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Abstract

This paper studies how sampling variation in componént
reliability estimates affects the computation of system
reliability that uses these estimates as input. Results show
that relative bias in system reliability grows quadratically with
the number of components for which each component reliability
estimate is used, whereas the correspohding coefficient of
variation grows linearly with this number of components. If
these components are in parallel they lead to an understatement

of system reliability. In series, they lead to an overstatement.

The paper describes resampling schemes that eliminate bias

without increasing the dominant variance term.
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Introduction

Every computation of system reliability relies on the
availability of numerical values for the reliabilities of
components from which the system 1is constructed. If these
numerical values were exact, then a direct computation of system
reliability would at most suffer from numerical roundoff error.
Since the numerical values of component reliabilities rarely are
known with exactness, a system reliability computation
customarily employs estimates of these quantities derived from
test data. This substitution introduces an additional source of
error attributable to the sampling variation inherent in the
component reliability estimates. As the present paper shows,

neglecting this source of error can produce a misleading system

‘reliability.

This error manifests itself in bias and variance. For a
system composed of several types of components where the system
reliability computation uses a common component reliability
estimate as input'for all components of the same type, the
relative bias in system reliability increases quadratically with
eacn of the numbers of components of each type, whereas the
corresponding coefficient of variation grows linearly with these
numbers. For components of the same type in parallel, this
system reliability computation understates true reliability. For
components of the same type in series, the computation overstates
reliability.

These results imply that for given component reliability

estimates system reliability computations for two different
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systems composed of exactly the same number of components of each
type can have substantially different statistical error
characteristics. While no method exists for reducing the
variance of the system reliability base on component reliability
estimates of fixed sample sizes, resampling schemes do allow one
to eliminate bi;s without increasing the dominant variance termn.
Section 1 introduces the notation for characterizing a
system as a network. Section 2 gives the conventional estimator
for system reliability and describes how one can use a confidence
interval to assess its statistical accuracy. Section 3 shows how
parallel and series systems affect statistical error and Section
4 extends the results to more general systems. Section 5
describes two resampling plans that eliminate bias while
preserving the dominant variance term. Section 6 gives the

conclusions »of the study.

1. System Characteristics

As a basis for studying error, consider Lae nethrk G =(!,§)
with node set V and arc set E. For convenience of exposition,
assume that nodes represent components that function perfectly
and that arcs represent components that fail randomly and
independently. Hereafter, we treat the word component as
synonymous with arc. To characterize G more completely, wWe

define:
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We also assume that G describes a coherent system.

number of distinct types of components

probability that a component of type i functions

i=1t,...,r
(p1v--'1pr)

set of arcs that use components of type i

r
0N = i =
(Ei EJ 2 127, E ) Ei)
i=1
IEil number of components of type i
(k eok )

10 r
Jth arc in E;

1 if arc eij functions, = 0 otherwise

Kk

Zi X, , = number of arcs of type i that function
=1

(x , X

TEREE 1 )(21,...,le‘(z;...;xr’,...,xr‘k )

1

set of all arc states «x

r xi ki-xi
np (1-p.) xeX
g=1 1 t -

probability mass function of states in X

1 if the system functions, = 0 otherwise

! ¢(x) P(x,k,p) = probability that the system functions.

xeX

A system of com-

ponents is coherent if its structure {¢(x)} is nondecreasing and

each component is relevant. See Barlow and Proschan (1981, p.

6).

The system reliability g(p) can have diverse interpretations.

For example, let T denote a subset of V and let

$(x)

[}
—

if all nodes in T are connected when arc

state x occurs

= 0 otherwise.




Then g(p) denotes the probability that all nodes in T are
connected. If T = {s,t}, this is called the s-t connectedness
problem. If T =V, it is called the all terminal connectedness
problem.

Reliability in flow problems can also be characterized.

Suppose that G is a directed acyclic flow network with source

node s and terminal node t. Let

p; = pr (arc j has flow capacity bi) bi>0
1 - p; =opr (arc j has zero flow capacity)
Xx,, =1 if arc j in E

has flow capacity bi

J

= 0 if arc flow capacity is zero

and let

¢(x) = ¢(x,2)

[}
—_

if the maximal s-t flow exceeds a snecified
demand z when state x occurs

= 0 otherwise.

Then g(p) = g(p,z) denotes the probability that the maximal s-t
flow in G exceeds z.

Although the exact computation of g(p) for these examples
belongs to the NP-hard class of problems (Valiant 1979, Ball and
Provan 1983, Provan 1986), Wwe assume that for a particular
network instance of interest, one can indeed effect the exact
computation if p is known. If an exact computation proves infeas-

ible and one resorts to the Monte Carlo method, then one needs to
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perform a more elaborate analysis to determine how statistical

variation in the component reliability estimates interacts with

the sampling variation that the Monte Carlo method induces.

2. Component Reliability Estimates

In practice, p is not known exactly, but can be estimated

from test data. Suppose one tests nj components of type i for

i=1,...,r. Each test begins yith a new component functioning.
Let Zij denote the outcome of the jth test of component of type i
where Zij = 1 if the component functions at the end of the test
period and Zij O if the component fails prior to the end of the

test period. Presumably each component of type i is tested under

identical conditions that resemble the system environment. Then
one has the data vectors Zi = {211""’Zin } for i<1,...,r where
. - i
the elements of Zi are independent and identically distributed
with pi = EZiJ j=1,...,ni, §1""’§r are independent, and
- -1 i
p. = n YUz, (1)
i i j=1 ij
gives the maximum likelihood estimator of pi with
Epi = Py (2)
var p, = pi(1-pi)/ni (3)
E(Bi-p "o O(1/nJ—(m+l)/2J) m=3,4,... as  n e {u)
B P R N P B N N LT,

~
n
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where 0(y) as y-L denotes a function f such that 1lim |[f(y)|/y is
bounded. Observe from (2) that pi is an unbiased estimator of pi.

~

Let = (p1,...,5r). Then it is not unusual to estimate g(p)

1’0

by g(p). Although other methods exist for using test data to
estimate component reliabilities, the appeal of the method that we

adopt here arises from the well-understood sampling properties of

10>

, enabling us to concentrate on the statistical variation in g(é)
that substitution of 6 for p in g(p) induces. As Gaver and Hoel
(1970) show, other methods can lead to bias in component
reliability estimates, which would force us to conduct a more
complicated analysis to get at the sampling properties in the
system reliability estimate.

As Sections 3 and 4 make clear, g(ﬁ) generally either under-
states or overstates g(p) with regard to expectation. However,
for the moment, we describe how one can globally assess the
statistical accuracy of g(ﬁ) based on confidence intervals

computed for 61,...,p

* * *
> -
pr[pi(Z.,n ) S Py S py (z ,ni)] 2 ! a
Let
m i _
Fj(m,q) = ) () q (1-¢)™ ' ogqs1; j=0,1,...,m; m=1,2,...
i=0

LA I S A
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b

Then for a moderate sample size nj n and Z; = 2, one can solve

1 - Fz_1(n,q1) = a/2

and (5)

Fz(n,qz) 1 - a/2 for i=1,...,r
for p;(n,z) and p;*(n,z), respectively, and achieve a confidence
coefficient of at least 1-a. We call the result a binomial
interva..

As n; increases, exact solution becomes difficult because of

numerical error. Then one has the well known result

lpi—pil

lim pr S cla)} =1 - a,

’ 1
® - A
n;> [pi(1 pi)/ni]

where

cla) = {y: (217)_1/2 J e ¥ /2dw=1-a/2},

and in principle one can solve the corresponding quadratic form

2 2 A 2 ~2
1+e - =
p;[1+c " (a)/n ] p,l2p *+c (a)/n, 1 + p, 0 (6)
for p;(ni.Zi) < p;*(ni,zi). The resulting confidence interval has
an error of approximation which decreases as nj increases. How-

ever, the rate of convergence is nonuniform, being most rapid for

pi = Y% and least rapid for p; close to zero and unity. This non-




uniform convergence limits the appeal of this confidence interval
in practice.

A third approach uses Chebyshev's inequality so that
Dr(ni,zi) s p;*(ni,Zi) are again solutions of (6), but with 1/011/2
replacing c(a). Although this confidence statement holds for
every n;, the interval width can be wide. A fourth approach

based on the probability inequality (Okamoto 1955, Hoeffding

1963)

pi+e 1-pi-e ni
pr{z -p,ze) s {[pi/(pi+e)] [C1-p)/7(1-p =€) }

O0<est! - Di

produces tighter intervals for small a. For nizln(a/Z)/ln max(pi,1—pi),

(p:(ni,Z,), p:*(ni,zi)) covers p, with probability > 1 - a where

1
* < * %
pi(ni,Z.) < p. (n

i i 1’21) are now the solutions to the equation

- ~ ~ ~ 1
Py ln(O/pi) + (1-pi) ln[(1—o)/(1-pi)] = Bi ln(a/2). (7)

See Fishman (1986). The ratio 1n(a/2)/1n max(Bi,i-Si) provides
an indication of whether or not n; exceeds the required lower

bound.

Although the resulting interval leads to a confidence
interval of greater width than the binomial and normal intervals
do, 1t is considerably easier to compute than the binomial

interval is for moderate and large ni and induces no error of

approximation as the normal interval does. Therefore, we
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recommend the computation of a binomial interval from (5) when
. possible and an interval based on (7) otherwise, provided that
\‘ ~ -~
x: ny 2 1In(a/2)/1n max(pj,1-pj).
e ‘
) Since 2.,...,2Z_ are independent, one has
-1 ~r
,:
j d * * %
) >
- pr {EE.H [pi(ni,Zi),pi (ni,Zi)]} 2 B
W i=1
N where B = (1-a)f. To achieve a confidence level 8, one chooses
",
‘a8 a =1 - B'/r for each interval. Since the system is coherent,
v
N ag(p)/api 2 0 for i = 1,...r. Therefore
o~
N * * %
- pr [g(p ) < g(p) s g(p )] 2 8 (8)
3
— * * * LE JE X * %
. where P —(p1<q1,21),...,pr(nr,2r)} and p —(p] (n1,21),...,pr (nr,Zr)).
S
o * - *
B i A < S . . ; i=1,... i ili
~ Since pl(ni,Zi) Py pl(nl,Zl) for i=1, ,r with probability
R~
! one and since BS(D)/api 2 0 for i=1,...,r, one has
o
& * ~ * *
s g{p ) < g(p) 5 g(p ) with probability 1,
o - - -
~
&
a result which provides a convenient way ¢f assessing the extent
A}
PR -
- of sampling variation in g(p). With p* and p** in hand for
b P P P
}: specified B, one can, for a specified system G, compute g(p*) and
v, -
’ g(p**) in two reliability evaluations and determine whether or not
p-" * % *
$ the interval width g(p ) - g(p ) is sufficiently small for the
3 - h
‘ﬂ purposes of reliability analysis. As Sections 3 and 4 show,
' there is good reason to beljeve that this interval grows
e
v
)
I.
-
’b
04
‘g
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substantially as the size of the system G, constructed from

components of types 1,...,r, grows.

3. Parallel and Series Systems

We use the s-t connectedness problem to illustrate the

potential seriousness of errors in the estimate g(ﬁ).

Theorem 1. Let G denote a network of ki arcs of type 1 in

parallel with source node s and terminal node t so that

Ky
g(p) = 1 - (1—p1) (9)

~

gives the probability that s and t are connected. Let

Z11’;"'Z1n denote 0-1 test data on nj components of this type,

1 K
1 N

~

- ~ 1
Zij' P = p, and g(p) =1 - (1-p1) . Also

W~ 0

1 j=1

Chebyshev's inequality gives

~ 1
r{1p,=p,1<80p, (1=p.)/n 1%} > 1 - 1/8 (10)

B>0.

Based on (10), the minimal sample size required to achieve

pr{lg(p)-g(p)|<elt-g(p)I} > 1 - ég £>0 (11a)

is

e e LN
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1/k
*
ny > 8%,/ (-p)C1+e) =117

1 (11p)

and

lim n1/k > 82p1/[(1-p1)[1n(1+e)]2. (11¢)

K1*0

Proof. Substitution into (11a) gives

1/k
r{lg(p)-g(p)|<el1-g(p)1} = pr{li-(1+e)  'I(1-p)sp,-p,

1/k1
<[1-(1-¢) 1(1-p)f > 1 -

O —a
n

Then Chebyshev's inequality (10) gives

1/k.l > 1/k

12, [1-(1-¢) |

> 8%p,/(1=p,) min{{1-(1+¢) ).

ny

1/k, 1/k .
Since (1+¢) -1 <1 - (1-¢) » Ny in (11b) follows. Expression
1/k

(11¢) follows by applying L'Hopital's rule to (1/kf)/[(1+e) -11]

1 2

Note that (11a) is an attempt to control the relative error
on the system failure probability 1-g(p). Expression (11c¢c)

immediately makes apparent that the sample size n¥

1 needed to keep

this relative error at e grows quadratically with k¢, the number

of arcs in parallel. Theorem 2 provides insight into the source

of the potential error.
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Theorem 2. For k1 arcs of type 1 in parallel with g(p1) =
k ) . Ky
1 - (1-p1) and g(p) =1 = (1-p1) .
lim Eg(p) =1 - (1-p1) (12)
k. +® -
1
- k1—1
lim n1E[g(p)-g(p)] = -k1(k1-1)p1(1-p1) /2 (13)
n,-e - -
and
. » 2k, =1
lim n, var glp) = k, p1(1-p1) . (14)
n,»>o ~
Proof. Since
R n, -1 k n, j n,-J
Eg(p) =1 - (1-p.) Z (/ny (L) py(1-py) .
Y 1 j 1 1
j=0
(12) follows immediately. Let A = 61 - p1 and observe that
. K, ko K, k=3 J J
glp) = 1 - (1-p,-4) =1 - Y (. J(1-p,) A (-1)
l . J
j=0
k1 k1-1 k1-2 P
=1 - (1-p,-A) +k . (1-p.) A-k,(k,=-1)(1-p ) A /2 +...
1 1 1 1 1 1
Since EA = 0, EA2 = p1(1-p1)/n1 and EA™ = O(1/n1|-(-m+1)/-2-j m2
k,-1 >
E(g(p)-g(p)] = “ky(k,=1)p, (1-p,) n,*0(1/n,) as n,»=,
and (13) follows. An analogous development gives (14),
‘.,. NIRCION " LG OX B0 A I I N N (S A R, 28, O T T T N 2, 3, A e s N N X, N S
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Theorem 2 raises several concerns. The quantity g(ﬁ) under-

states the true reliability g(p). Moreover, the relative bias

ANAESA S FEIRS S

E[s(;})-g(g)]

N - -

. Ty k,(ky=1) py72(1-p,)n,

N -
F

makes clear that the dominant term in the relative understatement

. increases quadratically in kj. If the objective is to design a
L}

:. parallel system based on component of type 1 with a specified
l

- level of system reliability, then g(ﬁ) encourages one to add more
: components in parallel than may truly be required.

<

: Observe that the coefficient of variation

L] ' . l/ l/

Y(k,p,n) = [var g(p)J?%[1-g(p)] ~ kylpy7C(1-pn, 1

’..
iq

o,

: reveals linear growth in kjp. As a result, a network with Jk;
. components of type 1 in parallel would lead to a coefficient of
I
B varjation J times larger than a network Gy with just k; c¢com-
: ponents in parallel.
et

An analogous development for ki > 1 components of type 1 in
k

ﬂ ~ ~

“ series gives a sample system reliability g{(p) = p1 1 that over-

. P

“ k1

N states the system reliability g(p) = Py - Again, relative bias is
h -~
2 proportional to k1 and the coefficient of variation is proportional
R

Y
:\ to k1. More generally, consider a set of r subsystems in
&)

‘
2 Series where subsystem i is composed of ki > 1 components of
L-

\

‘

A

)
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type i in parallel i = 1,...,r. Here system reliability is
r ki R r Ki
g(p) =1 [1-(1-pi) ] and clearly the quantity g(p) = I [1-(1—pi) ]
- i=1 - i=1

Pl dPdln o dalh ot da o = 0 i g g &

understates it. Conversely, a set of r subsystems {n parallel

where subsystem i has k; > 1 components in series has reliability

r K., r K,
g(p) = 1 -1 (1-pil) and the quantity g{(p) =1 - 1 (1-pi1 ) over-
- i=1 = i=1

states it.

L, More General Systems

Results for more general systems reveal how potential errors
grow with the number of types of components r as well as with the

number of components of each type.

‘Theorem 3. Consider a system composed of ky,...,k. components of

types 1,...,r respectively. Then

Eg(p) = g(p) + w(k,p,n) + R, (15)
and
var g(B) = v(k,p,n) + R2, (16)
where i

2
ki(ki1)pi 2xi(ki1)pi*xi(xi-1) pi(1—pi)(17) f

r
wik,p,n) =3 {73 ¢(x)P(x,k,D)[
=1 xex ~ °°°

- o o~ 2 2
- 2
pi(1 pi) 2n,

N I T FUD - - RS U AN
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l"
I
r X, ~K,.p, p.(1-p.)
2
b viopn) = LT et Plokep) [5sy —, (18)
L ST T i=1 xex T T PPy i
e =
:?
N
5 r
i Ry = . 321 O(1/ninj) as 1:§2r n;+e
y and ' =
-
o+,
; r
- R, = Y} 0o(1/n.n.), as min n_ s
N, i,3=1 i 1Sisr
3
\.’ a
> Proof. Let A; = pj - pj and observe that
"
N 8(6) = 7 e(x) P(x,k,ﬁ)
L~ - xeX 7 -
\ -~
%
-~
“~
S S T T SYAN S SR KI5 e g+
IR N S O [ BRI (~1)"3*™)
- xeX 7 i=1 j=0 m=0
b~ -
-
]
-
M m,j+m
r X, ki—xi X4 ki-xi X4 ki—xi (-1) Ai
. = I ot mfp (1-p.) Lol (0T ) =]
> xeX T i=1 j=0 m=0 J pl(1-p.)
i Expressions (15) and (16) following from substitution of (2), (3)
and (4) for EA{+m for j,m=0,1,...,ki—xi and the observation that
- that EA. A, v= O for ie=i'
. i1
o
¥} In addition to the proportionality to kf,...,kf, observe that
o the number of terms in w(k,p,n) and v(k,p,n) increases linearly
':: with r, the number of types of components. This increase would
:: become quadratic if the data vectors 21""'Zr were positively
& correlated.
~
&,
*’
A
(Y
?
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An alternative representation puts bias and variance into

perspective with regard to the variation in {g(p)}. Observe that

T2 2
w(k,p,n) = J [3 g(p)/apIp (1-p /n, T

- ~ - i=1 ~

and ~
r » :

v(k,p,n) = )} [3g(p)sap,1%p,(1-p.)/n !

i i i i "~

- -~ {=1 -~ N

where ‘
= 1 - "

3g(p)/ap; = 1 [egl1,,,p)-g(0,,,p)], (19) v
jekE, ol

%

2%g(p)/ap? = 5 I [g(1 1. .p)-g(1, .,0  ,p)-g(0  ,1.  ,p) (20 o

. i, 1§ ik’'% i’ ik’% ij* ik’Y

Jegi ke_E_J1 4

k=] !

e !

“

+ g(Oij.Oik.g)]
and g(aij,g) denotes reliability when xij = aij and E
g(aij.aik,e) denotes reliability when xiJ = aij and xik = aik for :
aij,aike{0,1} and j=k. N
Y
-\
5. Eliminating Bias &
~
If, upon computation of the confidence interval in (8), one

finds that the interval width g(p**) - g(p®) is within acceptable :
bounds, then the reliability point estimate g(ﬁ) presumably meets 7
the needs for analysis. When this is not so, one would like to ;

find an improved estimate by reducing variance, reducing bias or
reducing both. One approach increases the number of data points

N{,...,Npn. A second approach, which we pursue here, lonks for an
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alternative method of using the current data more effectively.

Unfortunately, variance reduction is not pcssible. Since 5
is the maximum likelihood estimator of p, 8(5) is the maximum
likelihood estimator of g(p) and v{(k,p,n) corresponds to the

- - -~

Cramer-Rao lower bound on variance for fixed k and p as

- -~

n1,...,nr+w. That is, no alternative estimator of g(p) based on

Z,y..+»2 can achieve an asymptotic variance smaller than vik,p,n)
in (18).

The potential for bias removal is more promising. Recall
that positive bias can lead to a more frequent failure pattern in
practice than the computed reliability implies. A negative bias
can lead to a costly enhancement of the system to mitigate the
apparent, but not real, reliability deficit that the reliability
computation suggests. This section describes a method of removing
this statistical bias while preserving the asymptotic variance at
its minimum v(k,p,n). The method uses a data resampling plan to
produce an unbiased estimate of system reliability in time per
trial that grows considerably more slowly than the time required
to compute g(b).

Recall that data vectors Z1'°"'Zr which were used to esti-

mate p1,...,pp and assume that ny > k; for { = 1,...,r. Algorithm
A describes a procedure that on each trial (step 2) randomly
samples (without replacement) and assigns an element of Zi to

each component of type 1i. Let X denote the resulting arc state
vector of zeros and ones. Given this assignment, the system
2ither functions (4(X)=1) or fails (¢(X)=0). Then BK (step 3)

is our refined measure of system reliability.
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Algorithm A

Purpose: To compute an unbiased estimate hK of system

reliability g(p).

Input: Network G = (V,E), where E = {e11,...,e1k1;...;

Z )

e 30004 € i1 ' %{n.
1

" sample data %i = (Z

rk }'
r

i =1,.0.,r, and desired number of trials K.

Output: hK'
Nomenclature: § = (X11,.. ’X1k1’ ’Xr1' . ,err)
Method:

1. Set S<«O0.
2. On each of K trials:
a. For i = 1,...,r:
'ﬁi+{1,...,ni}.
For j = 1,...,kj: sample e from W;; remove
e from W, ; set X, .,«2 .
—-i 1] ie
b. Determine ¢(X); set S«S+¢(X).

3. Compute reliability

BK « S/K.

End of procedure

e ‘! - @, Co Co Vady "W’ L R AL T T W T TP N S
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Theorem 4. For ﬁK as computed in Algorithm A,

a. EhK = g(g)

r r
b. var HK = g(p)(1-g(p)1/K + [vik,p,n)+ § § 0(1/ninj)](K-1)/K

“ 1=1 §=1
. r
¢c. 1lim var hy = v(k,p,n) + ) 0(1/n n.) as min n, -,
K+o : =t i, 5=t J 1sisr
Proof of a. Observe that

r ki xi. 1—xi.

o(X) = '} ¢(x) 1 1 xi.3(1—xi.) J

- xeX T i=1 j=1 M J

where the Xij's are sampled in step 2a. Since sampling occurs

without replacement on each trial

ki xi. 1—xi. ki i 1-—xi
E T [xi.3(1-xi.) by = b Elx J(1-xi.) 33
ja1 1 j je1 j j
- p§1(1~p)ki Xy

Therefore,

g{p)

E¢(X)

~ 2
and consequently hK is unbiased. Also, since ¢ (X)

var ¢(X) = g(p)(1-g(p)].

$(X)

N T T T A T
s ..r-..-.\__ 3. -._'._,\'.\ ...).. )



Proof of b. Let

9=(Q11,---,q1k1;---;qr1,---,q 1)

and redefine the reliability function as

Kk
n(q) = } ¢(x) 1m I
- xeX T i=1 j=1

Now write the Taylor expansion

i~

h(Q) =h(p190-0)p1;"';pr‘)"'!pr‘) +
- i=1 3

where R denotes the remainder composed of higher-order cross-

derivatives. Let ng) and ng) denote the assignments for arc
e;y on trials v and w respectively. Then for all j,,j, = 1,...,k, w2
b.
(y) (z) =
- - - i = i =4 WYy
E[(xij1 pi)(xij2 pi)J = pi(1 pi) if y=2 and jq=J2 >
= pi(1-pi)/ni if y=z
=0 otherwise.
Let
(y) _ y) (y) Ly (y) (y)
X = X ’ Xk iXpy o Xk )
~ 1 r
(y) (y)
and Aij Xij qu
Then
(y) - Pk (y) i3 Xy
h(x ) = . s(x)P(x,k,p) T mliea T (2%, =1)/p (t-p,) ]
- xeX T T T T i=1 §=1 J J

A

DN Y o f\d“ -

T . .
AR AN/ wni -
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Since
ki
3g/dp, = 1 ah/3q, .| . ,
20 521 ij qij P
one has for y=z .
(y) (z) g 2
covih(x ¥y, n(x'®)1 = 3 (3g/3p, )" p,(1-p )/n,
- - {21
r
+ L 0(1/n.n.) as min n, o
L i3 ] i
i,j=1 1gigsr
y=2
Since
" 2
v(ik,p,n) = } (3g/3p.)° p.(1-p.)/n, as min n, -+e,
- - - . i i i i .
i=1 1sisr
the quantity
K
A= 1 T nxWY)y
K -
y=1
has
var HK = var h(X(y))/K + cov[h(X(y)), h(X(Z))](K—1)/K

y=2

r
= g(p)[1-g(p)1/K + [v(k,p,n) + ) 0(1/ninj)](K-1)/K
~ ~ -~ - - i,j=1

as min n, =
1sisr

which proves part b. Part ¢ follows immediately.
The significance of Algorithm A is now apparent. The
resampling scheme produces an unbiased estimate of g(p). As the

number of trials K increases, the variance of hk converges to

a4 quantity whose dominant term is the Cramér—Rao lower
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bound v(k,p,n). Moreover, in place of a direct calculation of the
reliability g(é), one computes ¢(§), in step 2b, X times. For s-t
connectedness, a depth-first search algorithm computes ¢EX) in

O(max(|V|,|E|]) time. See Aho, Hopcroft and Ullman (1974). If G is

a directed acyclic flow network with random binary capacities and

L}
N

d(x) = ¢(x,2) if maximal s-t flow > z

= 0,

one can determine (X) in 0(|V|log|V]|) time if G is planar. See
Itai and Shiloach (1979). The fastest known algorithm for a
nonplanar network takes O(|!|3). See Malhotra, Kumar and
Maheshwari (1978). These time complexities make clear that the
cost of resampling per tri=! is generally incidental relative to
the cost of performing the exant computation of g{(p).

K

To bring var ﬁ to the neighborhood of vik,p,n) one

needs to make K sufficiently large to make g(p)[1-g(p)] small

relatively to v(ik,p,n). To assess when this occurs, one would
need to observe var EK as a function of K. This qQquantity is
unknown; moreover, it is not possible with the sampling scheme

of Algorithm A to compute a useful estimate of var HK-

One partial solution to the problem partitions the data.
Let mqy,...,m, denote integers such that m;>k; for i=1,...,r, and
let c=n;/mj=...=np/mp. = integer. Then Algorithm B describes an
alternative scheme that involves resampling K* times from each of
¢ partitions of the data Z ""'%r' Theorem 5 reveals the benefit

-1
of this method.
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Algorithm B

Purpose: To compute an unbiased estimate EK of system re-

liability g(p) and an unbiased estimate of var h

Input: Network G = (V,E) where E = {e1

'€ rk }’
P

eM,...

i=t,...,r, integers c,m

10

oM

ye s €
! 1

sample data gi = (zi1,...,z

of replications per partition K*.

dutput: EK and V(EK) as unbiased estimates of g(p) and var EK'
Nomenclature: X = (x11,...,x1k1;. Xy ’err)
Method:

1. Set K « O; For y=1,...,cC: set Sy « 0.

2. on each of K* trials:
For y=1,...,C:

For i=1,...,r:

:’ii‘.{l""’mi}; For j=1,-..,ki:

remove e from Ww,i set Xi5 ¢ Z

J
Determine ¢ (X).
Set S « S + (x).
y y b ootx
3. K « K + cK¥.

by, Compute summary statistics
h, « (S, +...+S )/K.
1 ]

- 1 < - 2
Vih, ) ¢ — Y (es /K-h )"
cle-1) y=1

End of procedure
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b Theorem 5. For the resampling scheme in Algorithm B,
o a. EHK = glp)
AN ~
R
~ _ r
N b. var h = g(p)[1-g(p)I/K + v(k,p,n) (K-c)/K + c ) O(l/nin.)
- - aa =1 J
-,
- as min n,»®
N 1<igr
- c. EV(hK) = var h,.
f Proof. Within any partition y, the resampling scheme 1is
-,
j identical with that of Algorithm A except that sampling occurs
. from Z, s e s ey L, for i=1,...,r. Therefore, for each
[ l,(Y‘1)mi+1 l,Ymi
:: y=1,...,¢C
. %
: E(Sy/K ) = g(p),
S establishing part a. Also
* * r 2
i var(Sy/K ) = g(p)l1-g(p)Il/k  + [} (ag/api) pi(1-pi)’mi
¢ - - i=1
:', v * *
- + Y o(1i/m.om, )] (K -1)/K as min m, s
- i,J"T 13 1<igr
J Since S1,...,SC are independent, one has
’
. Fo(p) = var(S /K )/
var hK 8 = ar v c.
:. *
Using this result, together with mi = ni/c i=1,...,r and K = ¢cK ,
gives part b. Part ¢ follows by taking expectations.
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The quantity V(EK) provides a useful estimate of var EK

which one can use sequentially to estimate when the quantity
g(p)[1-g{p)]/K becomes relatively incidental to the variance.

That is, the organization of Algorithm B enables one to iterate on

*, h ¥ya oo and

step 2 to generate successive estimates Bc 2K

K

V(h ) V(hch*),... and observe the extent to which this

#*
cK
variance measure stablizes as a function of K.

The one drawback of Algorithm B as compared to the Algorithm

A arises from the increased relative importance of the higher

r

order terms ) O(1/ninj). These are scaled by ¢ in Algorithm B.
i,j3=1

As the sample sizes ngy,...,n, increase, these terms diminish in

importance in each case, although they always remain ¢ times
larger in Algorithm B. In practice, as mqy,...,mp increase ¢
decreases, reducing the significance of the higher-order terms.

However, a smaller ¢ means a less statistically reliable estimate

V(hg) of var hg.
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) 6. Conclusions
! In general, the oﬁservations made in this paper are not
encouraging about the statistical accuracy of a system reliabi-
lity computation whose input consists of component reliability
estimates. Although no alternative system reliability estimator
produces a smaller asymptotic variance, the resampling schemes of
Section 5 do provide a way of reducing bias. Based on the
material presented here, a constructive approach to system
reliability error assessment follows these steps:
1. Compute component reliability estimates 51,...,6r.
2. Compute 100x(1-a)!'/" confidence intervals for each
component reliability p; for i=1,...,r.
3. Compute a system reliability estimate using 61""’6r as
input.
k., Compute a 100x(1-a) confidence interval for system reliabi=-
lity using the confidence intervals for pq,...,pp in step 2.
5. If the interval width for system reliability is within
acceptable bounds at coverage level 1-a, proceed with the
study. Otherwise:
a. One may improve the statistical accuracy of the point

estimator by employing the resampling schemes in

Section 6
or

b. One may wish to collect more test data to improve the
component reliability estimates and thereby shorten

the interval.
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