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Tunneling through the quantum horizon
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Abstract

The emergence of quantum-gravity induced corrective terms for the probability of emission

of a particle from a black hole in the Parikh-Wilczek tunneling framework is studied. It is

shown, in particular, how corrections might arise from modifications of the surface gravity

due to near horizon Planck-scale effects. Our derivation provides an example of the possi-

ble linking between Planck-scale departures from Lorentz invariance and the appearance of

higher order quantum gravity corrections in the black-hole entropy-area relation.

I. INTRODUCTION

Classical black holes are perfect absorbers: they accrete their (irreducible) mass and no fraction

of it can escape as there are no classical allowed trajectories crossing the horizon on the way out.

This particular behavior suggests an interpretation of the black hole area as an entropy-like quan-

tity. More than thirty years ago Bekenstein [1], with an elegant argument, showed that the entropy

of a black hole must, in fact, be proportional to its surface area measured in units of Planck length

squared. The key point of his derivation was the inclusion of the quantum mechanical properties of

a particle crossing the black-hole horizon. For this reason the entropy-area relation can be viewed

as a first step towards the understanding of “quantum” properties of black holes. Hawking’s dis-

covery [2] that quantum fields on a Schwarzschild background do indeed predict a thermal flux of

particles away from the horizon confirmed that the black hole entropy/area is in all senses a ther-

modynamic quantity and it is legitimate to define a temperature that corresponds to a “physical”

temperature associated with the radiation.

It is interesting to note how the inclusion of quantum effects allows, for particles in a Schwarzschild

geometry, to propagate through classically forbidden regions. This suggests that it should be pos-
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sible to describe the black hole emission process, in a semiclassical fashion, as quantum tunneling.

Parikh and Wilczek [3] (see also [4, 5]) showed how such a description of black hole radiance is

possible if one considers the emission as a transition between states with the same energy. In this

way the lowering of the mass of the black hole during the process and the related change in the

radius set the barrier through which the particle tunnels. The resulting probability of emission

differs from the standard Boltzmann factor by a corrective term which depends on the ratio of the

energy of the emitted particle and the mass of the hole. The appearance of the correction causes

the emission spectrum to be non-thermal. This reflects the fact that in order to describe transitions

in which the energy of the emitted particle-black hole system does not change one must take into

account the particle’s self-gravitation. In the limit when the energy of the emitted particle is small

compared with the mass of the black hole the emission spectrum becomes thermal and Hawking’s

result is recovered.

In the tunneling framework the Bekenstein-Hawking entropy-area relation can be deduced from

the form of the emission probability. In fact the latter is proportional [4, 5] to a phase space factor

depending on the initial and final entropy of the system which multiplies the square of the quan-

tum mechanical amplitude for the process. A black hole entropy given by the Bekenstein-Hawking

formula SBH = A
4 = 4πM2 corresponds to the Parikh-Wilczek result for the tunneling amplitude.

In this letter we ask how the Parikh-Wilczek tunneling picture might be affected by the presence

of Planck-scale effects for the near-horizon emission process. In particular we consider the scenario

in which quantum gravity departures from Lorentz symmetry affect a particle’s special relativistic

energy-momentum dispersion relation. In [6] using the Bekenstein argument “in reverse”, it was

shown how, in loop quantum gravity, a deformed energy-momentum dispersion relation can be

related to the appearance of a logarithmic correction to the semiclassical entropy-area law. Besides

loop quantum gravity [7, 8, 9], a logarithmic correction to entropy/area law has also emerged in

string theory [10, 11] and other approaches [12] (see also [13] and references therein).

Here we show how, in the spirit of [6], the log-corrected entropy-area relation naturally emerges

in the tunneling picture when Planck-scale effects are taken into account. We start with a brief

review of the standard tunneling argument and then proceed to modify it with the inclusion of

near horizon Planck-scale effects.
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II. TUNNELING THROUGH THE HORIZON

We obtain here an expression for the tunneling probability of a spherical shell through the

horizon of a Schwarzschild black hole. The two main ingredients of [3] are the use of the WKB

approximation for the tunneling probability and an effective action describing the system which

includes the shell’s self-gravitation. The first approximation is valid since wave packets propagating

from near the horizon are arbitrarily blue-shifted there, the geometrical optics limit applies and we

can treat the shell as a particle. In the WKB approximation the tunneling probability is a function

of the imaginary part of the action

Γ ∼ e−2 ImS . (1)

The action needed to compute the emission probability can be found in [14]. There the corrections

to the geodesic motion of a spherical shell due to self-gravitation in a Schwarzschild geometry were

calculated and their consequences for the Hawking radiation spectrum were studied (see also [15]).

One starts by considering the metric for a general spherically symmetric system in ADM form

ds2 = −Nt(t, r)
2dt2 + L(t, r)2[dr +Nr(t, r)dt]

2 +R(t, r)2dΩ2 . (2)

Once the action for the hole-shell system has been written in Hamiltonian form, the dependence

from all the momenta, but the one conjugate to the shell radius, can be eliminated using the

constraints of the theory. Integrating over the gravitational degrees of freedom and fixing the

gauge appropriately (L = 1 R = r) [27] one obtains the following effective action for a massless

self-gravitating spherical shell

S =

∫

dt
(

pc ˙̂r −M+

)

. (3)

Here pc is the momentum canonically conjugate to the radial position of the shell, and M+ is the

total mass of the shell-hole system which plays the role of the Hamiltonian. In terms of the black

hole mass M and the shell energy E we have M+ = M +E. Details of the lengthy derivation can

be found in [14]. The trajectories which extremize this action are the null geodesics of the metric

ds2 = −[Nt(r;M + E)dt]2 + [dr +Nr(r;M + E)dt]2 + r2dΩ2 , (4)

for which

dr

dt
= Nt(r;M + E)−Nr(r;M +E) . (5)
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An explicit form for the line element (4) can be obtained from the expressions of Nt and Nr given

by the constraint equations [14]

Nt = ±1 ; Nr = ±

√

2M+

r
. (6)

In [3] the total mass of the system is kept fixed while the hole mass is allowed to vary. This means

that the mass parameter M+ is now M+ = M − E. One then has the following expression for a

radial null geodesic

ṙ = ±1−

√

2(M − E)

r
. (7)

Now consider the emission of a spherical shell for which

ImS = Im

∫ rfin

rin

prdr . (8)

rin and rfin are radial positions just inside and outside the barrier through which the particle is

tunneling. To calculate ImS we can use Hamilton’s equation, ṙ = ∂H
∂p

,

ImS = Im

∫ rfin

rin

prdr = Im

∫ rfin

rin

∫ M−E

M

dH ′

ṙ
dr . (9)

The Hamiltonian is H ′ = M − E′, so the imaginary part of the action reads

ImS = −Im

∫ rfin

rin

∫ E

0

dE′

ṙ
dr . (10)

Using (7) and integrating first over r one easily obtains

Γ ∼ exp

(

−8πME

(

1−
E

2M

))

, (11)

which, provided the usual Bekenstein-Hawking formula SBH = A/4 = 4πM2 is valid, corresponds

to

Γ ∼ exp [SBH(M −E)− SBH(M)] . (12)

If one integrates (10) first over the energies it is easily seen that in order to get (11) we must have

rin = M and rout = M − E. So according to what one would expect from energy conservation,

the tunneling barrier is set by the shrinking of the black hole horizon with a change in the radius

related to the energy of the emitted particle itself.
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III. A TUNNEL THROUGH THE QUANTUM HORIZON

The probability of emission of a shell with energy E, in the presence of back-reaction effects,

put in the form (12) is highly suggestive. It is what one would expect from a quantum mechanical

calculation of a transition rate where, up to a factor containing the square of the amplitude of the

process,

Γ ∼
eSfin

eSin
= exp (∆S) . (13)

In other words the emission probability is proportional to a phase space factor which depends

on the initial and final entropy of the system. The entropy is directly related to the number of

micro-states available to the system itself.

This observation calls for an immediate generalization. As we stressed in the Introduction, deriva-

tions of the black hole entropy-area relation in several quantum gravity scenarios besides repro-

ducing the familiar Bekenstein-Hawking linear relation give a leading order correction with a lo-

garithmic [28] dependence on the area [29]

SQG =
A

4L2
p

+ α ln
A

L2
p

+O

(

L2
p

A

)

. (14)

Now consider the emission of a particle of energy E from the black hole. One might expect that

a derivation of the emission probability in a quantum gravity framework in presence of back-

reaction would lead to an expression analogous to (13) with the usual Bekenstein-Hawking entropy

SBH = A
4L2

p
replaced by (14) i.e.

Γ ∼ exp (SQG(M − E)− SQG(M)) . (15)

The previous expression written in explicit form reads

Γ(E) ∼ exp (∆SQG) =

(

1−
E

M

)2α

exp

(

−8πGME

(

1−
E

2M

))

. (16)

The exponential in this equation shows the same type of non-thermal deviation found in [3]. In this

case, however, an additional factor depending on the ratio of the energy of the emitted quantum

and the mass of the black hole is present. A discussion of the possible consequences of the additional

factor for the fate of the black hole in its late stages of evaporation and the appearance of statistical

correlation between quanta emitted with different energies can be found in [17].

In [6] the present author, Amelino-Camelia and Procaccini showed how in the context of loop

quantum gravity a logarithmic corrective term to the entropy-area law of the type present in (14)
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can be related to a modification of the energy-momentum dispersion relation for a massless particle

propagating in flat space-time

p2 ≃
(

1 + ηL2
pE

2
)

E2 . (17)

with η = 2π
3 α [30].

As we already observed in the previous sections, the black hole radiation spectrum seen from an

observer at infinity is dominated by modes that propagate from “near” the horizon where they have

arbitrarily high frequencies and their wavelengths can easily go below the Planck length [20, 21].

It turns out then that a key assumption in all the derivations of the Hawking radiation is that the

quantum state near the horizon looks, to a freely falling observer, like the Minkowski vacuum. In

other words Lorentz symmetry should hold up to extremely short scales or very large boosts. It

is plausible then that the motion of our particle tunneling through the horizon might be affected

by Planck scale corrections of the type (17). These type of modified dispersion relations have, in

fact, been proposed as low-energy quantum gravity effects, which deform [22, 23] or break [24, 25]

Lorentz symmetry (see also [26]).

One would expect that an analysis analogous to the ones of the previous sections with opportune

modifications should lead to a result of the form (12) with SBH replaced by SQG. We verify here the

above conjecture with an explicit example. As seen in the previous section the tunneling amplitude

(1) for the emission of a spherical shell can be derived from

ImS = Im

∫ rfin

rin

prdr = Im

∫ rfin

rin

∫ H

0

dH ′

ṙ
dr = −Im

∫ rfin

rin

∫ E

0

dE′

ṙ
dr . (18)

Now we proceed to evaluate the integral without using an explicit form for the null geodesic of

the spherical shell in terms of its energy. In fact, near the horizon, where our integral is being

evaluated, one has

Nt(r;M)−Nr(r;M) ≃ (r −R)κ(M) +O((r −R)2) (19)

where R is the Schwarzschild radius and κ(M) is the horizon surface gravity. Taking into account

self-gravitation effects, ṙ can be approximated by

ṙ ≃ (r −R)κ(M − E) +O((r −R)2) . (20)

We can then write

ImS = −Im

∫ rfin

rin

∫ E

0

dE′

(r −R)κ(M − E′)
dr . (21)
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Integrating over r, using the Feynman prescription[31] for the pole on the real axis r = R, we get

ImS = −π

∫ E

0

dE′

κ(M − E′)
. (22)

The surface gravity appearing in the above integral carries quantum gravity corrections coming

from Planck-scale modifications of near horizon physics related to (17). These modifications are

such that they reproduce via the first law of black hole thermodynamics, dE′ = dM ′ = κ(M)
2π dS,

the quantum gravity corrected entropy-area law (14) [6]. Using the first law, (22) becomes

ImS = −
1

2

∫ SQG(M−E)

SQG(M)
dS =

1

2
[SQG(M)− SQG(M − E)] (23)

which leads to a probability of emission

Γ(E) ∼ exp (−2ImS) =

(

1−
E

M

)2α

exp

(

−8πGME

(

1−
E

2M

))

(24)

analogous to (16).

To summarize: we showed how Planck-scale effects can be incorporated in the Parikh-Wilczek

tunneling picture. We were able to obtain a form of the emission probability which includes both

back-reaction and quantum gravity effects. Our derivation gives an idea of how near horizon

physics provides an excellent arena for studying the interplay of seemingly different aspects of

quantum gravity as the number of microscopic degrees of freedom of a black hole and possible

Planck-scale modifications of space-time symmetries.

Acknowledgements

I would like to thank Giovanni Amelino-Camelia for discussions and valuable suggestions and Jack

Ng for useful comments. I also thank the Department of Physics of the University of Rome ”La

Sapienza” for hospitality during December 2004.

[1] J. D. Bekenstein, Phys. Rev. D 5, 1239 (1972).

[2] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

[3] M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000) [arXiv:hep-th/9907001].

[4] M. K. Parikh, Int. J. Mod. Phys. D 13, 2351 (2004) [arXiv:hep-th/0405160].

[5] M. K. Parikh, arXiv:hep-th/0402166.

[6] G. Amelino-Camelia, M. Arzano and A. Procaccini, Phys. Rev. D 70, 107501 (2004)

[arXiv:gr-qc/0405084], G. Amelino-Camelia, A. Procaccini and M. Arzano, Int. J. Mod. Phys. D 13,

2337 (2004).

http://arxiv.org/abs/hep-th/9907001
http://arxiv.org/abs/hep-th/0405160
http://arxiv.org/abs/hep-th/0402166
http://arxiv.org/abs/gr-qc/0405084


8

[7] C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996) [arXiv:gr-qc/9603063].

[8] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Phys. Rev. Lett. 80, 904 (1998) [arXiv:gr-qc/9710007].

[9] R. K. Kaul and P. Majumdar, Phys. Rev. Lett. 84, 5255 (2000) [arXiv:gr-qc/0002040].

[10] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029];

[11] S. N. Solodukhin, Phys. Rev. D 57, 2410 (1998) [arXiv:hep-th/9701106].

[12] D. V. Fursaev, Phys. Rev. D 51, 5352 (1995) [arXiv:hep-th/9412161].

[13] D.N. Page, arXiv:hep-th/0409024.

[14] P. Kraus and F. Wilczek, Nucl. Phys. B 433, 403 (1995) [arXiv:gr-qc/9408003].

[15] E. Keski-Vakkuri and P. Kraus, Nucl. Phys. B 491, 249 (1997) [arXiv:hep-th/9610045].

[16] P. Kraus and F. Wilczek, arXiv:gr-qc/9406042.

[17] M. Arzano, A.J.M. Medved and E.C. Vagenas, to appear.

[18] A. Ghosh and P. Mitra, Phys. Rev. D 71, 027502 (2005) [arXiv:gr-qc/0401070].

[19] K.A. Meissner, Class. Quant. Grav. 21, 5245 (2004) [arXiv:gr-qc/0407052].

[20] T. Jacobson, Phys. Rev. D 44, 1731 (1991).

[21] T. Jacobson, Phys. Rev. D 48, 728 (1993) [arXiv:hep-th/9303103].

[22] G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001) [arXiv:hep-th/0012238].

[23] G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002) [arXiv:gr-qc/0012051].

[24] G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and S. Sarkar, Nature 393, 763

(1998) [arXiv:astro-ph/9712103].

[25] R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999) [arXiv:gr-qc/9809038].

[26] Y. J. Ng, Mod. Phys. Lett. A 18, 1073 (2003) [arXiv:gr-qc/0305019].

[27] This choice of the gauge corresponds to a particular set of coordinates for the line element (Painleve’

coordinates) which is particularly useful to study across horizon phenomena being non-singular at the

horizon and having Euclidean constant time slices (for more details see [16]).

[28] A similar logarithmic term has also emerged in the calculation of one-loop quantum corrections to the

entropy-area law in ordinary QFT [12].

[29] We now switch from k = ~ = c = G = 1 units of the previous sections to k = ~ = c = 1 to keep track

of the Planck-scale suppressed terms.

[30] In loop quantum gravity α is a negative coefficient whose exact value was once an object of debate (see

e.g. [18]) but has since been rigorously fixed at α = −1/2 [19].

[31] The pole is moved in the lower half plane as in [3].

http://arxiv.org/abs/gr-qc/9603063
http://arxiv.org/abs/gr-qc/9710007
http://arxiv.org/abs/gr-qc/0002040
http://arxiv.org/abs/hep-th/9601029
http://arxiv.org/abs/hep-th/9701106
http://arxiv.org/abs/hep-th/9412161
http://arxiv.org/abs/hep-th/0409024
http://arxiv.org/abs/gr-qc/9408003
http://arxiv.org/abs/hep-th/9610045
http://arxiv.org/abs/gr-qc/9406042
http://arxiv.org/abs/gr-qc/0401070
http://arxiv.org/abs/gr-qc/0407052
http://arxiv.org/abs/hep-th/9303103
http://arxiv.org/abs/hep-th/0012238
http://arxiv.org/abs/gr-qc/0012051
http://arxiv.org/abs/astro-ph/9712103
http://arxiv.org/abs/gr-qc/9809038
http://arxiv.org/abs/gr-qc/0305019

	Introduction
	Tunneling through the horizon
	A tunnel through the quantum horizon
	References

