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Abstract

This paper studies how sampling variation in component

reliability estimates affects the computation of system

reliability that uses these estimates as input. Results show

that relative bias in system reliability grows quadratically with

the number of components for which each component reliability

estimate is used, whereas the corresponding coefficient of

variation grows linearly with this number of components. If

these components are in parallel they lead to an understatement

of system reliability. In series, they lead to an overstatement.

The paper describes resampling schemes that eliminate bias

wi thout increasing the dominant variance term.
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Introduction

Every computation of system reliability relies on the

availability of numerical values for the reliabilities of

components from which the system is constructed. If these

numerical values were exact, then a direct computation of system

reliability would at most suffer from numerical roundoff error.

Since the numerical values of component reliabilities rarely are

known with exactness, a system reliability computation

customarily employs estimates of these quantities derived from

test data. This substitution introduces an additional source of

error attributable to the sampling variation inherent in the

component reliability estimates. As the present paper shows,

neglecting this source of error can produce a misleading system

reliability.

This error manifests itself in bias and variance. For a

system composed of several types of components where the system

reliability computation uses a common component reliability

estimate as input for all components of the same type, the

relative bias in system reliability increases quadratically with

eacn of the numbers of components of each type, whereas the

corresponding coefficient of variation grows linearly with these

numbers. For components of the same type in parallel, this

system reliability computation understates true reliability. For

components of the same type in series, the computation overstates

reliability.

These results imply that for given component reliability

estimates system reliability computations for two different
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systems composed of exactly the same number of components of each

type can have substantially different statistical e rr or

characteristics. While no method exists for reducing the .

variance of the system reliability base on component reliability

estimates of' fixed sample sizes, resampling schemes do allow one

to eliminate bias without increasing the dominant variance term.

Section 1 introduces the notation for characterizing a

system as a network. Section 2 gives the conventional estimator

for system reliability and describes how one can use a confidence

interval to assess its statistical accuracy. Section 3 shows how

parallel and series systems affect statistical error and Section

4 extends the results to more general systems. Section 5

describes two resampling plans that eliminate bias while

preserving the dominant variance term. Section 6 gives the

conclusions of the study.

1. System Characteristics%

As a basis for studying error, consider %'.ae network G =(V,E)

with node set V and arc set E. For convenience of exposition,

assume that nodes represent components that function perfectly

and that arcs represent components that fail randomly and

independently. Hereafter, we treat the word component as

synonymous with arc. To characterize G more completely, we

def ine:
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r = number of distinct types of components

Pi - probability that a component of type i functions

i= set of arcs that use components of type i
r

(E iE J-0 i-j, E - U
-i-i -

k i =Eli number of components of type i

k - (k ... ,k)

e. = jth arc in E

x. = 1 if arc e.. functions, = 0 otherwise

'p. k

x -
I x a number of arcs of type i that function

i ij- I.1

- ('11 ''x 1k 2k ;.. '''x
2 r

X - set of all arc states x

r x. k -x
P(x,K,p) - IT p1  i xCX

= probability mass function of states in X

( (x) = 1 if the system functions, = 0 otherwise

g(p) = (x) P(x,k,p) = probability that the system functions.
- XEX ~

We also assume that G describes a coherent system. A system of com-

ponents is coherent if its structure {(x)} is nondecreasing and

each component is relevant. See Barlow and Proschan (1981, p. 6).

The system reliability g(p) can have diverse interpretations.

For example, let T denote a subset of V and let

4(x) = 1 if all nodes in T are connected when arc

state x occurs

= 0 otherwise.

- . - , . . . , ' . . . . . -. - . , .- . . . . . .- . - - . - , . . . .. . . - .-1,, . - , . : - . - . . . . , . . -,
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Then g(p) denotes the probability that all nodes in T are

connected. If T = fs,t}, this is called the s-t connectedness

problem. If T = V, it is called the all terminal connectedness

problem.

Reliability in flow problems can also be characterized.

Suppose that G is a directed acyclic flow network with source

node s and terminal node t. Let

pi = pr (arc j has flow capacity b. ) b.>01 1

1 - pi = pr (arc j has zero flow capacity)

xij = 1 if arc j in E has flow capacity b.

= 0 if arc flow capacity is zero

and let

O(x) = O(x,z) = 1 if the maximal s-t flow exceeds a snecified

demand z when state x occurs

= 0 otherwise.

Then g(p) = g(p,z) denotes the probability that the maximal s-t

flow in G exceeds z.

Although the exact computation of g(p) for these examples

belongs to the NP-hard class of problems (Valiant 1979, Ball and

Provan 1983, Provan 1986), we assume that for a particular

network instance of interest, one can indeed effect the exact

computation if p is known. If an exact computation proves infeas-

ible and one resorts to the Monte Carlo method, then one needs to
m

, ,4
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perform a more elaborate analysis to determine how statistical

variation in the component reliability estimates interacts with

the sampling variation that the Monte Carlo method induces.

2. Component Reliability Estimates

In practice, p is not known exactly, but can be estimated

from test data. Suppose one tests n i components of type i for

i=1,...,r. Each test begins with a new component functioning.

Let Zij denote the outcome of the jth test of component of type i

where Zij = 1 if the component functions at the end of the test

period and Zij = 0 if the component fails prior to the end of the

test period. Presumably each component of type i is tested under

identical conditions that resemble the system environment. Then

one has the data vectors Z, = Zii ... in for i , ... r where
1

the elements of Z. are independent and identically distributed

with pi = EZ j=1,...,ni, Z ' ''Zr~  are independent, and

inJ

1 n (1)
Pi = n.

gives the maximum likelihood estimator of pi with

Epi = pi (2)

var p = Pi(1-P )/n (3)

E(pi-pi) 0 O( /nsi 'n ("4)

1 1

1l
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where 0(y) as y-L denotes a function f such that lim If(y)I/y is

y yL
bounded. Observe from (2) that pi is an unbiased estimator of p.

Let p - (Pl,...,Pr ). Then it is not unusual to estimate g(p)

by g(p). Although other methods exist for using test data to

estimate component reliabilities, the appeal of the method that we

adopt here arises from the well-understood sampling properties of

p, enabling us to concentrate on the statistical variation in g(p)

that substitution of p for p in g(p) induces. As Gaver and Hoel

(1970) show, other methods can lead to bias in component

reliability estimates, which would force us to conduct a more

complicated analysis to get at the sampling properties in the

system reliability estimate.

As Sections 3 and 4 make clear, g(p) generally either under-

states or overstates g(p) with regard to expectation. However,

for the moment, we describe how one can globally assess the

statistical accuracy of g(p) based on confidence intervals

computed for pl,...,pr.

n.
Let Z. = 1 Z... For each p. we seek a 100x(l-a) confidence

1 j =1 ij

interval [p*(Z .,n ), p *(Z n ) ]

*pr[p(Zni ) S p**(Z)] > I -na.r[ i ' " Pi

Let

F (m,q) m m m) q i 1-q) m-i 0<q~l; j=0,1 , . ,m. m=1 ,2,..

i=0



Then for a moderate sample size n i = n and Z i = z, one can solve

1 - Fz_ 1 (n,q ) = a/2

and (5)

Fz(n,q 2) = 1 - a/2 for i=1,...,r

for p1(n,z) and pi n,z), respectively, and achieve a confidence

coefficient of at least 1-a. We call the result a binomial

interval.

As n i increases, exact solution becomes difficult because of

numerical error. Then one has the well known result

lim pr{ ' P iPi / i c(a)} = - ,[p ( -p/C]/
n1 

i

where

Y 2

c(a) - {y: (21T) - /
2 2 e- 2 dw=1-a/2}

and in principle one can solve the corresponding quadratic form

2 2 22
p2 1+c (ct)/nI] - p[2p.+c (a)/n.] p - 0 (6)Pii

for p (ni,Z.) . p *(n.,Z.). The resulting confidence interval has

an error of approximation which decreases as n i increases. How-

ever, the rate of convergence is nonuniform, being most rapid for

Pi - '/2 and least rapid for pi close to zero and unity. This non-

W.--N"- . - --W
Sa .7.*. -. .~.- . , %
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uniform convergence limits the appeal of this confidence interval

in practice.

A third approach uses Chebyshev's inequality so that

P*(n i z) P**(niZ ) are again solutions of (6), but with I/a 4/I
i 1 1 1i i

replacing c(a). Although this confidence statement holds for

every ni, the interval width can be wide. A fourth approach

based on the probability inequality (Okamoto 1955, Hoeffding

1963)

pi+ 1-p. -En. "
Pr(Z i-p P ) IE{ P i /(p i +F-)] [(I-P i)/(I p l i- E:)] I i '

< 1 P

produces tighter intervals for small a. For n i ln(a/2)/ln max(pi.1-p.)

(P*(niZ), p *(ni.Z.)) covers p. with probability > I - a where

P*(ni'Z i) < p**(n Z) are now the solutions to the equation

P ln(E/p.) + (1-p.) ln[(1-0)/(l-p)] = n( /2). (7)

^ ^ .

See Fishman (1986). The ratio ln(a/2)/ln max(pi,I-pi) provides

an indication of whether or not n i  exceeds the required lower

bound.

Although the resulting interval leads to a confidence

interval of greater width than the binomial and normal intervals

do, it is considerably easier to compute than the binomial

interval is for moderate and large ni and induces no error of

approximation as the normal interval does. Therefore, we

IJP
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recommend the computation of a binomial interval from (5) when

possible and an interval based on (7) otherwise, provided that

n i .> in(a/2)/in max(Pi'l-pi).

Since Z 1 , ... ,Z r  are independent, one has

r
pr IPE I fip*(n.,Z i ),p* (n i  B 8

- i.=1I

where 8 = (l-a)r To achieve a confidence level 8, one chooses

a = 1 - 8
I /r for each interval. Since the system is coherent,

ag(p)/aPip > 0 for i = 1,...r. Therefore

pr [g(p ) < g(p) < g(p )] > 8 (8)

* * * ***

where p*=(p (n1,Z1),...,p*(n ,Z )) and p =p* (nZ .... P (n r )
1.1 1 r r r I 1 r r r

Since Pipni.Z i ) for i=I,...,r with probability

ii
one and since 3g(p)/3p. 0 for i=,.,,one has

g(p ) < g(p) < g(p ) with probability 1,

a result which provides a convenient way of assessing the extent

of sampling variation in g(p). With p* and p** in hand for

specified B, one can, for a specified system G, compite g(p*) and

g(p**) in two reliability evaluations and determine whether or not

the interval width g(p ) - g(p ) is sufficiently small for the

purposes of reliability analysis. As Sections 3 and 4 snow,

there is good reason to believe that this interval grows

" A
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substantially as the size of the system G, constructed from

components of types 1,... ,r, grows.

3. Parallel and Series Systems

We use the s-t connectedness problem to illustrate the

potential seriousness of errors in the estimate g(p).

Theorem 1. Let G denote a network of k, arcs of type 1 in

parallel with source node s and terminal node t so that

k

g(p) = 1 - (I-p )1 (9)

gives the probability that s and t are connected. Let

Z11 .... ,1n denote 0-I test data on n I  components of this type,

1 1 1l p - X Z p , and g(p) 1 ( pl )  Alson 1 =1 ij ~ 1  a -1 Also

Chebyshev's inequality gives

pr -p 1i I < p1 i-pl )/nl /21 > I - I/a 2 (10)

B >0.

Based on (10), the minimal sample size required to achieve

prlig(p)-g(p)i<ELi-g(p)II >1 - 12 E>0 (1 a)

is

" I

-- .-.,:. .... ., ,...- , ,... .-..,./ .- ." -.- ." ...' ...'.'. .,.. m,'' .'....'.'...., ' .'. '. ..'. .''. .. ,'.'.". *",'
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* B2 )[1 I /k1  2Cb

1 >  P1/(1-PI)[(1+:) I-1]2 (11b)

and

* 2 2 2lira nl/k I  > B p1 /[(1-P1 )[in(1+E)]2.le

Proof. Substitution into (11a) gives

1/k1

pr{Ig(p)-g(p) <E[1-g(p)1} = pr{[1-(l+E) 1](1-pl)<pl-p 1

1/k 1  1
<[I- ) I]> 1 -

Then Chebyshev's inequality (10) gives

2I/k 1 2I/k 1
n I  > a2 pl/(l-P l1) min {[l- (1+E:) I 112, [I- ( I-E) I 112 }

1/k 1  1/k 1  .

Since (I+ ) -1 1 - (<-1) , n in (1Ib) follows. Expression
1 1/k

(Ile) follows by applying L'Hopital's rule to (1/k 2 )/[(1+E) I-1 .

Note that ( 1la) is an attempt to control the relative error

on the system failure probability 1-g(p). Expression (l1c)

immediately makes apparent that the sample size n* needed to keep

this relative error at E grows quadratically with kl, the number

of arcs in parallel. Theorem 2 provides insight into the source

of the potential error.



-1 2-

Theorem 2. For k 1arcs of type 1 in parallel with g(p)

ki1 k 11 - (1-p 1  and g(p) = 1 (l-p1 )

lmEg(p) = - (1-p 1
1  (12)

k *

k 11
lrn n1 E~g(p)-g(p)] = -k (k1 -1)p (1-p)1 /2 (13)

n 1

and

2 2 k1 1
lirn n1 var g~p) k k1 pi 1 -p) . (1 4

n 1

Proof. Since

Eg(p) - 1 - (l-p1 n (J/n1), (1j) pj(1-p1)i

*j =0

(12) follows immediately. Let A Pi-p, and observe that

g(p) = 1 - C 1-p1 -A) k1 = 1 - I ) (- 1 ) A-1)

=1 - (i-p 1-A) k +k 1 (1-p 1)kl A-k 1 (k I- 1)(l-p 1 ) k -2A 2/12 +..

Since EA =0, EA 2= p 1 (1-p 1 )/n 1 and EA m= 0(1/n 1Lm+1)/j )m 3,
1 2

E g(p ) -g(p )] = -k 1(k I )p 1- p) / n 1+0(1 /n 2 as n1-*M,

and (13) follows. An analogous development gives (14).
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Theorem 2 raises several concerns. The quantity g(p) under-

states the true reliability g(p). Moreover, the relative bias

E[g(p)-g(p)]

g(p) - k 1 1k -1) p 1/2(1-p 1 )n1

makes clear that the dominant term in the relative understatement

increases quadratically in k1 . If the objective is to design a

parallel system based on component of type 1 with a specified

level of system reliability, then g(p) encourages one to add more

components in parallel than may truly be required.

Observe that the coefficient of variation

Y(k,p,n) = [var g(p)14 /[1-g(p)] - k1 [P,/(1-pl )n,1 1/2

reveals linear growth in k1 . As a result, a network with Jkl

components of type 1 in parallel would lead to a coefficient of

variation J times larger than a network GI with just k, com-

ponents in parallel.

An analogous development for k1  > 1 components of type 1 in
k

series gives a sample system reliability g(p) - Pl that over-

k
states the system reliability g(p) = p 1  Again, relative bias is

proportional to k and the coefficient of variation is proportional

to kI . More generally, consider a set of r subsystems in

series where subsystem i is composed of k i  > I components of

"a'%,
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type i in parallel i = 1,... ,r. Here system reliability is

r k. r k
g(p) - i [i-cl-P.) ] and clearly the quantity g(p) R i [1-Cl-p.) ]~ i 1 1

understates it. Conversely, a set of r subsystems in parallel

where subsystem i has k i > 1 components in series has reliability

r k. r k
g(p) - 1 - j (1-Pi ) and the quantity g(p) = I - IT (1-p i over-

- 1= 1I - i= 1I

states it.

4. More General Systems

Results for more general systems reveal how potential errors

grow with the number of types of components r as well as with the

number of components of each type.

Theorem 3. Consider a system composed of kI,...,k r components of

types 1, ... ,r respectively. Then

Eg(p) = g(p) + w(k,p,n) + R (15)

and

var g(p) = v(k,pn) + R (16)

where

r k 1p2 2x (k 1)p +x (x -1) p (1-p )

w(k,p,n) = I { " o(x)P(x,k,p) 2 1 2  2 (17)
i=I XEX - - - 2 2ni

1A1
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r x.-k.p ] Pi(1-pi)
v(k,p,n) 1 1, Z (x) P(x,k,p) [-1 1 1} (18)

i=1 xCX " Pi 1-Pi1
I"n.

r
= I 0(1/n nj as min nandi,j=1 i 1 i~r

and

r

R 2 0(1/n n.), as min n. *2 1,j=1 1 3 1 i~r 1

Proof. Let Ai = Pi - pi and observe that

g(p) = 4x) P(x,k,p)
- - XEX

r x .-x . x ) k i- x i  px .-j 1 - k i- x i- m ( ? M

XEX i=1 j=O m=O m(

-S.m

r x. k.-x i x k.-x. xk.-x (-1)mAm
O W R (X [p ii(1-P ) X i (ji)( m i) J- m

xX - i=1 j=O m=O m P

Expressions (15) and (16) following from substitution of (2), (3)

and (14) for EA +m for j,m=O,1,...,k -x1 and the observation that
i

that EA.A ,= 0 for i*i'
i

In addition to the proportionality to k k , observe that1r

the number of terms in w(k,p,n) and v(k,p,n) increases linearly

with r, the number of types of components. This increase would

become quadratic if the data vectors Z1 ,Z were positively
r

correlated.

C,

Si..2 % % " "",• ''" ' < ., ,. - ," - [-• - " ". ". ".
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An alternative representation puts bias and variance into

perspective with regard to the variation in {g(p)}. Observe that

r 2 ,.2
w(k,p,n) = [ 2(1-pa/n i

and

r 2
v(k,p,n) - [ag(p)/apI p .(1-p )/n

i i -

where

ag(p)/ap. = [g(l.,p)-g(O..,p)], (19)_~~~ Ej _i ~ '1 jEE. 13- 1
-1

2 2a g(p)/ p = [g( ij I ,p-()-g( -g(Oij i k p) (20)
1 J E keE ' 1k ij'Oik 13 _

k*j

+ g(Oij o ,P)]

and g(a..,p) denotes reliability when xj = a.. and
j ~1-

g(alj,a ik p ) denotes reliability when x.j = a1 j and Xik = aik for

a j,aik EfOI} and j-k.

5. Eliminating Bias

If, upon computation of the confidence interval in (8), one

finds that the interval width g(p**) - g(p*) is within acceptable

bounds, then the reliability point estimate g(p) presumably meets

the needs for analysis. When this is not so, one would like to

find an improved estimate by reducing variance, reducing bias or

reducing both. One approach increases the number of data points

nl,...,nr. A second approach, which we pursue here, loo1ks for an

Z -AA
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alternative method of using the current data more effectively.

Unfortunately, variance reduction is not pcssible. Since p

is the maximum likelihood estimator of p, g(p) is the maximum

likelihood estimator of g(p) and v(k,p,n) corresponds to the

Cramer-Rao lower bound on variance for fixed k and p as

n I ..., nr -. That is, no alternative estimator of g(p) based on

Z Zr can achieve an asymptotic variance smaller than v(k,2,n)

in (18).

The potential for bias removal is more promising. Recall

that positive bias can lead to a more frequent failure pattern in

practice than the computed reliability implies. A negative bias

can lead to a costly enhancement of the system to mitigate the

apparent, but not real, reliability deficit that the reliability

computation suggests. This section describes a method of removing

this statistical bias while preserving the asymptotic variance at

its minimum v(k,p,n). The method uses a data resampling plan to

* produce an unbiased estimate of system reliability in time per

trial that grows considerably more slowly than the time required

to compute g(p).

Recall that data vectors Z .... rZ which were used to esti-

mate Pl,... 'Pr and assume that n i  > ki for i = I...,r. Algorithm

* A describes a procedure that on each trial (step 2) randomly

samples (without replacement) and assigns an element of Z. to

each component of type i. Let X denote the resulting arc state

vector of zeros and ones. Given this assignment, the system

-either functions ( (X)=I) or fails (e(X)=O). Then hK (step 3)

is our refined measure of system reliability.

..

%. . * % . .. -** . ..i* 5 ~ 5
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Algorithm A

Purpose: To compute an unbiased estimate h Kof system

reliability g(p).

Input: Network G - (V,E), where E - fell, ... e lk;..

e r .. e rk }1 sample data Z. -. (Zi'., in
r1

i =,..r, and desired number of trials K.

Output: h
K

Nomenclature: X CXl,.x XkXr .. xr
1 r

Method:

1. Set 54-0.

2. On each of K trials:

a. For i 1, .. r

For ~j - 1,...,k i: sample e from Wj; remove

e from W.; set X ij4.Z e

b. Determine p(X); set S*-S+p(X).

3. Compute reliability

h 4- S/K.
K

End of procedure
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Theorem E4. For hK as computed in Algorithm A,

a. Eh K g gp)

r r
b. var h =g(p)[1-g(p)]/K + [v(k,p,n)+ 0 O(1/n.n.)](K-1)/KK -- i=1 j 1

r
C. lim var h - v(k,p,n) + O(1/n.n.) as min n.--.

K4w K - i,j=1 1 - iir 1

Proof of a. Observe that

r k. x.. 1-x..
0(x) x IT ITx H x. '.  (li- . ) x J

xEX - i= - 1 j =I

where the Xij's are sampled in step 2a. Since sampling occurs

without replacement on each trial

k. x. 1 -x.. k. x . I-x .
E [ j(-X ) ] - 11 E[X ' J3 (1-x. ) Iii j Iij ij

13 13 j= --- 1

- x k -x
p xi(1-p) i i

T'erefore,

EO(X) = g(p)

and consequently hK is unbiased. Also, since 2 (X) = P(X)

var ¢(X) -g(p)[1-g(p)].

I,
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Proof of b. Let

= ,. # 1k . ;qrl .... 1 qrk1

and redefine the reliability function as

r ki xij, 1-X ijh(q) = (X) IT 11 qiji

xEX - i =1 j =1

Now write the Taylor expansion ',

r k.
h(q) = h(p,...,p. ;P ''Pr + 1 j h/3q iji q (qj-) + Ri= j=1 qij Pi

where R denotes the remainder composed of higher-order cross-

derivatives. Let X .. and X z " denote the assignments for arc

e.. on trials v and w respectively. Then for all =

E[(Y)-p )(X(Z-p)] =(Z P(1-P) if y=z and j1=J2
iJ- 1  i 132 1

- P(1-p.)/n. if y*z

= 0 otherwise.

Let
(Y) ,x Y ;. .; (Y) (Y)

x(Y (XI 11 ... 1k I  rl ... ' rkr

1 r

and A y  q
ij ij ij

Then

r k x . 1-x
( Y t(x)P(x,k,p) R1 IT i[ +A Y)( -l)/p iJ(1-p ) ij]

- xEX j j=I 1 13
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Since

k.

ag/ap. q= i' qh/g/ = qij q.j=p.

one has for y*z r
r2

cov[h(x (Y) h(x (Z) (1g/aP 2 Pi( 1 -P.)/n.- i=I 1

rr O(l/n.n.) as min n.

j1 j i <i r

y*z

Since

r
v(k,p,n) = X (ag/aPi) pi(1-P )/n. as min n.4i~ 1 1 I .~r

the quantity

K= h(X')
K y=1 -

has

va hK war h(X ) ) / K  + cov[h(X y ), h(X )](K-1)/K
y~ z

r
= g(p)[1-g(p)]/K + [v(k,p,n) + 0 O(I/n n.)](K-1)/K... . i *j= 1 3

as min n.-,
1

which proves part b. Part c follows immediately.

The significance of Algorithm A is now apparent. The

resampling scheme produces an unbiased estimate of g(p). As the

number of trials K increases, the variance of hK converges to

a quantity whose dominant term is the C r amer-Rao lower

. - - - . . .... , < -J.4. ' .'r .\& z



-22-

bound v(k,p,n). Moreover, in place of a direct calculation of the

reliability g(p), one computes (X), in step 2b, K times. For s-t

connectedness, a depth-first search algorithm computes (X) in

0(max( II , IEI) time. See Aho, Hopcroft and Ullmar, (1 9 7 4). If G is

a directed acyclic flow network with random binary capacities and

O(x) = (x,z) = 1 if maximal s-t flow > z

= 0,

one can determine p(X) in 0(1Vjlogjlj) time if G is planar. See

Itai and Shiloach (1979). The fastest known algorithm for a

nonplanar network takes O( i V13). See Malhotra, Kumar and

Maheshwari (1978). These time complexities make clear that the

cost of resampling per trirK is generally incidental relative to

the cost of performing the exant computation of g(p).

To bring var h K  to the neighborhood of v(k,p,n) one

needs to make K sufficiently large to make g(p)[1-g(p)] small

relatively to v(k,p,n). To assess when this occurs, one would

need to observe var h as a function of K. This quantity is

unknown; moreover, it is not possible with the sampling scheme

of Algorithm A to compute a useful estimate of var hK"

One partial solution to the problem partitions the data.

Let ml,...,mr denote integers such that mi>ki for i=1 . r.. r, and

let c=ni/mi=... =nr/mr = integer. Then Algorithm B describes an

alternative scheme that involves resampling K* times from each of

c partitions of the data Z ... Z Theorem 5 reveals the benefit

of this method.

P°.
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Algorithm B

Purpose: To compute an unbiased estimate h Kof system re-

liability g(p) and an unbiased estimate of var h K

Input: Network G = (V,E) where E = le 11 ... ,e Ik

e ..., er 11 sample data Z. = (Zi'.,
r

i~,.,,integers c,m ,..m rand desired number

of replications per partition K*.

Output: hand V(h ) as unbiased estimates of g(p) and var h
K K K

Nomenclature: X = (X ll.*.,Al ;...,X ''..,xr
111 rIrr

Method:

1 . Set K 4-0; For y=l,...,c: set St,, *- 0.

2. On each of K * trials:

For y=l,...,c:

For i1..r

4-{,..mf For j=l,...,k1 : sample e from W.;

remove e from W.; set X.i 4- Z.,Ylm e

Determine (X).

Set S 4- S +- p(X).

3. K 4- K + cK*

4. Compute summary statistics

h K 4- (S I+...+S )/K.

1 c2

V(h K) 4- - (cS /K-hK
K c(c-1) y= 1K

End of procedure

. . . . . . . ...
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Theorem 5. For the resampling scheme in Algorithm B,

a. EhK g(p)

r
b. var h =g(p)[1-g(p)]/K + v(k,p,n) (K-c)/K + c 0(1/n.n.)

K -... ij~l1

as min n_-c1

c. EV(h K ) K var hK'

Proof. Within any partition y, the resampling scheme is

identical with that of Algorithm A except that sampling occurs

from Zi,(y 1)m +I ..... Z. for i--I....r. Therefore, for each

y= C

E S /K ) = g(p),y ~

establishing part a. Also

r 2
var(Sy/K ) =g(p)[1-g(p)I/K + [ (g/3p) (-p ) IM

y - .- i=

"*r
+ 0(1/m.m.)] (K -1)/K as min m.--

*. Since S I,... ,Sc are independent, one has

- var h (p) = var(S /K )/c.

Using this result, together with m. = n /c i=1,...,r and K cK

gives part b. Part c follows by taking expectations.

%
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The quantity V(hK) provides a useful estimate of var hK

which one can use sequentially to estimate when the quantity

g(p)[1-g(p)]/K becomes relatively incidental to the variance.

That is, the organization of Algorithm B enables one to iterate on

step 2 to generate successive estimates hcK*, h2cK* .... and

V(h cK ), V(h 2cK*) ... and observe the extent to which this

variance measure stablizes as a function of K.

The one drawback of Algorithm B as compared to the Algorithm

A arises from the increased relative importance of the higher

r
order terms 1 O(1/n.n.). These are scaled by c in Algorithm B.

i,j =1
As the sample sizes nj, .... nr increase, these terms diminish in

importance in each case, although they always remain c times

larger in Algorithm B. In practice, as m1  .... ,mr increase c

decreases, reducing the significance of the higher-order terms.

However, a smaller c means a less statistically reliable estimate

V(EK) of var hK"

"o*

C' * %-~.:-** ~ ~.*I # -~~~K Q
-V * *
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6. Conclusions

In general, the observations made in this paper are not

encouraging about the statistical accuracy of a system reliabi-

lity computation whose input consists of component reliability

estimates. Although no alternative system reliability estimator

J*

produces a smaller asymptotic variance, the resampling schemes of

Section 5 do provide a way of reducing bias. Based on the

material presented here, a constructive approach to system

reliability error assessment follows these steps:

1. Compute component reliability estimates P1 .- ,Pr.

2. Compute 100x(1- )1/r confidence intervals for each

component reliability pi for i=1,...,r.

3. Compute a system reliability estimate using pl ,.... ,p as

input.

4. Compute a l00x(I- ) confidence interval for system reliabi-

lity using the confidence intervals for Pi, .... Pr in step 2.

5. If the interval width for system reliability is within

acceptable bounds at coverage level 1-a, proceed with the

study. Otherwise:

a. One may improve the statistical accuracy of the point

estimator by employing the resampling schemes in

Section 6

or

b. One may wish to collect more test data to improve the

component reliability estimates and thereby shorte'n

the interval.
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