−1

)
, x≥ exp(μ̃i−1).

Then,

E[DL
i−1 − Q̃i−1]

+ =

∫ ∞

Q̃i−1

(x− Q̃i−1)f̃i−1(x)dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp(μ̃i−1)

1−b̃2
i−1

− Q̃i−1 +
b̃i−1 exp

(
−μ̃i−1

b̃i−1

)
Q̃

1+b̃i−1

b̃i−1
i−1

2(1+b̃i−1)
, if exp (μ̃i−1)> Q̃i−1

b̃i−1 exp

(
μ̃i−1

b̃i−1

)
Q̃

b̃i−1−1

b̃i−1
i−1

2(1−b̃i−1)
, otherwise.

So, we can rewrite (31) as follows:

E[DL
i ] =

exp(μ̂i)

1− b̂2i
+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp(μ̃i−1)

1−b̃2
i−1

− Q̃i−1 +
b̃i−1 exp(

−μ̃i−1

b̃i−1
)Q̃

1+b̃i−1

b̃i−1
i−1

2(1+b̃i−1)
, if exp(μ̃i−1)> Q̃i−1

b̃i−1 exp(
μ̃i−1

b̃i−1
)Q̃

b̃i−1−1

b̃i−1
i−1

2(1−b̃i−1)
, otherwise.

(33)

Let K =E[DL
i−1 − Q̃i−1]

+, then

Var[DL
i−1 − Q̃i−1]

+ = E

[(
DL

i−1 − Q̃i−1 −K
)2

]+

= E

[(
DL

i−1 − Q̃i−1

)2

− 2K(DL
i−1 − Q̃i−1)+K2

]+

=

∫ ∞

Q

(
(x−Q)2 − 2K(x−Q)+K2

)
f̃i−1(x)dx

=

∫ ∞

Q

(x−Q)2f̃i−1(x)dx− 2K2 +K2Pr(DL
i−1 ≥Q).

Let’s find the expression for Pr(DL
i−1 ≥Q):
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Pr(DL
i−1 ≥ Q̃i−1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− 1

2
Q̃

1

b̃i−1

i−1 exp

(−μ̃i−1

b̃i−1

)
, if exp (μ̃i−1)> Q̃i−1

1

2
Q̃

− 1

b̃i−1

i−1 exp

(
μ̃i−1

b̃i−1

)
, otherwise.

Now, we need to calculate

∫ ∞

Q̃i−1

(
x− Q̃i−1

)2

f̃i−1(x)dx. This expression can be written as follows:

∫ ∞

Q̃i−1

(
x− Q̃i−1

)2

f̃i−1(x)dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(2μ̃i−1)

1−4b̃2
i−1

− 2Q̃i−1 exp(μ̃i−1)

1−b̃2
i−1

+Q̃2
i−1 −

Q̃

1+2b̃i−1

b̃i−1
i−1

exp

(
−μ̃i−1

b̃i−1

)
b̃2i−1

(1+2b̃i−1)(1+b̃i−1)
, if exp(μ̃i−1)> Q̃i−1

Q̃

2b̃i−1−1

b̃i−1

i−1 exp
(

μ̃i−1

b̃i−1

)
b̃2i−1

(1−2b̃i−1)(1−b̃i−1)
, otherwise.

Recall that Var[DL
i−1− Q̃i−1]

+ =

∫ ∞

Q

(x−Q)2f̃i−1(x)dx−2K2+K2Pr(DL
i−1 ≥Q), as a result when

exp(μ̃i−1)> Q̃i−1,

Var[DL
i−1 − Q̃i−1]

+ =
exp(2μ̃i−1)

1− 4b̃2i−1

− 2Q̃i−1 exp(μ̃i−1)

1− b̃2i−1

+(Q̃2
i−1 −K2)

−Q̃
1

b̃i−1

i−1 exp

(−μ̃i−1

b̃i−1

)(
Q̃2

i−1b̃
2
i−1

(1+ 2b̃i−1)(1+ b̃i−1)
+

K2

2

)
.

And otherwise when exp(μ̃i−1)≤ Q̃i−1,

Var[DL
i−1 − Q̃i−1]

+ = Q̃

−1

b̃i−1

i−1 exp

(
μ̃i−1

b̃i−1

)(
Q̃2

i−1b̃
2
i−1

(1− 2b̃i−1)(1− b̃i−1)
+

K2

2

)
− 2K2,

where K =E[DL
i−1 − Q̃i−1]

+. We know that Var[DL
i ] = Var[Di] +Var[DL

i−1 − Q̃i−1]
+. Then,

Var[DL
i ] = exp(2μ̂i)

(
1

1− 4b̂2i
− 1

(1− b̂2i )
2

)
+Var[DL

i−1 − Q̃i−1]
+ (34)

To develop analytic expressions for μ̃i and b̃i, we perform a second-order matching. To do so, we

solve the following expressions for the mean and variance together:

E[DL
i ] =

exp(μ̃i)

1− b̃2i
, (35)

Var[DL
i ] = exp(2μ̃i)

(
1

1− 4b̃2i
− 1

(1− b̃2i )
2

)
. (36)
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Let A=
Var[DL

i ]

E[DL
i
]2

=
(

(1−b̃2i )
2

1−4b̃2
i

− 1
)
and S = b̃2i . Then,

A+1=
(1−S)2

1− 4S

(A+1)(1− 4S) = 1− 2S+S2

0 = S2 +S(2+ 4A)−A. (37)

By solving the quadratic equation (37) we obtain:

S1 =
−(2+ 4A)+

√
(2+ 4A)2 +4A

2

S2 =
−(2+ 4A)−

√
(2+ 4A)2 +4A

2

Since b̃i cannot be negative, S = b̃2i =−(1+ 2A)+
√
(4A+1)(A+1).

By definition, A> 0, so

(1+2A)2 = (1+4A+4A2)+A> (1+ 4A+4A2)

(4A+1)(A+1)> (1+ 2A)2√
(4A+1)(A+1)> 1+2A.

Hence,

b̃2i =−(1+ 2A)+
√
(4A+1)(A+1)> 0. (38)

We know that E[DL
i ] =

exp(μ̃i)

1− b̃2i
, so μ̃i can be found using

μ̃i = ln
(
E[DL

i ](1− b̃2i )
)
. (39)

�

The reader is referred to Arıkan (2011) for the details of the expressions in-between steps some

of which were skipped above. The two-moment approximation works as follows:

1. For the first flight of the rotation, let b̃1 = b̂1 and μ̃1 = μ̂1.

2. Starting from the second flight of the rotation, calculate E[DL
i ] and Var[DL

i ] using the recursive

formulations (33) and (34). Then, calculate
Var[DL

i ]

E[DL
i ]

2
and find b̃2i =−(1+ 2A)+

√
(4A+1)(A+1)

and μ̃i = ln
(
E[DL

i ](1− b̃2i )
)
.

3. Go back to step 1 once you start a new rotation.
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Appendix C: A Stochastic Model of Intrinsic Block-time

Deshpande and Arıkan (2012) identify several variables that affect the intrinsic block-time of a

flight. These include route flown by the flight, air-carrier flying the flight, origin and destination

airports, congestion at the origin/destination airports at the time of flight departure/arrival, age

of aircraft, the number of passengers on the flight, and month, day-of week, and arrival/departure

time block of the flight. Note that all of these variables—except congestion, average passengers,

and aircraft age variables—are readily available in airline on-time performance data. A unique

measure of congestion is used to understand its impact on block-times. For each flight in the on-

time performance data set, the arrival/departure congestion is calculated by counting the total

number of flights scheduled to arrive/depart in an adjacent one-hour time block around the sched-

uled arrival/departure time at the destination/origin airport. This number is then normalized by

dividing by that airport’s arrival/departure capacity which was obtained from the ASPM database.

This congestion measure is unique in the sense that it measures congestion for an individual flight

and is not an average congestion measure which has been typically used in prior literature. By

merging airline on-time performance data with aircraft registry database, deregistered aircraft file,

and aircraft reference file, Deshpande and Arıkan (2012) obtain aircraft specific variables (e.g.,

aircraft age, number of seats) associated with each flight. In order to calculate the number of aver-

age passengers on each flight, Deshpande and Arıkan (2012) multiply the total seats of an aircraft

by the load factor they obtain from T-100 domestic market data (load factor is the proportion of

available seats that were actually filled during a specified period).

Deshpande and Arıkan (2012) show that the log-Laplace distribution provides a good-fit to model

the intrinsic block-time of a flight. They also provide a method to estimate the parameters μi and

b2i of the log-Laplace distribution for the intrinsic block-time of a flight i. μ̂i represents the best

estimate of μi computed by using the above-mentioned data sets.

The first estimator, μ̂i, can be found by regressing ln(Di) on Xi, where Xi is the vector of

variables that impact the intrinsic block-time distribution. The estimation model is given by

ln(Di) = β0 +β1 ∗Routei +β2 ∗Origini +β3 ∗Destinationi +β4 ∗Carrieri +β5 ∗Monthi +
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β6 ∗Day-of-Weeki +β7 ∗Departure-Time-Blocki +β8 ∗Arrival-Time-Blocki +

+β9 ∗Arrival-Congestioni +β10 ∗Departure-Congestioni +

β11 ∗Aircraft-Agei +β12 ∗Average-Passengersi + εi (40)

The above regression model is run on 2005-2006 data consisting of 13,227,718 observations to obtain

an estimate of β, β̂. Note that the estimates obtained for all variables are significant at the %99.99

level. These estimates are then applied to 2007 data consisting of 6,736,521 flight observations to

obtain μ̂i as follows.

μ̂i =XT
i β̂ (41)

To estimate the parameter b2i , it is assumed that the variance of the block-time across all flights

is heteroscedastic and the error terms can be split into three components11:

Total Error =Origin Airport Shock+Destination Airport Shock+Carrier Shock.

For any flight i, in any month m in the given data, denoting the origin airport shock as σ̂2
org,m,

the destination airport shock as σ̂2
dest,m, and the carrier specific shock as σ̂2

i,c, the estimate of the

variance of the log intrinsic-block-time, 2b̂2i , is

2b̂2i = σ̂2
org,m + σ̂2

dest,m + σ̂2
i,c. (42)

See Deshpande and Arıkan (2012) for the methodology to obtain the estimates σ̂2
org,m, σ̂

2
dest,m, and

σ̂2
i,c.

Appendix D: Covariance Between Intrinsic Block-time and Spill-over

In the approximation presented in Proposition 1, we assume that the covariance between Di and

(DL
i−1−(Qi−1+Bi))

+ is equal to zero. However, since the estimate of the variance of the log intrinsic

block-time of each flight i is equal to σ̂2
i,org,m + σ̂2

i,dest,m + σ̂2
i,c, for any two arbitrary consecutive

11 Deshpande and Arıkan (2012) also tried different variance models including a route and a month shock term but
origin, destination and carrier shock model showed the best fit.
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flight in the same rotation, we have σ̂2
i−1,dest,m = σ̂2

i,org,m; and therefore, DL
i and DL

i−1 are correlated.

This means that, based on (2), variance of actual block-time can be written as follows:

Var[DL
i ] = Var[Di] +Var[DL

i−1 − Q̃i−1]
+ +2Cov[Di, (D

L
i−1 − Q̃i−1)

+], (43)

where Q̃i−1 = Qi−1 + Bi. Note that if ln(DL
i ) = μi + ξi,org,m + ξi,dest,m + ξi,c where the random

error components ξi,org,m, ξi,dest,m, and ξi,c are normally distributed with means zero and variances

σ̂2
i,org,m, σ̂

2
i,dest,m, and σ̂2

i,c respectively, then ln(DL
i ) has a normal distribution12 (i.e., DL

i has a

log-normal distribution). We compute E[Di], Var[Di], E[(D
L
i−1− Q̃i−1)

+], Var[(DL
i−1− Q̃i−1)

+], and

E[Di(D
L
i−1 − Q̃i−1)

+] with the assumption that the variance components (ξi,org,m, ξi,dest,m, ξi,c) are

normally distributed (these components are analytically not tractable for the Laplace distribution).

It is plausible that we could construct empirical distributions from the historical data and compute

the covariance measures based on these empirical distributions. However, (i) to do so is compu-

tationally prohibitive (extremely time consuming in the least), and (ii) such an approach need

not result in better results because the empirical distributions may not be representative of the

flights performance in the future (just as our continuous approximation, this too is an approximate

distribution). Let fi(x) and gi−1(x) denote the probability distribution functions of Di and DL
i−1

respectively, hence

E[Di] =

∫ ∞

0

xfi(x)dx

Var[Di] =

∫ ∞

0

(x−E[Di])
2fi(x)dx

E[(DL
i−1 − Q̃i−1)

+] =

∫ ∞

Q̃i−1

(x− Q̃i−1)gi−1(x)dx

Var[(DL
i−1 − Q̃i−1)

+] =

∫ ∞

Q̃i−1

(
x− Q̃i−1 −E[(DL

i−1 − Q̃i−1)
+]
)2

gi−1(x)dx.

Let σ̂2
i,dest,m+ σ̂2

i,c = σ2
y, σ̂

2
i−1,org,m+ σ̂2

i−1,c = σ2
z , and σ̂2

i−1,org,m = σ2
x, then the probability distribution

functions of Di and DL
i−1 can be written as follows:

fi(x) = exp

(−(ln(x)−μi)
2

2(σ2
x +σ2

y)

)
1

x
√
2π(σ2

x +σ2
y)

(44)

12 We cannot specify that ln(DL
i ) has a Laplace distribution if ξi,org,m, ξi,org,m, and ξi,c are Laplace distributed since

the sum of Laplace random variables is not a Laplace random variable.



Arıkan, Deshpande, and Sohoni: Building Reliable Air-Travel Infrastructure
13

gi−1(x) = exp

(−(ln(x)−μi−1)
2

2(σ2
x +σ2

z)

)
1

x
√
2π(σ2

x +σ2
z)
. (45)

The expression E[Di(D
L
i−1 − Q̃i−1)

+] can now be stated as follows:

E[Di(D
L
i−1 − Q̃i−1)

+] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

(ln Q̃i−1−μi−1)−x

exp(μi + y+x)

×
(
exp(μi−1 + z+x)− Q̃i−1

)
× exp (−z2/2σ2

z)

σz

√
2π

exp (−x2/2σ2
x)

σx

√
2π

exp
(−y2/2σ2

y

)
σy

√
2π

dzdxdy

We randomly select 1205 flights from our 2007 data set. After excluding the first flight of each

rotation, we end up with 989 valid flights. For each valid flight, we calculate Var[Di], Var[(D
L
i−1 −

Q̃i−1)]
+, Cov[Di, (DL

i−1 − Q̃i−1)
+] = E[Di(D

L
i−1 − Q̃i−1)

+] − E[Di]E[D
L
i−1 − Q̃i−1]

+, and Var[DL
i ]

using (43). Then, we compute the effect of covariance in total variance by calculating the ratio

2Cov[Di, (D
L
i−1 − Q̃i−1)

+]

Var[DL
i ]

. The mean value of this ratio across all of these 989 flights is 3.69%

(0.0369) with a maximum value of 19.72% and a minimum value of 0.00%. Thus, ignoring the

covariance term leads to a small underestimation of the total variance in our model. However,

computing the exact covariance term for each of the millions of flights in our data set is computa-

tionally not feasible. Therefore, we continue our analysis with the assumption that the terms Di

and (DL
i−1 − (Qi−1 +Bi))

+ are independent.

Appendix E: Including International Flights in the Congestion Calculation

To accurately measure the congestion variable, in addition to domestic flights, we also consider

international flights. For this purpose, we use T-100 Segment (All Carriers) data which combines

monthly domestic and international T-100 segment data. It includes departures scheduled and

departures performed for each origin-destination pair served by different carriers. Flights with

both origin and destination in a foreign country are not included. To calculate the new congestion

variables, we follow the steps outlined below:

1. For each origin-month (destination-month) combination, we calculate the number of

domestic and international flight departures (arrivals) separately. Let’s call these variables
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T100-domestic-flights-out (T100-domestic-flights-in) and T100-international-flights-out (T100-

international-flights-in) respectively.

2. Next, we merge these origin-month-departures (destination-month-arrivals) triplets with our

main data set.

3. From Airline On-Time Performance data set, we also calculate the number of domestic flight

departures (arrivals) per month from each airport. Let’s call this variable Ontime-domestic-flights-

out (Ontime-domestic-flights-in).

4. Finally, we calculate the percentage of flight departure (arrival) increase by using the ratio

of
T100-domestic-flights-out+T100-international-flights-out

Ontime-domestic-flights-out(
T100-domestic-flights-in +T100-international-flights-in

Ontime-domestic-flights-in

)
5. As the last step, we multiply our old normalized departure (arrival) congestion variable by

the percentage of flight departure (arrival) increase calculated in Step 4.

In summary, we normalized the congestion variable as follows: we counted the total number of

scheduled domestic and international departures (arrivals) around a one hour window of each flight

and then divided this number by the hourly departure (arrival) capacity of each airport.


