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Abstract

We introduce a Markov chain model to represent a patient's path

in terms of the number and type of infections sjhe may have acquired

during a hospitalization period. The model allows for categories of

patient diagnoses, surgery, the four major types of nosocomial (hospital­

acquired) infections and discharqe or death. Data from a national medical

records survey including 58,647 patients enable us to estimate transi-

tion probabilities and, ultimately, perform statistical tests of fit,

including a validation test. Novel parameterizations (functions of the

transition matrix) are introduced to answer research questions on time-

dependent infection rates, time to discharge or death as a function of

patient characteristics at admission"and conditional infection rates

reflecting intervening variables (e.g., surgery).
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Researchers modeling hospital activities often require a quanti-

tative representation of a patient's probabilistic health status changes

during a hospitalization stay. Frequently, the stochastic model utilized

is a Markov model. See for example Thomas (1968), Bush et a1. (1971)

and Kao (1972). These investigators present disease-specific app1ica-

tions; Bush et a1. studY adults with primary active tuberculosis while

both Thomas and Kao studY the recovery process of coronary care patients.

Our model, also a Markov approach, follows a patient's path in

terms of type and number of infections s/he may have acquired during a

hospitalization period in a particular hospital/patient group, indepen­

dent of the cause of admission. This model allows us to predict the

incidence of nosocomial (hospital acquired) infections (Nls) at the

patient-day level. Moreover, our approach suggests novel parameteriza­

tions (functions of the transition matrix) to provide decisionmakers

with additional criteria for evaluating hospitalization outcomes. We

provide answers to several research questions, for example: how can

we estimate the time spent in distinct health states? How much longer

does a patient with an NI spend in the hospital than a patient with

similar characteristics who has not acquired an NI? Does her/his
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length of hospitalization (LOH) change significantly if s/he acquires

a secondary NI? What is the effect on these measurements of inter­

vening variables, such as surgery? Suppose we could eliminate certain

types of NIs; how would this influence LOH?

Generally the answers to these questions are dependent on hos­

pital type and patient group. Some conclusions emerge from aggregate

measurements, such as the incidence and prevalence of patients contrac­

ting Nls and mean LOH, using traditional statistical and epidemiologi­

cal methods. Other questions, in particular those requiring time­

dependent estimators, cannot be answered with traditional approaches

and require model building and new parameterizations. The above

questions imply that the model include LOH measurements which reflect

the impact of intervening variables, e. g., the time period during

which a surgical intervention occurred. Furthermore, the model should

allow for simulation exercises providing answers to if-then

questions, which are not obtainable in observational studies.

We provide both the model structure and parameterization ideas

for analyses with respect to a comprehensive set of hospital/patient

categories. Eventually, refinements of this model may be used to

reflect differences in Infection Surveillance and Control Programs

(ISCPs), Haley and Shachtman (1980), and their impact on outcome

measurements, such as those proposed as parameterizations and some

corresponding numerical results.

Specific objectives are to demonstrate how the model is used

in unique hospital/patient groups, to:

1. produce a daily measure of infection incidence,

2. estimate the relative proportion of infections by site,
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3. estimate patient LOH in distinct states during a hospital­

ization episode,

4. determine conditional infection rates,

5. compute time to absorption as a function of patient charac­

teristics at admission, and

6. determine the influence of "elimination" of certain types of

NIs on measures like LOH.

To achieve the first three objectives, we directly exploit the

statistical attributes of the proposed Markov model. For the subsequent

objectives we develop functional expressions of the transition probabil­

ities (parameterizations).

In the following sections we introduce a 16-state Markov chain,

along with corresponding assumptions, to describe and analyze possible

relationships with primary diagnosis, infection status~ time of surgical

procedure and LOH. We also discuss estimation and statistical tests

for the various assumptions, compare empirical results with model com­

puted results and suggest parameterizations corresponding to the

research questions.

1. MODEL ASSUMPTIONS AND STRUCTURE

During a hospitalization episode a patient may contract infec­

tions at various sites, s/he may acquire more than one infection prior

to her/his discharge and s/he may die during her/his hospital stay.

Each combination of these events describes a possible path through a

patient's states of health in terms of NIs. Moreover, given daily

observations from the patient's medical record, her/his current health

state determines the next health state and we assume this state reflects
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the health history of the patient for NI status. This is the underlying

Markov assumption; we discuss test results for the Markov property in a

later section.

We also make the following assumptions:

1. All patients enter the system uninfected and an algorithm

determines their infection status, onset, type (hospital

or community acquired), site (below); see Appendix E of

the American Journal of Epidemiology, May, 1980.

2. A patient is eligible for our analysis if her/his LOH is

four or more days and during these days the patient con­

tracts no infections.

3. We consider four major infection sites: UTI - Urinary

Tract Infection; BACT - Bacteremia; LRI - Lower Respira­

tory Infection; and SWI - Surgical Wound Infection.

4. Cases of multiple infections with the same onset day are

labeled UTI before LRI before SWI before BACT. In our

patient data base only 131 such cases out of 58647

studied were recorded.

5. Transition probabilities are time homogeneous.

6. We assume unlimited capacity in each state and independent

patient-level observations.

To demonstrate the model, we study all patients within a homo­

qeneous hospital group. For patient level analysis we study patient

groups characterized by service (medicine or surgery), age, and primary

diagnosis, within a homogeneous cohort of hospitals.

Our data within each hospital comes from the Study on the Effi­

cacy of Nosocomial Infection Control (SENIC) sample. Medical chart
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reviewers conducted a Medical Record Survey sampling records of dis­

charges from two time periods; see the American Journal of Epidemiology,

May, 1980. Each record abstraction includes demographic characteristics

of the patient, service, daily records on antibiotics administration,

results of cultures and diagnosis of infection.

We describe a patient's health trajectory during a hospitaliza­

tion period by a l6-state Markov chain model. All patients enter the

system through one of four uninfected states, each characterizing a

different primary diagnosis group. There are eight states describing

infection status, four are primary NIs and four are secondary NIs. We

also reflect the occurrence of the first surgical procedure making a

distinction between the state describing a surgical intervention which

occurs prior to a primary NI, and one occurring after the patient has

already been infected. There are two absorbing states, discharge and

death.

To complete the state definitions we define the Primary Diagnosis

Groups (PDGs). From the 83 Major Diagnostic Categories (MDCs) suggested

by Fetter et al. (1978) we selected l8--those which showed the highest

frequency of occurrence in our data base. A medical epidemiologist

from the Centers for Disease Control (CDC), helped us combine the

selected MDCs into four groups which are similar in terms of organ

systems. Table 1 summarizes the definition and size of our group

selection.

Table 1



TABLE 1

STATE DEFINITION AND CLASSIFICATION OF PRIMARY DIAGNOSIS GROUPS

Hierarchy

Uni nfected
(Primary Diagnosis

Group)

State

PDl
PD2
PD3
PD4

SURl

Definition by Organ System

Vascular System Diseases
Lung and Pleural Diseases
Musculo-5keletal and Superficial Injuries
Other Diseases included in the 18 MDCs
First Surgical Procedure (prior to acquiring

an NI)

Number of Patients

16.548
5,835
9,609

26,655

~----- --+----+-------- ------ ------ -+- --- --
Primary Infection 51

52
S3
S4

SUR10

First Urinary Tract Infection (UTI)
First Bacteremia (BACT)
First Lower Respiratory Infection (LRI)
First Surgical Wound Infection (SWI)
First Surgical Procedure (after acquiring an

NI)
~-------1--- -----f-------

Secondary Infection I SlO
S20
S30
S40

I---------~---

Second Infection is UTI
Second Infection is BACT
Second Infection ;s LRI
Second Infection is SWI

------------- -~------
Absorbing

e

S5
S6

Discharge
Death

e

Total I 58,647

e

~
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2. DATA, PATIENT AND HOSPITAL GROUPS

Our data is based on a random, stratified sample of 338 hospitals

with approximately 500 randomly selected patients in each hospital,

yielding a total of 169,526 patients. Since we consider only patients

with LOH of four or more who are uninfected on their fourth day of

stay, we are left with 118,221 patients. Of these we select the patients

admitted with a primary diagnosis corresponding to the selected MDCs,

which leaves us with 58,647 patients.

Stratification of the data is by two hospital level variables,

one representing the size of the hospital and whether or not affiliated

with a medical school (BEDMED) and the other representing the size of the

standard Metropolitan Statistical Area (SMSA). Table 2 summarizes the

levels of these variables and displays the number of hospitals and

patients contained in each stratum.

TABLE 2

Since our main purpose is to develop and demonstrate a modeling

approach, we do not perform separate numerical analyses for each patient

group and hospital category. We concentrate on cells 1, 3, 5, 6 and 8

which total 46,479 patients. The numerical results presented in later

sections demonstrate how our methodology can provide answers to the

research questions posed earlier. Policy making purposes require the

comparison of results for several combinations of patient hospital groups;

some comparisons and their implications appear in Kastner (1980a).



TABLE 2

STRATIFICATION VARIABLES DEFINITION AND NUMBER OF
PATIENTS AND HOSPITALS IN EACH STRATUM

(The upper numbers correspond to the number of patients, the lower
numbers to hospitals, and those in parentheses represent the cell
numbers.)

SMSA Total Patients
(millions) SMSA $ 0.5 0.5 < SMSA $ 2.5 . 2.5 < SMSA

BEDMED Total Hospitals

24481 (1) 5725 (4) 3190 (7) 33396
Beds < 200 141

31 19 191

200 $ beds 1920 (2) 3928 (5) 3869 (8) 9717
and affil i ated

22with Medical School 11 25 58

200 $ beds 8404 (3) 5797 (6) 1333 (9 ) 15534
not affil i ated

9with Medical School 48 32 89

Total Patients 34805 15450 8392 58647

Total Hospitals 200 85 53 338 co

e e -
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3. PARAMETER ESTIMATION AND TESTING

We construct parameter estimates and statistical tests to evaluate

the basic assumptions of the model. These tests help assess how accurately

and how completely the model represents the empirical process, a procedure

seldom employed in the literature.

With a continuous parameter space, the patient1s health status

can change at any point in time. In practice, of course, we cannot real is-

tically expect to have observations concerned with hundred of patients to

be recorded instantaneously. Daily recording of patient health states

occurred during the Medical Record Survey; thus we use a discrete parameter

space with one day lnterval lengths.

A. Transition Probability Estimates

Given the state space, time parameter space and independence of

patient behavior, we construct maximum likelihood

estimators of the transition probabilities for transferring from health

state i to state j in hospital group h and patient group p:

N
p.. (h,p) = n.. (h,p)/ L n1·k(h,p), i,j = 1, ... ,N,
lJ lJ k=l

n .. (h,p)lJwhere = total number of observed transitions from i to
j, in hospital group h and patient group p, and

N = number of states in the chain.

The correspondinq variances are given by:

N
V. ,(h,p) = p.. (h,p) [1 - p.. (h,p)J L n1·k(h,p), i J'-l NlJ lJ lJ k=l ' - , .. "

We present an example of the transition probability estimates for

the combination of hospital cells 5 and 8 and weekday admissions in

Figure 1. We make a few observations with respect to daily transition prob-
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abilities across all hospital 9roups, althouah this matrix is typical. Our

interests require time-dependent results based th 1 t LOH ~ •on e comp e eo", a patlent,

thus we refer general statements on patient status to the parameteri-

zations section.

Figure 1

1. The daily probability of acquiring a primary or secondary

BACT is lower than the corresponding probability for any other NI. More­

over, the daily probability of death after acquiring a BACT is higher in

most hospital groups than for other infections.

2. The daily proportion of patients leaving the hospital who die

after BACT and LRI is generally higher than after other NIs.

3. The highest infection incidence is of UTI followed by SWI

and then LRI. The conditional UTI infection rate is over 50%, while the

conditional BACT rate is less than 7%; we discuss the method af calcula-

tion in the parameterization section.

4. We do not find similar dominance for second infections. UTI

and SWI show the highest incidence, independent of the primary NI. Given

that a secondary infection occurred, the UTI incidence ranges from 25 to

65%. (In one case no secondary UTI was observed after primary BACT.)

The SWI secondary incidence ranges from as low as 8% to as high as 67%.

For some groups no secondary SWI was observed; when a high incidence of

secondary SWI is observed, it follows a primary SWI. See Section 5.

5. The daily transition probability within anyone primary

diagnosis state ranges from 0.78 to 0.90 throughout all hospital groups. In

addition, an uninfected patient has about a 93% chance of not acquiring an

infection during
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POl P02 P03 P04 SURl Sl S2

e

S3

•

S4 SUR10 S10 S20 S30 S40 S5 S6

e

.8309 .0185 .0045 .0004 .0008 .0018 .1421 .0011

.8937 .0079 .0008 .0039 .0067 .0844 .0026

.9182 .0074 .0043 .0027 .0019 .0035 .0581 .0039

.9137 .0012 .0047 .0012 .0024 .0106 .0650 .0012

.9245 .0063 .0063 .0063 .0094 .0409 .0063

.0117 .0044 .0004 .0003 .0004

.0112 .0044 .0005 .0026

P01.8919

P02

P03

PD4

SURl

Sl

S2

S3

S4

SUR10

S10

S20

S30

S40

S5

S6

.8866

.8788 .0112 .0041

.9336

.0012.0013

.8820

.0041 .0124

.0067 .0178

.9617

.9777

.9408

.0865 .0044

.0891 .0055

.1023 .0010

.0332 .0166

.0067 .0735 .0134

.0273 .0109

.0111 .0111

.0329 .0263

.9596 .0354 .0051

1

1
--'
--'

FIGURE 1. TRANSITION PROBABILITY ESTIMATES - 16 STATE MODEL
WEEKDAY ADMISSIONS FOR HOSPITAL CELLS 5 AND 8

_. ._. • ._ ,~ m _
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his/her LOH.

6. Patients in the initial state PD4 generally have a higher

daily probability of a surgical intervention than the other patients.

The most common NIs (primary or secondary) after a surgical procedure

are UTI and SWI.

7. After a surgical procedure, patients have a higher chan~e

of developing an NI. In surgical patients and nonsurgical patients, the

overall ratio of the daily transition probabilities from an uninfected

state to a state of primary infection is approximately 2.6, i.e., the

chance for an NI following surgery is almost three times higher.

8. We computed estimates of the standard deviations in each

hospital group and admission day. Approximately 75% of the estimates

are smaller than 0.01 and most of the remaining values are between 0.01

and 0.02.

Before using any of the results for statistical inference, we

submit the models to several goodness~of-fit tests. The purpose of the

tests is three-fold: to assess the extent to which the models portray

reality, to verify that the assumptions made while formulating the model

are justified by the data and to partition the patient groups into more'

homogeneous subgroups for these and future analyses. We test and dis­

cuss three assumptions: time stationarity, the Markov property, and the

geometric holding time distributions. We perform the tests on cells 1,3,

5,6 and 8; details are in Kastner et ale (1980b).

B. Testing for Time Homogeneity (Stationarity)

We implicitly assumed stationarity in estimating the transition

matrices. Stationarity is often used in Markov chain analysis and is

necessary for steady state results. The characteristics of interest to our

models are hospital institutional variables and patient mix by age,
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service and diagnosis; these are believed to remain nearly constant over

a short time period, say one to three years.

Other possible sources of non-stationarity exist. First, there

is a chance that the patient's health status pattern and the LOH in each

state is influenced by whether admission occurs on a weekday (Monday

through Thursday) or a weekend (Friday through Sunday). Second, the LOH

may influence the transition probabilities in such a way that patients

with shorter LOH have a lesser chance of acquiring an NI. For this test

we define three groups: patients with LOH shorter than the 25% quantile

(Q); patients with LOH longer than Q but shorter than the median; and

the remaining patients t whose stay is longer than the median. Third, we

examine whether a seasonality trend exists by studying four time periods

during the year which are consistent with ~ther SENIC analyses: the

,four nuarters from Apri 1 1', 1975 through March 31, 1976.

To address thp. first case we employ a test suggested by Billingsley

(1961) for comparing the transition probabilities of two independent

chains. To test the other stationarity cases, which involve more than

two cohorts, we use the likelihood ratio statistic suggested by Anderson

and Goodman (1957). In the selected cell we generate transition probabil-

ity estimates and test the null hypothesis,

Ho Pij(t) = Pij' i, j = 1, ... ,N, t = 1, ... ,T,

•

where N is the number of states and T the number of time periods.

Under the alternative hypothesis, the estimates for a given hospital

cell, at a given time period t, are

A N
p.. (t) = n.. (t)/ E n.k(t) , i, j = 1, ... ,N.

lJ lJ k=l 1
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We test the hypothesis for all states jointly since the random variables
A A

Pij(t) and Pij for two different states i are asymptotically indepen-

dent; hence, adjusting for the two absorbing states, the joint chi-squared

statistic is asymptotically distributed chi-squared with (N-2)(N-3)(T-1)

degrees of freedom.

Our test results show that the computed chi-squared statistics

for the five cells range from 33,983 to 175,543 for day of admission,

while the 0.999 critical value for 210 degrees of freedom is 295. In the

LOH case, the statistics values range from 1,899 to 15,497, and the 0.999

percentile with 420 degrees of freedom is 536. On the other hand, the

values of the statistics for the seasonal pattern tests range from 9 to 20

versus a 0.999 critical value, for 630 degrees of freedom, which equals

771.

We conclude that both the day of admission and the LOH of the

patient are sources of non-stationarity, but that there is no evidence

of seasonal pattern. For the first case, we deal with two separate

cohorts, patients admitted during weekdays and patients admitted during

weekends. In each hospital group, the uninfected states contribute all

but a negligible source of ,time fluctuation creating nonstationarity due

to LOH. We expect more instability in uninfected health states as the

LOH increases, since the patients are exposed longer to the risk of

acquiring an NI. Since all other states do not demonstrate time depen­

dency, we will assume stationarity with respect to LOH; see Section 4.

c. Testing the Markov Property

The key assumption underlying our model is that first-order Markov

dependence holds, i.e., that future movement of a patient is stochastically

dependent only on his/her present health state. For each hospital group,

•
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we test first-order Markov dependence against second-order Markov

dependence, which assumes that a patient's next movement could be proba­

bilistically dependent on both the current health state and the imme­

diately preceding state. See Anderson and Goodman (1957). Assuming time

stationarity we have

H: for alll ~;,j~N, Pk" = p.. , k = 1, ... ,N,o lJ lJ

where

Pkij = Pr{Xn = jlXn_l = i, Xn- 2 = k}, and

Pij = Pr{Xn = jlXn_l = i}, i, j, k = 1, ... ,N, n = 0,1, ...

In our case the second order property is true by definition for

non-absorbing states and seems acceptable, statistically, for death and

discharge. We adopted two tests for the hypothesis: (1) the ordinary

chi-squared, see Zahl (1955), and (2) the test suggested by Kullback,

Kupperman, and Ku (1962). The latter suggest that the two statistics are

asymptotically equivalent, and both have central chi-square limiting

distributions with Sp - So degrees of freedom, where Sp denotes the

number of permissible triplets (k~i~j), and So is the number of per­

missible triplets not observed.

We computed the ordinary chi-squared statistic and the Kullback,

Kupperman and Ku (KKK) statistic for each of the five hospital cells. The

chi-squared values range from 61 to 95. The KKK 0.999 critical values

vary, due to a range of degrees of freedom, from 211 to 264. Since the

lowest 0.999 critical value, for 140 degrees of freedom, is 211, we accept

the equivalence between second-order and first-order dependence for all

hos pi ta1 groups.

Shachtman et al. (1981a)explain that the logarithmic transforma-

tion used by Kullback et al. in their X; statistic smooths out ~he

relative chi-squaredcontribution made by less than expected cell frequencies.
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They also observe that the X~ statistic for this test is more robust

than the ordi na ry chi -squa re (X
2

) sugges ted by Zah1 (l955) IIwith
o

respect to the infrequent occurrence of highly improbable transitions. 1I

Billingsley (1961) suggests a statistic for the hypothesis

H
O

: p.. (h) = p. (h ) ,
lJ J

independent of state

independent events.)

i.e., that the transition probability p.. {h) is
lJ

i. {Under Ho the Markov chain is a sequence of

A chi-squared statistic for each hospital group,

ranging from 2,531 to 12,766, with (N-l){N-3) degrees of freedom (195 in

our case), indicates, at the 0.999 significance level, that we can

reject the hypothesis of an independent sequence of health states.

These tests imply that the (first-order) Markov property is

satisfied.

D. Testing the Holding Time Distribution

A necessary condition for a Markov chain is that the holding

times be geometrically distributed where these times are the number of

days the process returns to the same state, prior to moving to any other

state.

The probability function of the geometric distribution is

The null hypothesis

given by

Pr{X = k}

k
= jp (l-p), k = 0, 1, 2,... , 0 ~ p ~ 1

to ,otherwise.

for the underlying test is Ho: the probability that

a patient stays k consecutive time units (days) in health state i,

given the patient is in state i in hospital group h, equals
"k A

Pii{h) [l-Pii{h)J, k = 1,2, ... , and the Pii{h) are the diagonal elements

of the corresponding transition probability matrix. We observe frequencies

of the holding times from the path-coded patient level data.
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We employ the Pearson chi-square goodness-of-fit test, see

Conover (1971), and the Kolmogorov-Smirnov test, see Conover (1971, 1972).

Due to the amount of computation needed, we discuss numerical results

.only for hospital cell 1. The Pearson chi-squared statistic ranges from

131 to 5,808,168; the corresponding degrees of freedom are 3 or 4. Thus,

we reject the hypothesis that the holding time distributions are geometric .

The individual contributions to the summary chi-squared statistic imply

that the model overestimates frequencies for short holding times and under­

estimates them for long times. The large contributions of these extreme

cases result in large summary chi-squared values. The Kolmogorov-

Smirnow tests results are similar.

E. Summary of Validation Tests

The validation tests lead to the following conclusions:

1. The basic Markov property is satisfied.

2. Day of admission and LOH ~f patients are sources of non­

stationarity.

3. The holding time distributions are not geometric.

Thus, some of the underlying assumptions for the Markov chain model

do hot hold. With respect to stationarity, we proceed with our analysis

considering two patient cohorts defined by day of admission. The probable

reason for LOH nonstationarity is the large contribution to the chi­

squared value exhibited by the uninfected states. Patients enter the

system through a set of uninfected health states characterized as primary

diagnosis groups which, implicitly, represent ·an a priori risk level of

contracting an NI. We believe that a more disaggregate set of the

initial states, which better account for a priori susceptibility to NI,

will eliminate the non-stationarity due to LOH. Results of pati~nt risk
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analyses by Hooton et a1. (1980) support this supposition. Further

research on patient risk categories is in progress at CDC and an index

will soon be available to categorize patients. Since the transitions

among all other states are stationary, we will continue assuming station-

arity with respect to LOH.

Most Markov chain models discussed in the literature do not test

for geometric holding times. Does this render the untested models

invalid? In some cases analysts sensed difficulties and increased the

cardinality of the state space, see Thomas (1968); this increases the

number of test cells and substantially increases computer time. More

significantly, there is a certain trade-off involved: do we redefine

some states, add new states and iterate this procedure until we find

a state space that better satisfies the assumptions, even if the ultimate

model fails to describe reality as accurately as the original model? Here,

reality may mean simply the ability to predict LOH. Or, instead of reshap­

ing the state space, and thus the model, do we correct for non-geometric

lengths of time in states by adjusting when constructing parameterizations?

Insofar as one major purpose in this modeling effort is to predict over­

all LOH, we deem it sufficient to present results that provide answers

to the research questions posed earlier. In the following section we

present comparisons between empirical LOH and model developed LOH, which

suggest that our model is indeed consistent and responds to the stated

purpose. Nonetheless, the model should be used with caution.

4. VALIDATION - EMPIRICAL RESULTS VS.
MODEL GENERATED RESULTS

In this section we compare empirical LOH with comparable model

results: model based mean time to discharge, or death, (i .e., time to

•



•

•

19

absorption), versus observed LOH values for certain hospital/patient

groups.

To account for nonstationarity caused by admission day, we

consider separately patients admitted on weekdays and weekends. We

combine cells 3 and 6 (see Table 2) yielding a group of large hospitals,

not affiliated with medical schools, in relatively small metropolitan

areas. We also combine cells 5 and 8 which consist of large hospitals,

affiliated with medical schools, and located in relatively large metro­

politan areas.

We present the mean LOH of patients in the resulting four cohorts

for each primary diagnosis group, the corresponding standard deviations

and the 95% confidence intervals, in Table 3. The model derived computa­

tions come from the standard forum1a for mean times to absorption; see

Section 5.

Table 3

There are no apparent differences in LOH for patients admitted on

weekdays or on weekends. Note, however, that based on model estimates,

patients admitted to medical school affiliated hospitals stay from two to

four days longer (depending on the PDG and the admission cohort) than

patients admitted to non-medical school affiliated hospitals. The large

standard deviations associated with each mean LOH estimate suggest

caution in comparing LOH values.

As anticipated, the values shown for theoretically derived means

are similar to those corresponding to the empirical LOH means. In all

but two cases, the absolute difference between the empirical mean and the



TABLE 3

MODEL-DERIVED AND EMPIRICAL ESTIMATES OF LOH MEANS, STANDARD DEVIATIONS AND 95% CONFIDENCE
INTERVALS FOR THE FOUR PDG'S BY MEDICAL SCHOOL AFFILIATION AND ADMISSION DAY

Large Non-Medical School Large Medical School
Affiliated Affil i ated

Primary Weekday Weekend Weekday Weekend
Source Diagnosis Admissions Admissions Admissions Admissions

Model PDl 13.47 (9.51) 13.33 (9.27) 15.56 (12.30) 15.55 (12.64)
Deri ved PD2 12.84 (8.85) 11.48 (7.58) 15.25 (12.21 ) 15.60 (12.63)

PD3 12.27 (8.42) 12.94 (9.00) 14.39 (11.41) 15.63 (12.46 )
PD4 10.13 (7.00) 10.19 (6.90) 12.10 ( 9.92) 12.29 (10.42)

Empirical PD1 13.83 (11.67) 13. 77 (11. 08 ) 15.73 (14.56 ) 15.79 (12.79)
Estimates (13.36, 14.13) (13.22, 14.32) (14.98, 16.48) (14.94, 16.64)

PD2 12.64 ( 9. 18) 11.47 ( 7.72) 14.96 (15 .00) 15.17 (12.89 )
(12.00, 13.28) (10.81, 12. 13) (13.54, 15.70) (13.57, 16.77)

PD3 12.86 (11 .66) 13.25 (10.55) 14.74 (13.82) 15.95 (17.68)
(12.26, 13.46) (12.56, 13.94) (13.78, 15.70 ) (14.43, 17.47)

PD4 9.74 ( 5.43) 9.76 ( 5.56) 11.56 (14.05) 11.79 (11. 66)
( 9.56, 9.92) ( 9.54, 9.98) (10.99, 12.13) (11.12, 12.46)

N
o
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derived model result is only one-half day or less. Substantial standard

deviations are displayed in all cases. A comparison of empirical

standard deviations with model derived results shows that the latter

tend to be smaller.

The 95% confidence intervals presented are used as a descriptive

indicator of how close the model based mean LOH is to the empirical mean

LOH. The confidence intervals include the model mean for 14 of the 16

comparison groups; the fourth diagnosis group shows a confidence interval

which excl.udes the model derived mean for the two non-medical school

affiliated cohorts.

The above results attest to the usefulness of the model in

estimating the overall LOH for patient cohorts. Moreover, it would appear

that having violated the LOH stationarity assumption does not lead to

significant deviation in the values of aggregate parameter estimates.

5. PARAMETERIZATIONS

Investigation of the influence of intervening variables on NI

incidence and the correspondingLOH requires several functional expres­

sions. The LOH and times spent in distinct health states are important

for both policy makers and physicians for resource allocation purposes.

We estimate time dependent and absorbing NI rates, which are also of

particular interest to hospital epidemiologists. All of the comparisons

use only parameters from the transition matrix. Time-dependent expressions

necessitate derivation of parameterizations--functions of the transition

probabilities. Our estimates for patient LOH in distinct health states

(holding times), also used for testing the geometric distribution in Section

3, are presented in Kastner (1980a).

A. Relative Infection Rates

The transition probabilities are measures of daily
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transitions; Pij is the probability of a patient moving from Xn_l = i

to Xn = j on any given day n. The relative daily infection rate at

site j for (uninfected) patients from POi is
4

R.• = p../ E P' k1 J 1 J k=l 1

where
~

Pij = Ppo, ,Sj , i,j = 1,2,3.4.

The relative daily death rate for patients from POi is

O. = p'S/(p,S + p· 6)·
1 1 1 1

Similar expressions obtain for surgical patients. Values for these

formulae appear in Table 4 for joint hospital groups 3,6 and 5,8 by

admission day.

Table 4

B. Probability of Acquiring an NI

To estimate the probability that a patient (ever) acquires an

infection during his LOH we consider the first passage time

probability; for n ~ 1

fij(n) = Pr[xn = j; ~~j ,1 ~ m ~ n-llXo = iJ

n-l n-l n-m-l m-l
= Pii Pij + E Pii PisPss pSJ' .

m=l

Where i represents POi. i = 1.2,3,4; j represents Sj , j=1.2,3,4; and s

represents SUR1. The result holds for n ~ 2 and fij(l) = Pij .

This result obtains due to the upper triangular structure of

the transition matrix. To assess the probability of ever entering an NI

state.

•
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TABLE 4

RELATIVE DAILY NI RATES AND DEATH RATES AMONG UN INFECTED PATIENTS

e

Hospital Admission Primary Relative Daily Infection Rates (%)
Group Day Diagnosis Death

Group UTI BACT LRI SWI Rate (%)

3 and 6 Weekday POl 72.41 3.45 8.62 15.52 5.72
Moderate Si ~ e PD2 35.71 4.76 59.52 - 6.46
Non-Medical PD3 61. 54 3.85 3.85 30.77 0.86
School PD4 49.23 3.08 10.77 36.92 0.70
Affiliated SURl 43.04 - 24.05 32.91 2.45

Weekend POl 84.85 3.08 7.69 4.62 5.24
PD2 51.06 6.38 36.17 6.38 5.34
PD3 69.74 2.63 11.84 15.79 0.94
PD4 40.74 4.94 9.88 44.44 10.38

SURl 36.71 - 20.25 43.04 3.61

5 and 8
Large t Weekday PD1 80.00 7.27 5.45 7.27 4.84
Medical PD2 58.67 6.67 34.67 - 5.4
School PD3 62.12 - 18.18 19.70 9.68
Affiliated PD4 60.00 5.33 10.67 24.00 0.77

SUR1 40.93 4.15 20.21 34.72 2.99
-

Weekend POl 66.67 12.34 9.88 11. 11 5.34
PD2 61.96 4.35 33.70 - 8.06
PD3 47.76 5.97 34.33 11.94 1.63
PD4 66.67 3.45 4.60 25.28 6.88

SURl 46.67 3.33 21.67 28.33 1.48 N
W
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00

f .. = l: f .. (n) = p. ./O-Pii) + p. p ./(l-p )(l-p .. ) i,j = 1,2,3,4
1J n=l 1J 1J 1S SJ ss 11

We present these probabilities in Table 5.

Table 5

The last row of this table presents the probability of a ran-

domly selected patient. ever acquiring an NI during her/his LOH. We compute

these probabilities from

4
Pr[ever contracting NI jJ = E a.f ..

i=l 1 1J

Where ai is the probability of entering the system into state POi from

Table 1. A similar approach yields relative daily secondary infection

rates conditional on a primary NI, and the relative daily death rate among

patients with a primary NI.

We construct the cumulative daily infection incidence function by

using first passage time distributions for n ~ 2:

n
F.. (n) = l: f .. (m)

1J m= 1 1 J

p.. (1 - P~ i) + 1 n-1 ( n-1 n-1)
PisPsj - Pss p.. p .. - Pss1J 11 11 p.. ~ Pss11

(1 - p.. ) (1 - p.. ) 1 - Pss (p .. - pss)11 11 11

=
p.. (1 - P~') + 1 n-1

l)p~: 1PisPsj - p.. (n - = psslJ 11 11 p..
11 11

(l - p.. ) (1 - p.. ) 1 - p..
11 11 11

Let i be P04 and compare Fij(n) for j = 1,2,3,4, n = 2,5(5) 30

and n ~oo , as well as F.. (n)/f .. , which yields the difference in the
lJ lJ

•
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TABLE 5

Probability of Acquiring an NI, Weekday, Hospital Cells 5 and 8

Entering NI
State Sl S2 S3 S4 Total

POl .0487 .0045 .0067 .0105 .0704

P02 .0461 .0052 .0265 .0062 .0840

P03 .0407 .0007 .0133 .0166 .0713

P04 .0347 .0032 .0087 .0175 .0641

Randomly
Selected
from .0407 .0034 .0106 .0142 .0689
P01- P04

25
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rate at which the cumulative incidence approaches the probability of

(ever) acquiring infection j. The transition probabilities (from Figure

1) are: p.. = 0.8919, P = 0.8937, p. = 0.0117, and p.. ,psJ· , respec-
11 ss 1 S 1J

tively, (0.0044, 0.0004, 0.0003, 0.0004), (0.0079, 0.0008, 0.0039, 0.0067).

Results are in Table 6 and the last row agrees with the fourth row of

Table 5.

Table 6

A fascinating outcome of this analysis is that the rate at which

the cumulative incidence approaches the probability of (ever) acquiring

an infection, F.. (n)/f .. , does not differ significantly as a function of
1J 1J

the infection type. Note, also, that even by day 5 a patient has already

achieved 40% of her/his chance of contracting an NI and 80% by day 15.

Tables for P02, P03 and P04 differ somewhat in the rapidity of convergence

but have the same property for Fij(n)/fij

C. Time to Absorption and Corresponding Ramifications

The mean time to absorption in S50r S6 from any state is the equiva­

lent of the mean remaining LOH for a patient'. To compute this quantity

we con:.ider the submatrix of P for the transient states denoted by Q;

Q is a 14 x 14 upper triangular matrix with components qij' Let N =

(I_Q)-l be the fundamental matrix which we employ to compute the mean

time to absorption, see Lemmas 1 and 2 in the Appendix.

Let m be the (row) vector of mean times to absorption;

mT
= N E = (ml , m

2
, ••• , m14 )T, where E is a (column) vector of ones.

By Lemma the ith entry in m is given by

14
m. =): q .. =

1 j=l 1J

14
L q.. =

j=i 1J
lip.

1

14 j
+ Eli (q'k/P .. )qk'

j=i+l k=i+l 1 11 J

Results appear in Table 7



TABLE 6

CUMULATIVE DAILY INFECTION INCIDENCE
WEEKDAY ADMISSIONS FOR HOSPITAL CELLS 5 AND 8

WHERE PRIMARY DIAGNOSIS GROUP IS PD1

26A

F.. (n) F.. (n)/f .. (%)
lJ lJ lJ

n UTI BACT LRI SWI UTI BACT LRI SWI

2 .0091 .0008 .0009 .0014 .1868 .1856 .1416 .1345

5 .0204 .0019 .0025 .0039 .4191 .4185 .3777 .3698

10 .0326 .0030 .0043 .0066 .6685 .6688 .6373 .6294

15 .0395 .0037 .0053 .0082 .8110 .8120 .7901 .7827

20 .0435 .0040 .0059 .0092 .8925 .8939 .8798 .8731

25 .0457 .0042 .0062 .0097 .9390 .9407 .9325 .9264

30 .0470 .0044 .0065 .0101 .9655 .9675 .9634 .9577

00 .0487 .0045 .0067 .0105
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Table 7

As expected, among hospitals not affiliated with medical schools

mean times to absorption for weekend admissions are usually the same or '

longer than the corresponding means for weekday admissions. Exceptions

occur with secondary infections and surgery subsequent to an infection.

Surprisingly the mean times to absorption for patients in medical school

affiliated hospitals are mixed for weekend versus weekday admissions; they

are longer than those for the other larger hospitals (not in cells 5 and

8). Patients with no infections in PD4 stay the least time, while

patients in PD1, i.e., vascular diseases, stay longer than the other

uninfected patients.

Among patients with a primary infection, it appears that those

with BACT exhibit the longest mean time to absorption, followed by those

who acquire a UTI. In the case of secondary infections, bacteremia is

associated with longest mean time to absorption, followed by LRI and UTI.

Also, patients who go through surgery after acquiring an NI have a mean

absorption time which is 2.5 to 11 days longer than the mean time of

patients who undergo surgery when uninfected.

We consider two absorbing states, discharge and death; let d

denote either of them. We compute the probability of absorption in state

d by

Yd = NZd = (l-Q)-lZd ' with the ith element being
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TABLE 7
MEAN TIME TO ABSORPTION (DAYS) FOR HOSPITAL GROUPS 5 AND 8

AND ADMISSION DAYS

Large Large Non- Large Large Non-
Starti ng Medical School Medical School Medical School Medical School

Transient Affiliated Affiliated Affil i ated Affiliated
State Weekday Weekday Weekend Weekend

Admission Admission Admission Admission

PDl 9.47 11.56 9.33 11.55
PD2 8.84 11.25 7.48 11.60
PD3 8.27 JO.39 8.94 11.63
PD4 6.13 8.10 6.19 8.29
SURl 11.03 12.61 9.72 13.38
Sl 13.80 18.69 13.76 18.99
S2 15.36 21.44 9.65 23.35
S3 12.75 15. 16 14.90 16. 16
S4 13.00 17.47 11.42 17.59
SUR10 13.86 23.67 12.22 17.70
S10 12.96 26.14 17.59 25.76
S20 27.33 44.90 14.00 37.50
S30 27.00 16.89 10.33 28.75
S40 16.24 24.75 16.43 23.00

e

N

"):0
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i = 1

i > 1
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) -1where N = (I-Q for a given Q matrix; Zd is a column vector of

transition probabilities for any of the states included in the Q matrix

to the absorbing state d, with (Zd)i the ith element of Zd. For

example, let Q include states 51,5UR10, 510, 520, 530 and 540

and Zd rerresent the transition probabilities from these states to

absorbing state 55, discharge. In Table 8 we summarize the corresponding

absorption probabilities.

Absorption probabilities in state 56 (death) are generally higher

in hospitals affiliated with medical schools. Also, these probabilities

are higher among patients admitted over the weekend as compared to weekday

admissions. Among patients admitted on weekdays the average of these

probabilities is 0.1731 in large medi~al school affiliated hospitals vs.

0.0939 in the non-affiliated; among patients admitted on weekends the

corresponding mean probabilities are 0.2266 vs. 0.1596. One explanation

for the latter may be that weekend admissions are not always scheduled,

are often sequelae of emergencies, and evidence critical health conditions.

Also, absorption probabilities in state 56 are higher among (a) patients

who undergo surgery after acquiring a primary NI; and (b) patients with a

Table 8

secondary NI as compared to primary NI patients. These observations do

not necessarily imply that an NI leads to a higher probability of death;
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TABLE 8

THE PROBABILITIES OF ENDING IN ABSORBING STATE S(j)
HAVING STARTED IN TRANSIENT STATE S(i)

e

Cells 3 and 6 Cells 5 and 8 Cells 3 and 6 Cells 5 and 8
Weekday ~leekday Weekend Weekend

Starting Non-Medical School Medical School Non-Medical School Medical School
Transient Affiliated Affil i ated Affiliated Affiliated

State Absorbing States Absorbing States Absorbing States Absorbing States
S5 S6 S5 S6 S5 S6 S5 S6

POl 0~944 0.'056 0.948 0.052 0.946 0.056 0.937 0.063
PD2 0.937 0.063 0.937 0.063 0.944 0.056 0.914 0.086
PD3 0.988 0.012 0.981 0.019 0.983 0.017 0.970 0.030
PD4 0.989 0.011 0.983 0.017 0.982 0.018 0.980 0.020
SURL 0.969 0.031 0.955 0.045 0.956 0.044 0.958 0.042
Sl 0.920 0.080 0.887 O. 113 0.920 0.080 0.822 0.178
S2 0.861 O. 139 0.684 0.316 0.371 0.629 0.536 0.464
S3 0.903 0.097 0.825 0.175 0.817 0.183 0.828 0.172
S4 0.955 0.045 0.933 0.067 0.931 0.069 0.888 0.112
SUR10 0.926 0.074 0.799 0.201 0.971 0.029 0.873 0.127
S10 0.800 0.200 0.714 0.286 0.824 0.176 0.680 0.320
S20* 1.000 - 0.500 0.500 0.667 0.333 0.250 0.750
S30 0.667 0.333 0.556 0.444 0.667 0.333 0.500 0.500
S40 0.920 0.080 0.875 O. 125 0.857 0.143 0.692 0.308

*More observations may be needed to verify probabilities associated with low
frequency events.

N
\.0
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patient with complications and severe illness may stay longer in the

hospital and thus become more susceptible to acquiring an NI. Such a

patient's chances of mortality are larger to begin with and the NI may

be just an additional factor. Therefore, it is reasonable to refine the

model with a patient risk index, to test whether there really is a sig­

nificant difference in the probability of death, mean time to absorption,

and other measures of interest. See, for example, Hooton et al. (1980).

Among uninfected patients, the mortality rate is larger for

patients in the PD2 primary diagnosis group, i.e., respiratory and lung

diseases, followed by PD1, vascular diseases. Our primary diagnosis

grouping is too coarse to permit major policy recommendations, but the

results suggest significant potential for further research and policy

analysis.

6. POST-CONDITIONED TABOO PROBABILITIES

In traditional cohort comparisons for epidemiologic analyses, the

data requirements for conditional rate estimations may be significant.

To maximize the utility of existing data, in this section we extend

our analysis beyond known limiting results and derive probabilities of

absorption conditioned on constraints on visits to one or more prespeci­

fied states. See Shachtman et al. (1981b) for the methodology.

Analyses using our model yield estimates of differences in the

cumulative distributions, or proportions, of patients acquiring secondary

infections. Furthermore, by computing cumulative probabilities with

conditions defining distinct primary infections as taboo states, we can

compare the effect of each primary infection, or a combination of

primary infections, on the occurrence of secondary infections, as well
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as on the time to absorption.

The probability that the process is in state k at time n

without having entered state h, given the process started at state

j, is
hPjk(n) = Pr{Xn = k; Xm ~ h, 1 ~ m ~ n-llXo = j}, h ~ k

and is called a post-conditioned taboo probability. The corresponding

post-conditioned first passage taboo probability is

hfjk(n) = Pr{Xn = k; Xm ~ {h, k} , 1 ~ m ~ n-llXo = j}, h ~ k.

Let P be the transition, probability matrix, and let Ph be a modified

matrix defined by: Pm = IhP, where Ih is an identity matrix with the

diagonal element corresponding to taboo state h set to zero. Thus

the matrix Ph will have a row of zeros corresponding to the taboo

state. If Rl = P, then the n-step post-conditioned taboo transition

probability matrix is given by Rn = Rn-1Ph = p(Ph)n-l = (hPjk(n) ).

Let k correspond to a secondary UTI (state 510), the n-step post

conditioned first passage taboo probability is

hf50,510(n) = Pr{Xn = 510; Xn t {h, 510} , 1 ~ m ~ n-llXo = 50}, h ~510

and h may be 51, 52, 53, 54 or 5UR1. Note that 50 represents a

selected initial uninfected state. This yields
n

hP50 510(n) = E hf50 510(m) hP510 510(n-m), n ~ 2,, m=l' ,

where h = 51, 52, 53,54 or SUR1.

Let 510 be absorbing for computational purposes; then hP510,510(n-m) = 1
n

for all n ~ 2. Thus hP50 510(n) = E hf50 SlO(m) .
, m=l'

Let h = 51 (primary UTI) be taboo, and consider 51 P50,510(n), n=1, ... ,40.

The results shown in Table 9 indicate an initial increase and

then a decrease in the post-conditioned probabilities as a function of

n. (All the numerical examples are for large, medical school affiliated
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hospitals, cells 5 and 8.)

Table 9

In this table Sl PSUR1,S10(n) is consistently largest for all

nand Sl PPD4,S10(n) is second. This indicates that surgery patients,

without a primary UTI, have a higher probability of acquiring a secondary

UTI than patients who do not have surgery. Also, the patients who enter

the system through the uninfected state PD4 have a higher probability for

a secondary UTI after any non UTI primary NI. Note that PD4 is less

specific in terms of the organ system definition than the other initial

states.

We now consider a more complex post-conditioning structure:

HifSO,S10(n) = Pr {X n = S10, Xm t Hi ,1 s m s n-1lXo = SO};

with Hi defined as Hi = {Sl, S2, S3, S4} ~ {Si}, i = 1, 2, 3,4.

This means that X t Hi if and only if X = SO or Si. Fromm . m
Shachtman et a1. (1980b) we have the following results, n ~ 2 and h ~ k:

(1) hPjk(n) = E hPjr(n-1)Prk
r~h .
n

(2) hPjk(n) = E hPjk(m)hPkk(n-m) =
m=l

which leads to the following iterative expression for n-step post­

conditioned first-passage taboo probabilities:
n-1

hf'k(n) = hP'k(n) - E hfJ'k(m)
J J m=l

with

hfjk(l) = f jk = Pjk and k absorbing. Since

Hi PSO,S10(n) = PSO ,Si(n-1) PSi ,S10 ,



TABLE 9

THE n-STEP POST-CONDITIONED TABOO PROBABILITIES

Sl PSO,SlO(n)

Where SO is PD1, PD2, PD3, PD4 or SUR1.
5

(Each entry is 10 x Sl PSO,S10(n))

SO
n PD1 PD2 PD3 PD4 SUR1

2 0.77 0.96 1.00 1.56 3.7

5 5.98 7.21 7.33 10.90 27.6

10 17.45 20.18 20.31 27.58 75.6

20 30.36 32.90 32.57 38.48 119.0

30 28.17 29.10 28.40 30.95 102.3

40 20.26 20.19 19.46 19.97 69.2

33



34

for each primary diagnosis initial uninfected state (SO) we have,

n ~ 2,

PSO,Si(n-l)
n-l

= L fso,Si(m) PSi,Si(n-m-l) =
m=l

PSi ,Si ~ PSO,SO
=

( n-l n-l )/(
PSO,Si PSi ,Si - PSO,SO PSi ,Si - PSo,So),

n-2
(n-l)PSO,Si PSi ,Si PS' S' =1, 1 Pso,so

Thus, by combining the two previous expressions, we get

=
( n- 1 n- 1 ) ( )

PSO,Si PSi,SlO PSi,Si - PSO,SO / PSi,Si - PSO,SO '

( ) n-2
n-l PSO,Si PSi,SlO PSi,Si

PSi ,Si ~ PSO,SO

PSi,S; = PSO,SO

Let Hi = HSl , i.e., primary UTI; Tablelosummarizes the n-step post

conditioned probability computations corresponding to all primary NI

states, with UTI (51) as the taboo state and secondary UTI (S10) as the

"absorbing" state; the computations are based on o~servations of weekday

admission patients in large medical school affiliated hospitals.

Table 10

In all but the last case presented in the Table above, the n-step

probability function reaches its maximum at n=10. This means that

after 10 days the patient's probability of a secondary UTI, even though

s/he acquired a primary UTI, decreases as her/his LOH increases.



TABLE 10

The n-Step Post-Conditioned Taboo Probabilities

HS1PSO.S10(n)

Where SO is POl. P02. P03. P04 or SURl

(Each entry is 105 x HS1PSO.S10(n) )

35

SO

n POl P02 P03 P04 SURl SlPSUR1.SlO(n)

2 2.27 0.81 1. 73 1. 73 3.67 3.72

5 6.43 2.28 4.78 4.25 10.72 27.60

10 8.17 2.87 5.85 4.40 14.28 75.65

20 5.57 '1 A2 3.73 2.21 10.60 119.04

30 2.78 0.95 1.77 0.91 5.71 102.25
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Not surprisingly, these probabilities are highest among surgical

patients. One possible reason for their higher UTI incidence is that

for some period after surgery a urinary catheter is often used. Cathe-

ters, believed to be a major cause of UTIs when insufficient precau­

tions are taken, are often associated with a primary UTI patient

acquiring a secondary UTI. Patients in the POl state of primary

diagnosis, vascular diseases, have the second highest incidence of

acquiring a secondary UTI after a primary UTI.

It is interesting to compare HS1PSUR1,SlO(n) and SlPSUR1,SlO(n)

in the latter case the only taboo state is primary UTI, while in the

first expression all states of primary infection, except primary UTI,

are taboo states. See the last two columns of Table 10. The probabili-

ties in which Sl is the only taboo

state increase with n, even among surgery patients, to a maximum at

n=21, and then decrease; this supports the above argument that, even

among surgery patients after a certain LOH, the probability of acquiring

a secondary UTI is larger when a primary UTI is already present.

From a theorem developed by Shachtman et a1. (l981 b), we have

that the pr~bability distribution {hFjk(n): n = 0,1, ... ,} where

hFiJ·(n) = L hf; .(m) , is the post-conditioned time to absorption
m=l J

from state i distribution. By using the expression for HiPSO,SlO(n) ,

and definitions from Shachtman et al.(1981b), in a general form, we

develop an expression for the pre-conditioned first passage taboo

probability which applies to our models. We define the pre-conditioned

first passage taboo probability by

From a theorem, Ibid.,

hq· .(n) = hf.·(n)/[l -.F·h(n-l) - hF .. (n-l)], n ~ 2 and h ~ j .lJ· lJ J 1 lJ
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We extend this result to our collection, Hi, of taboo states. Let Hi

be defined as before and consider HiqSO,SlO(n). Then, following

the above results we get
Hi QSO,SlO(n) = Pr {Xn = SlO I Xm~. Hiu{SlO} , 1 ~ m~ n - llXO = SO} ,

which is explicitly given by

L
r = SO,Si

= HiqSO,So(n-l) PSO,SlO + HiqSO,Si(n-l) PSi,SlO •

But for our model, H,.qso,s,.(m) = p pm-lSO,Si SO,SO , and PSO,S10 =0,

hence,

The corresponding cumulative pre-conditioned first passage taboo proba-

bil ity is

= PSO,Si PSi,S10 (1 - p~o~so)/(l - PSO,SO), M~ n ~ 2.

The above result, with Si = Sl, is the probability that a patient moves

from state SO (uninfected) to state S10 (secondary UTI) for the first

time at time n ~ 2, without visiting the states S2 (BACT), S3 (LRI),

or S4 (SWI), by time M~ n. Table 11 summarizes the numerical results

for M= 2, 5, 10, 20 and 30. As with the n-step post conditioned taboo

probabilities, these are highest when the uninfected state is the

surgical state (SUR1) or when the patients enter the system from the

vascular disease primary diagnosis group (POl).

Table 11



TABLE 11

THE CUMULATIVE PRE-CONDITIONED FIRST PASSAGE TIME PROBABILITIES

HS1 QSO,S10{M)

where SO ;s PD1, PD2, PD3, PD4 or SUR1
5

(Each entry ;s 10 x HS1 QSO,S10{M) )

38

SO

M PD1 PD2 PD3 PD4 SURl

2 2.268 0.810 1.728 1.728 3.672

5 7.482 2.656 5.573 5.007 12.445

10 12.585 4.431 9.099 7.191 21. 718

20 16.476 5.744 11 .499 8.056 29.812

30 17.473 6.065 12.018 8.135 32.347



39

We now propose a parameterization to assess the effect of

relative LOH in a state of secondary infection on probabilities of

discharge or death. let n be the lOH from the onset day of a primary

infection for a patient contracting multiple infections, and r be the

onset day of her/his secondary infection. We define

g(n,r) = Pr {Xn = d; Xn_l = Sj; Xr = Sj ; Xr_l = SilXo = Si} , 1 s r s n-l ,

•
where d is either absorbing state S5 or S6; S. , j = 10, 20, 30, 40,

J

is a secondary infection state, and Si, i = 1,2,3,4, is a primary

infection state. Then

r-l n-r-l
g (n,r) =-aSiPSi,Si PSi,Sj PSj,Sj pSj,i aSi

= PSi ,Sj PSj ,d

PS· S· PS· S·1,1 J, J C
PSi ,Sj) pn
p Sj,Sj
Sj,Sj

, n ~ 2, 1 s r s n-l,

and aSi is the prior proability for state Si.

Suppose the overa11 LOH is fi xed, n ="0

transition probabilities:

then, for fi xed

g(no,r) = C (PSi ,Sj/PSj,Sj)r, 1 s r s n-l,

where C depends only on the tr~nsition probabilities and no.

For fixed no ' i, j and d, g(no,r) is an increasing function for

(PS· S·/PS· S·) > 1, and a decreasing function of (P S· S·/PS· S·) < 1.
1,1 J,J 1,1 J,J

If the LOH in the primary infection state is fixed at ro ,then g (n,ro)

tends to 0 as n increases. Thus, if the probability of retaining a

primary infection is higher than that of retaining a secondary infection,

the probability of absorption increases as the relative LOH, r, increases.
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For illustration, we again consider patients admitted on

weekdays in large hospitals not affiliated with medical schools (cells

5 and 8). Let Si be a primary UTI (Sl) and Sj a secondary UTI (SlO);

we consider both absorbing states. The expression for g(no,r), with no =

31, yields the results in Table 12. In this table C(d) denotes the

constant term C, where d can

be either discharge (S5) or death (S6); g(no,r,d) is the absorption

probability conditioned on the relative duration, n - r, of the secondary

infection. In this case PSi ,Si < PS10,SlO and g(no,r,d) decreases as

r increases for fixed no = 31, and d = S5 or S6. The expression

g(no,r,S6)/g(no,r,S5) = PS10,S6/PS10,S5 = 0.250 is the ratio

of conditioned absorption probabilities, of death to discharge, for

multiple UTIs.

TABLE 12

8. SUMMARY AND CONCLUSIONS

We posed four research questions: (1) How can we estimate the

hospitalization time spent in distinct health states? (2) How much

longer does a patient with an NI spend in the hospital than a patient

with similar characteristics who has not acquired an NI? (3) What is

the effect on these measurements of intervening variables, e.g., surgery?

and (4) If we could eliminate certain types of NIs, how would this

influence length of hospitalization? Our findings provide models, tests,

parameterizations and numerical results for these and related questions.

Furthermore, our methodological framework permits applications beyond



•

TABLE 12

DISCHARGE AND DEATH PROBABILITIES CONDITIONED ON
RELATIVE DURATIONS OF SECONDARY INFECTIONS, no = 31

(Each entr~ is 104 times the original expression.)
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•

r C(S5) g(no,r,S5) C(S6) g(no,r,S6)

1 0.329 0.320 0.082 0.0798

5 0.303 0.0755

10 0.283 0.0705

20 0.246 0.0615

30 0.215 0.0536
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those employed in this paper.

Perhaps the most significant aspect of this study is its develop­

ment of a control and prediction tool for hospital medical epidemiologists

and planners. Flexibility is embodied in the potential for modifying

health state definitions and the design of the model. By

allowing for more specific and refined initial, i.e., uninfected diagnostic

coding, we may achieve more homogeneous patient cohorts for analyses.

Currently under development at CDC, see Hooton et al. (1980), is a patient NI

risk index which accounts for a large number of variables including age,

sex, purpose of hospitalization, types of underlying or previously

acquired'illnesses,.duration of surgery, duration of treatment with

urinary catheters, and others. When initial health states are defined

in terms of such a risk index, our models and their sequelae provide

quantitative measures of the differences among patient risk groups.

We also recommend the development of an algorithm which identi­

fies the NT resolution time (lloffset" or end of the NI episode). Then

we can generalize the Markov chain network to be non-hierarchical,

allowing the patient's return to an uninfected health state prior to

discharge, death or acquisition of additional NIs. Both tasks require

further research.

•



•

APPENDIX I

Lemma 1:

Let Q be an nxn upper triangular matrix with entries (qij);

thus q.. = a for all ; > j, and a < q.. < 1. Let p.. = 1 - q... Then,
1J 11 1J 1J

(i) {I_Q)-l always exists. (ii) Let qij be the (i ,j) element in

(I -Q )-1 . Then

1/p ..
11

q.. = j
1J

r
k=i+1

a

, ; = j

, i < j

, i > .i

Note, the Lemma allows an iterative determination of qij ; e.g., we first

compute
- ( - 2q'l . = q'l ./p .. ) q.. = (q. 1 ./p .. ) , then we compute
J-,J J-,J JJ J,J J-,l JJ

q. 2 . = f (q. 1 .J-,J J-,J
and known transition probability terms), etc.

•

~

Proof: (i) Let (I-Q) = qij . By the assumptions we have that

, i < j
, i > j
, i = j .

Thus, (I-Q) is also upper triangular and its determinant is

the product of the diagonal elements.

n ~ 1
II I-Q II = 'IT q.. > 0, nonsingu1ar, and (I-Q)- exists. *

j=l 1J

(ii) Proof by induction. Let n=l, then O_Q)-l = l/Pll for



We now assume the relationship holds for {n-l} and show it holds for n.

The result follows immediately from Lemma 2.

Lemma 2.

Let Q be an nxn {n~2} upper triangular matrix with entries {q .. } such e
lJ

tha t q.. = 0 for all i > j, p.. = l-q.. , and 0 < q.. < 1. Let K be
lJ lJ lJ lJ

an {n-l} x {n-l} matrix with entries kij = qij , i, j = l, ... ,n-l.

Then if qij and kij are, respectively, the {i, j} the element in {1_Q)-l

and (I-K}-l ,

•

n-l
~ {k·n/p .. } qn + (q. /p .. ) q , i=l, ... ,n-l

R.=i+l lit. 11 ",n In 11 nn

(i)

(i i)

q.. = k ..
lJ lJ

-
(2) qin =

i, j = l, ... ,n-l;

, i=n

•
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Proof: Let n=2; then

(I-Q) -1 =

°
= l/Pll' and

(2) holds. Since the first (i-l) elements of the ith row in (I-Q) are

0, we have
n
L

j=i

= (0, i ~ n

1, i = n

We now consider the inner product of the nth column of (I_Q)-l and the

ith row of (I-Q). This yields the ith entry in the nth column of the

product (I-Q) (I_Q)-l. This element is given by

•
n n n

~ ~ ~ ~

L q.. qin = L q.. Clin = q.. qin + L q.. qin
j=l 1J j=i 1J 11 j=i+l 1J

n

= e· i ;If n
= p.. /p + L (-q .. ) qin

11 nn j=;+l 1J 1, ; = n

Suppose i=n; then

=

n ~

L Cl.. q.
j=l 1J In

, which equals 1

if and only if qnn = l/qnn = l/Pnn

• Continuing by construction we let i=n-l; then

n ~ n ~ ~

L q 1 . q. = L q 1 . q. = qn-l,n-l qn-l,n + qn-l ,n qn ,nj=l n- ,J In j=n-l n- ,J In

which using the result from the previous step, equals ° if and only if
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Now let i = n -2;
Pn-l,n-l Pnn

=
~

qn-1, n-l

then
n ~

r qn-2,J' qJ'n =
j=l

~ ~ ~

qn-2,n-2 qn-2,n + qn-2,n-l qn-l,n + qn-2,n qn,n = o.

if and only if

~

qn-2,n-2

~

qn-2,n-l qn-l,n =
~

qn-2,n-2

= qn-2,n-l qn-l,n +
P P P" .n-2,n-2 n-l,n-l nn

similarly, we have that n
~

n r q.. qjn
~ j=i+l 1J

1: q.. qjn = 0 if and only if qjn = -
j=l 1J

q..11

n
= r n-lj=i+l q.. qjn q.. qin11 = r 1.1

qjn + qnn
j=i+l p.. p..p.. 11 11

11

= •

this proves the Lemma. *

•

1
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