
BINOMIAL-COEFFICIENT MULTIPLES OF IRRATIONALSTerrence M. Adams and Karl E. PetersenAbstract. Denote by x a random in�nite path in the graph of Pascal's triangle (leftand right turns are selected independently with �xed probabilities) and by dn(x) thebinomial coe�cient at the n'th level along the path x. Then for a dense G� set of� in the unit interval, fdn(x)�g is almost surely dense but not uniformly distributedmodulo 1. 1. IntroductionThe Pascal graph is the directed in�nite planar graph with vertices (n; k), forn = 0; 1; : : : and k = 0; : : : ; n and two edges coming out of each vertex (n; k), oneto (n+ 1; k) and one to (n+ 1; k + 1). Labeling edges of the �rst kind by 0 and ofthe second kind by 1 produces a natural correspondence between in�nite sequencesx 2 
 = f0; 1gN and in�nite paths in the Pascal graph which start at the root vertex(0; 0). We will denote by dn(x) the binomial coe�cient C(n; kn(x)) found at the n'thvertex of x, if the Pascal graph is superimposed on the Pascal triangle. The Pascaladic transformation on the space X of in�nite paths (see [9, 11, 12, 6]) correspondsto the map T : 
 ! 
 given by T (1p0q01 : : : ) = 0q1p10 : : : for p; q � 0. Vershik[9] noted that the invariant ergodic measures for this map are exactly the Bernoullimeasures �� = B(�; 1��) on 
 and conjectured [10] that they are weakly mixing.It was noted in [6] that if, for a �xed Bernoulli measure on 
, � is an eigenvalue ofT , then �dn(x) ! 1 for a.e. x. The question of whether or not there exist such �,and its variants concerning the distribution of the points �dn(x) on the unit circlefor typical x or indeed for all x, some of them also mentioned in [6], lead to thestudy of the distribution modulo 1 of binomial-coe�cient multiples of irrationals;answering many of these questions seems to demand deeper understanding of thedivisibility properties of binomial coe�cients than we have at present.While we are not yet able to answer the question of weak mixing for the Pascaladic transformation, we do have some progress on related questions. First, we notethat if x is a path in the Pascal graph which tracks a line of a �xed slope �, thenthe proportion of j's, 0 � j � n, for which dj(x) is divisible by a �xed prime qtends to 1 as n ! 1. Using this, we construct an uncountable set of � on theunit circle such that for a.e. path x in the Pascal graph (with respect to a �xedBernoulli measure) the points �dn(x) are not uniformly distributed on the circle,since asymptotically too large a fraction of them are near 1. Thus these points mightbe candidates for eigenvalues of T|but we construct such � for which the �dn(x) are1991 Mathematics Subject Classi�cation. Primary 28D05, 28D99..Key words and phrases. uniform distribution modulo 1, Pascal adic transformation, measure-preserving transformation, eigenvalue, weak mixing.1



2 TERRENCE M. ADAMS AND KARL E. PETERSENdense. We also list several further observations, questions, and conjectures aboutthe distribution of these points; perhaps the strongest conjecture (also mentionedin [6]) is the following: If � 2 C and there exists a path x in the Pascal graph forwhich �dn(x) ! 1, then � = 1.The second author gratefully acknowledges the support of the Erwin Schr�odingerInstitute, Vienna, where part of this research was conducted.2. Intersections of lines with Sierpinski's gasketLet E denote the triangle with vertices (0; 0), (1; 0), and (0; 1). In this section weconstruct Sierpinski's gasket as a subset ofE. Then we prove that every straight linepath (with slope strictly greater than 0) through Sierpinski's gasket intersects thegasket in a set with one-dimensional Lebesgue measure 0. (Since Sierpinski's gaskethas two-dimensional Lebesgue measure 0, Fubini's theorem guarantees that almostevery line with a speci�ed slope intersects Sierpinski's gasket with one-dimensionalLebesgue measure 0, but this is not su�cient for our purpose.) We give two lemmaswhich set up the general proof. Also we apply this to the generalized Sierpinskigasket de�ned at the end of this section.Given a natural number n, let E1n denote the interior of the right triangle withvertices ((2n�1�1)=2n�1; 1=2n), ((2n�1)=2n; 0) and ((2n�1)=2n; 1=2n) and let E2nbe the interior of the triangle with vertices (1=2n; (2n�1�1)=2n�1), (0; (2n�1)=2n)and (1=2n; (2n � 1)=2n). We view the collection of Ein's contained in the largertriangle E with vertices (0; 0), (1; 0) and (0; 1). The next two lemmas concern theintersection of the Ein's with a straight line of slope 
 > 0 (where 
 correspondsto the invariant Bernoulli measure ��, with � = 1=(1 + 
) for the Pascal adictransformation).Lemma 2.3. Given � > 0 there exists � = �(�) > 0 such that: for any straightline L of slope � which intersects the interior of E, there exists n and i such that�(L \Ein)�(L \E) � �:Before we prove Lemma 2.3 we state and prove the preliminary Lemma 2.2.Lemma 2.2. Given 
 > 0 there exist positive real numbers � = �(
) and � = �(
)such that for all b 2 [��; (1 � �)=2] and Lb = f(x; 
(x � b)) : x 2 Rg we have�(Lb \E1)�(Lb \E) � �:Proof. First we �nd the intersection of Lb with the hypotenuse of E1. Solvingy = 
(x� b) and y = 1=2�x simultaneously, we obtain x = (1=2+ 
b)=(1+ 
) andy = 
(1=2� b)=(1 + 
). Thus if we choose � < 1=(2
) our point of intersection willhave positive x and y coordinates. Hence the function f(b) = �(Lb \E1)=�(Lb \E)is positive and continuous on the closed interval [��; (1��)=2] and therefore achievesa positive minimum value �. �Proof of Lemma 2.3. Any line L which intersects the interior of E intersects eitherthe line segment joining (0; 0) to (1; 0) or the line segment joining (0; 0) to (0; 1).



BINOMIAL-COEFFICIENT MULTIPLES OF IRRATIONALS 3Without loss of generality let us consider line segments L intersecting the segmentjoining (0; 0) to (1; 0). If we let I = f(x; 0) : 0 � x < 1g, then I \ L 6= ;. In thiscase we may focus on the sets En = E1n.Choose � > 0 as in Lemma 2.2. (In particular � < 1=(2
) will work.) We maycover I with subintervals In = [(2n�1 � 1)=2n�1 � �=2n�1; (2n � 1)=2n � �=2n); sowe have I = S1n=1 In. For each b 2 In de�ne Lb = f(x; 
(x � b)) : x 2 Rg andfn : In ! [0; 1] as fn(b) = �(Lb \En)=�(Lb \E). The self-similarity properties ofthe triangles En imply that each fn : In ! [0; 1] is continuous, and they all havethe same image. Therefore by Lemma 2.2 there exists a single real number � > 0such that fn(b) = �(Lb \En)�(Lb \E) � �for all positive integers n and all b 2 In. �Now we construct Sierpinski's gasket as a closed nowhere dense subset of E.We call triangles in the plane lower triangles if we can label the vertices (a1; b1),(a2; b2) and (a3; b3) so that the right angle is at (a2; b2) and a2 = minfa1; a3g andb2 = minfb1; b3g. Upper triangles have right angle at (a2; b2) with a2 = maxfa1; a3gand b2 = maxfb1; b3g. Note that given a lower triangle R there is a unique uppertriangle (inscribed in R) whose vertices are the midpoints of the sides of R. Thisupper triangle is denoted U(R); let L(R) = fR1; R2; R3g be the collection of lowertriangles remaining when we extract U(R) from R. Also given a collection C oflower triangles let U(C) = fU(R) : R 2 Cg and letL(C) = [R2CL(R):We take the triangles in L(R) to be closed.The following proposition uses Lemma 2.3 to prove that �(L \ G) = 0 for anyline L with slope 
 > 0. First note that Lemmas 2.2 and 2.3 can be extendedto any lower triangle playing the role of the initial triangle E. Also note thatEin 2 U(Ln�1(E)) for positive integers n and i = 1; 2. This implies that eachR 2 Ln(E) is disjoint from the interior of Ein. LetGn = [R2Ln(E)R:Then G = T1n=1Gn is Sierpinski's gasket.Proposition 2.4. If 
 > 0 and L = f(x; 
x) : x 2 Rg, then �(G \ L) =limn!1 �(Gn \ L) = 0.Proof. Choose � = �(
) > 0 as in Lemma 2.3. We construct inductively a sequencenj of natural numbers such that for all positive integers j we have�(L \ Gnj )�(L \E) � (1 � �)j :



4 TERRENCE M. ADAMS AND KARL E. PETERSENFor the primary case Lemma 2.3 ensures that there exists Ei1n1 2 U(Ln1�1(E)) suchthat �(L \Ei1n1)=�(L \E) � �. (Actually n1 = 1.) Hence �(L \ Gn1)=�(L \E) �1� �:For the general case suppose that nk satis�es �(L \Gnk)=�(L \E) � (1 � �)k:Now Lnk(E) = fR1; : : : ; Rpg is composed of a �nite number of closed triangles. LetM = fm : 1 � m � p; Rm\L 6= ;g. Thus �(Rm\L) = 0 form =2 M. For eachm 2M, by Lemma 2.3 there exists a positive integer e(m) and E(m) 2 U(Le(m)�1(Rm))such that �(L \E(m))=�(L \Rm) � �. Let e = maxm2Mfe(m)g, and let nk+1 =nk + e. Therefore we have�(L \Gnk+1) � (1� �)�(L \Gnk)� (1� �)k+1: �Now we de�ne the generalized Sierpinski gasket and give the analogous proposi-tion which may be proved by the same method. Let E be the closed triangle de-scribed above. Given a positive integer q the lines y = p=q, x = p=q and y = p=q�xpartition E into q2 triangles with q(q � 1)=2 upper triangles and q(q + 1)=2 lowertriangles. Let Uq(E) be the collection of upper triangles and Lq(E) be the collec-tion lower triangles. (Take the members of Uq(E) to be open and the members ofLq(E) to be closed.) De�ne Uq(C) and Lq(C) analogously for any collection C oflower triangles. We obtainGnq = [R2Lnq (E)R ; Gq = 1\n=1Gnq :Proposition 2.5. If 
 > 0 and L = f(x; 
x) : x 2 Rg, then for all positive integersq �(Gq \ L) = limn!1�(Gnq \ L) = 0:Proof. We explain how to choose sets Ein(q) analogous to the Ein above. Then theanalogues of the previous lemmas and proposition follow in the same manner asbefore.Given a lower triangle R let Lq(R) be the collection of two lower triangles: thetop left, lower triangle from Lq(R) and the bottom right, lower triangle from Lq(R).Similarly we de�ne Lnq (C). The sets Ein(q) are chosen in Uq(Ln�1q (E)). �3. Binomial coefficients modulo a primealong a random path in Pascal's triangleIf Pascal's triangle is reduced modulo a prime q, a well-known self-similar pattern(which can be produced by a cellular automaton) results; this is a consequence ofKummer's Carry Theorem [4] and the resulting formula of Lucas [5]. The partsof the triangle that correspond to the upper triangles (which form (Gq)c) (the`voids') consist of regions in which the binomial coe�cients are divisible by q.The following theorem says that since a line of slope 
 spends most of its timeoutside of each Gnq , a ��-typical path x, which eventually approaches a line ofslope 
 = (1� �)=� in Pascal's triangle, spends most of its time on vertices whichcarry binomial coe�cients divisible by q.



BINOMIAL-COEFFICIENT MULTIPLES OF IRRATIONALS 5Theorem 3.1. If q is prime and 0 < � < 1, then for ��-almost all x we havelimn!1 1n n�1Xj=0 je2�idj(x)=q � 1j = 0:Proof. Let � > 0. Using Proposition 2.5, choose N so large that if n � N then�(Gnq \ L�) < �. Notice that since the complement of GNq is a union of �nitelymany triangles, if we move L� just a small amount we cannot decrease the Lebesguemeasure of its intersection with (GNq )c by very much. Thus we may choose � > 0and then a large-enough natural number M such that if the part within our unittriangle E of the band of width � about the line L� is cut into M equally-spacedchunks by lines parallel to the hypotenuse of E, and if one point is chosen fromeach of those chunks, then the proportion of those points which are in Gnq is stillless than 2�.Let Sk(x) denote the number of 1's along the path x (regarded as a sequence in
 = f0; 1gZ ). By the Ergodic Theorem, for ��-almost every x there is K = K(x)such that jSk(x) � k�j < k� for all k � K:Choose a time M > K=�, and consider Pascal's triangle down to that level, includ-ing subtriangles of rank up to N . When this part of Pascal's triangle is scaled downto lie over our unit triangle E, we see the subtriangles that form (GNq )c, and thescaled-down path x lies entirely inside the band of width � about L
, the line ofslope 
 = (1��)=� in the Sierpinski gasket. We have arranged that the proportionof vertices of the scaled-down path which are in (GNq )c is at least 1� 2�, and hencethe proportion of vertices of the path x at which the binomial coe�cients dj(x) aredivisible by q is at least 1� 2�.4. Main result: a construction of special irrationalsIn this section we use Theorem 3.1 to construct an uncountable dense set (in facta G�) � � [0; 1) such that for each � 2 � and for ��-almost every x 2 X we havethat the sequence fdj(x)�g is not uniformly distributed modulo 1. In particular weobtain a result similar to Theorem 3.1, but with the limit replaced by lim inf.Theorem 4.1. There exist a dense G� set � � [0; 1) and a set of full ��-measureY � X so that for each � 2 � and x 2 Y we havelim infn!1 1n n�1Xj=0 je2�idj(x)� � 1j = 0:Proof. Let f�ng be a sequence of positive real numbers satisfying P1n=1 �n < 1,and let fqng be a sequence of primes increasing to 1. We will produce sequencesRn of natural numbers and �n > 0 so that ifYn = fx 2 X : 1Rn Rn�1Xj=0 je2�idj(x)p=qn � 1j < 1n for p = 0; 1; : : : ; qn � 1g;



6 TERRENCE M. ADAMS AND KARL E. PETERSEN�n = f� 2 [0; 1) : there exists p = 0; 1; : : : ; qn � 1 with j� � pqn j < �ng;� = 1\k=1 1[n=k�n , and Y = 1[k=1 1\n=k Yn;then lim infn!1 1n n�1Xj=0 je2�idj(x)� � 1j = 0for all � 2 � and all x 2 Y .For each n, by Theorem 3.1 we may choose Rn so that ��(Yn) > 1 � �n. Then,since f 1Rn Rn�1Xj=0 je2�idj(x)� � 1j : x 2 Yngis a �nite collection of continuous functions of �, we may choose �n > 0 so that1Rn Rn�1Xj=0 je2�idj(x)� � 1j < 2nfor all x 2 Yn and all � 2 �n. Then � is a dense G� with the usual topology, and��(Y ) = 1 because P1n=1 �n converges.To verify the outcome of the theorem, �rst choose � 2 � and x 2 Y . Then thereexists a sequence nm ! 1 such that � 2 �nm for all positive integers m. Alsothere exists k such that x 2 Yn for n � k. Hence for nm � k we have1Rnm Rnm�1Xj=0 je2�idj(x)� � 1j < 2nm : �5. Density without uniform distributionIn the previous section we constructed a dense G� set � � [0; 1) such that foreach � 2 �, fdj(x)�g is not uniformly distributed modulo 1 for ��-almost everyx 2 X. Those � 2 �, which are irrational, remain candidates for eigenvalues ofthe Pascal adic transformation. However in this section we will show that if thesequence f�ng converges to zero su�ciently fast, then fdj(x)�g is dense modulo 1for each � 2 � and for ��-almost every x 2 X. This excludes these � as eigenvaluesfor the Pascal adic.We begin by considering Pascal's triangle modulo a prime q. Recall that forn 2 N and 1 � k � qn � 1, we have C(qn; k) �=q 0. Hence C(qn � 1; k) �=q (�1)kfor 0 � k � qn� 1, which gives a `blocking line' on the triangle. It is this `blockingline' that yields total ergodicity of the Pascal adic. In Lemma 5.1 we note that



BINOMIAL-COEFFICIENT MULTIPLES OF IRRATIONALS 7among the binomial coe�cients in the row numbered qn � 2 one can �nd all thecongruence classes modulo q, and in fact they appear in a regular way. This allowsus to show that along a random path in the triangle a hit of congruence class r atlevel qm and of congruence class p at level qn are approximately independent if mand n are far apart, and therefore with probability 1 no congruence class moduloq can be avoided. Consequently, if � is very well approximated by rationals pn=qn,then fdj(x)�g must be dense modulo 1.Lemma 5.1. Let q be prime and n a natural number. Then for k = 0; : : : ; qn � 2we have the following formula:(1) C(qn � 2; k) �=q (�1)k(k + 1):Moreover, for natural numbers k and p satisfying 0 � p � q � 1 and 0 � k �qn � 2q � 1 the set(2) fi : k � i � k + 2q � 1; C(qn � 2; i) �=q pghas exactly two elements.Proof. First we derive the formula inductively. The primary case is trivial: C(qn�2; 0) = 1 = (�1)0(1). Assume the formula holds for k = ` � 1. Thus for k = ` wehave C(qn � 2; `) = C(qn � 1; `)� C(qn � 2; `� 1)�=q (�1)` � (�1)`�1`= (�1)`[1 + `]:Now for the second part of the lemma, we note that our formula gives the fol-lowing: C(qn � 2; i+ 2) �=q � C(qn � 2; i) + 2 if i evenC(qn � 2; i) � 2 if i odd:Hence if q = 2 we obtain C(qn � 2; k) �=q 1 for k even and C(qn � 2; k) �=q 0 for kodd. For q 6= 2 we have that each of the maps j 7! C(qn � 2; k + 2j) mod q andj 7! C(qn � 2; k + 1 + 2j) mod q gives a bijection of f0; : : : ; q � 1g. �Lemma 5.2. Suppose that for each n 2 N, we have a unimodal distribution fn onthe set f0; : : : ; qn � 2g. For each p satisfying 0 � p � q � 1, letMp = fm : 0 �m � qn � 2; C(qn � 2;m) �=q pg:If limn!1maxffn(m) : 0 � m � qn � 2g = 0, thenlimn!1 Xm2Mp fn(m) = 1q :Proof. We will show thatlimn!1( Xm2Mp fn(m) � Xm2Mr fn(m)) = 0



8 TERRENCE M. ADAMS AND KARL E. PETERSENfor all p and r. Without loss of generality, assume thatXm2Mp fn(m) � Xm2Mr fn(m):Partition f0; : : : ; qn � 2g into subintervals of 2q consecutive numbers with one re-maining subinterval of at most 2q consecutive numbers. Discard the subintervalwhich contains the peak of the distribution fn, as well as its two adjacent subin-tervals, from the set Mp. Call the remaining set M�p . Now for each m� 2M�p thereexists m 2 Mr in the next interval of length 2q towards the peak of fn such thatfn(m) � fn(m�). ThereforeXm2Mr fn(m) � Xm2M�p fn(m) � Xm2Mp fn(m)� 6maxffn(m) : 0 � m � qn � 2g:�Let Fn(q; p) be the set of paths which pass through a vertex (qn�2; k) satisfyingC(qn � 2; k) �=q p. Lemma 5.2 implies that the conditional probability of the setFn(q; p), given that the path passes through a �xed vertex, converges to 1=q asn!1. Therefore for each m 2 N(3) limn!1��(Fn(q; p) \ Fm(q; r)) = 1q ��(Fm(q; r)):A standard Hilbert space argument of A. R�enyi and P. R�ev�esz [8] implies thatFn(q; p), n = 1; 2; : : : is a mixing sequence of sets. In particular we have Lemma5.3, which says Fn(q; p) `sweeps out'. Finally we prove Theorem 5.4 using anapproximation technique similar to that used in the previous section.Lemma 5.3. For 0 � p < q with q prime and 0 < � < 1,��( 1[n=1Fn(q; p)) = 1:Theorem 5.4. There exist a dense G� set � � [0; 1) and a set of full ��-measureY � X so that for each � 2 � and x 2 Y the set fe2�idj(x)�: j 2 Ng is dense (butnot uniformly distributed) in S1.Proof. Let f�ng be a sequence of positive real numbers satisfying P1n=1 �n < 1,and let fqng be a sequence of primes increasing to 1. We will produce sequencesRn of natural numbers and �n > 0 so that ifYn = qn�1\p=0 Rn[j=1Fj(qn; p);�n = f� 2 [0; 1) : there exists pn = 0; 1; : : : ; qn � 1 with j� � pnqn j < �ng;



BINOMIAL-COEFFICIENT MULTIPLES OF IRRATIONALS 9� = 1\k=1 1[n=k�n , and Y = 1[k=1 1\n=k Yn;then fe2�idj(x)�: j 2 Ng is dense but not uniformly distributed for all � 2 � and allx 2 Y .For each n, by Lemma 5.3 we may choose Rn so that ��(Yn) > 1 � �n. Thenchoose �n < 1nC(qRnn � 2; (qRnn � 2)=2) :As before, if � 2 � and x 2 Y , then we can �nd arbitrarily large n such that� 2 �n and x 2 Yn. Now � is very well approximated by a rational pn=qn, and as pruns through the congruence classes modulo qn, the points ppn=qn are 1=qn-densemodulo 1. Further, for each congruence class p modulo qn there is j = 1; : : : ; Rnsuch that at level s = qjn the path x has its binomial coe�cient ds(x) hit thatcongruence class. Since �n has been chosen so small that all the points ds(x)�under consideration are very close to the points ds(x)pn=qn, and the latter are1=qn-dense, we are done. �6. Questions and Conjectures1. Conjecture [10, 6]: For each Bernoulli measure ��, the Pascal adic transfor-mation T is weakly mixing. This would follow if one could show that �dn(x) ! 1for a.e. x with respect to �� implies � = 1.2. Conjecture: If there is a path x such that �dn(x) ! 1, then � = 1.3. Does there exist any � in the unit circle such that f�dn(x)g is uniformlydistributed in the circle for every x (except for the two paths down the edges)? Forsuch a �, the skew-product transformationS(z1; z2; z3; : : : ) = (�z1; z1z2; z2z3; : : : )on the in�nite torus, known to be uniquely ergodic by results of Weyl [13, 14],Furstenberg [1], Hahn [3], and Postnikov [7], would have the very strong propertythat we would see a uniformly distributed sequence f(Sjz)kg not only when welooked in a �xed coordinate k at the orbit of a point z, but also when we allowed ourview to shift one place to the right from time to time: f(Sjz)kjg would be uniformlydistributed for each z and each choice of fkjg � N with kj+1 � kj 2 f0; 1g for eachj. (The � that we construct above are at another extreme from this property.)4. From another theorem of Weyl and Tonelli's Theorem it follows that for almostevery � the sequence f�dn(x)g is uniformly distributed for a.e. x, with respect toeach Bernoulli measure ��. For which � does this hold? Similarly, what pathsx have the property that this sequence is uniformly distributed for each � that isnot a root of unity? (By Weyl's Theorem, this is the case for each path x that iseventually diagonal.)5. Studies like these on divisibility of binomial coe�cients by primes suggestquestions on simultaneous divisibility by several primes. For example, thinkingabout the central path in Pascal's triangle and divisibility by 2 and 3 leads to the
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