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functions in flat space and discuss their extension to the AdS5 × S5 background.
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1. Introduction

In this paper we compute explicitly several tree level string correlation functions for the

Type IIB superstring using the pure spinor formulation developed by Berkovits et al. [1-

9]. This quantization gives us tools to evaluate string correlation functions in a manifestly

supersymmetric and covariant manner. The formalism uses the usual ten-dimensional

superspace coordinates xm, θα, θ̄ᾱ and introduces new worldsheet bosonic fields λα, λ̄ᾱ

which are spacetime spinors and satisfy the pure-spinor condition λγλ = 0. It also provides

a nilpotent BRST charge Q, a Virasoro current with vanishing conformal anomaly and a

ghost current. Physical vertex operators for massless pields have conformal weight zero

and are states of ghost number 1 in the cohomology of Q. Recently this formalism has

been used to obtain vertex operators for some of the massive fields of the open superstring

[9]. It has also been applied to construct a worldsheet action for the superstring in a

Ramond-Ramond plane wave background [10].

In sect. 2 of this paper we review the main components of the pure spinor formal-

ism. We will explicitly write down the vertex operators for the physical states using their

constraint equations. In sect. 3 we use the vertex operators and the prescription for inte-

gration over the zero modes of θs and λs [1] to compute several flat space string correlation

functions in position space. Finally, in sect.4 we discuss an extension of these calculations

to the AdS5 ×S5 background. We find the string amplitudes calculated using this procee-

dure to be equal to the field theory expressions, in accordance with the non-renormalisation

theorems for the super-symmetric three-point functions. We expect α′ corrections to first

appear in the four point string tree amplitudes. Berkovits and Vallilo [2] have given a

formal proof of the equivalence of the superstring amplitudes in their formulation with the

Ramond-Neveu-Schwarz (RNS) quantization, at least in flat space. We present an explicit

calculation in order to elucidate the computation of flat space correlation functions in the

new quantization and to facilitate the extension to curved backgrounds.

2. Review of Components

We start by listing the worldsheet fields in the formulation. There are the usual ten-

dimensional superspace coordinates xm, θα, θ̄ᾱ where 1 ≤ α, ᾱ ≤ 16. In addition to these

there are worldsheet bosons λα, λ̄ᾱ which satisfy the following condition

λαγmαβλ
β = 0, λ̄ᾱγm

ᾱβ̄
λ̄β̄ = 0, 0 ≤ m ≤ 9. (2.1)

1



Here γm are the off-diagonal components of the 32×32 ten-dimensional γ matrices in a

Weyl representation (see Appendix A).

The massless vertex operator expanded in powers of θ and θ̄ is

V (x, θ, θ̄) = λαλ̄ᾱ[hmnγ
m
αβγ

n
ᾱβ̄
θβ θ̄β̄

ψ̄β̄
mγ

m
αβγqrsᾱβ̄γ

qrs
ρ̄σ̄ θ

β θ̄ρ̄θ̄σ̄ + ψβ
mγqrsαβγ

qrs
ρσ γ

m
ᾱβ̄
θρθσ θ̄β̄

+ F ββ̄γmnpαβγ
mnp
ρσ γqrsᾱβ̄γ

qrs
ρ̄σ̄ θ

ρθσθ̄ρ̄θ̄σ̄ + · · ·] .

(2.2)

Here F ββ̄ corresponds to the Ramond-Ramond field strengths and can be expanded as

F ββ̄ = Cmγ
mββ̄ +Hmnpγ

mnpββ̄ + Fmnpqrγ
mnpqrββ̄. (2.3)

where Cm ≡ ∂mΦ, for example, corresponds to the field strength for the axion and (· · ·)
correspond to auxilliary terms with higher powers of θ(θ̄). One now defines the BRST

operator as follows [1]

Q =

∮

dzλαdα

where

dα = pα − 1

2
γmαβθ

β∂xm +
1

8
γmαβγmρσθ

βθρ∂θσ .

(2.4)

where pα are the conjugate momenta for the θαs, with similar expressions for Q̄. The

constraint equations for the vertex operator are

[Q, V (z, z̄)] = 0 , [Q̄, V (z, z̄)] = 0 . (2.5)

In this paper we consider the vertex operators for the graviton and the axion explicitly.

Equations (2.5) imply that the simple poles for the OPEs between Q, Q̄ and V (z, z̄) vanish.

This leads to following differential equations for V (z, z̄).

λαλ̄ᾱDαD̄ᾱV = 0

Dα =
∂

∂θα
+ γmαβθ

β ∂

∂xm
, D̄ᾱ =

∂

∂θ̄ᾱ
+ γm

ᾱβ̄
θ̄β̄

∂

∂xm
.

(2.6)

Using (2.6) we see that the terms with odd powers of θ(θ̄) are related to each other and

so are the even powers. Next, we pick out the graviton and the axion vertex operators.

Vgraviton = λαλ̄ᾱ[hmn(x)γ
m
αβγ

n
ᾱβ̄
θβ θ̄β̄

− 1
2∂m̄hmn̄(x)γ

m
αβγp̄ᾱβ̄γ

m̄n̄p̄
ρ̄σ̄ θβ θ̄β̄ θ̄ρ̄θ̄σ̄

− 1
2
∂mhnm̄(x)γpαβγ

mnp
ρσ γm̄

ᾱβ̄
θβθρθσθ̄β̄

+ 1
4∂m∂m̄hnn̄(x)γpαβγ

mnp
ρσ γp̄ᾱβ̄γ

m̄n̄p̄
ρ̄σ̄ θβθρθσ θ̄β̄ θ̄ρ̄θ̄σ̄

+ · · ·].

(2.7)
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where hmn is symmetric and traceless and satisfies ∂p∂phmn = 0 and ∂mhmn = 0 and

(· · ·) correspond to terms that have higher powers of θ(θ̄) and do not contribute to tree

amplitudes. The vertex operator for the axion is

Vaxion = λαλ̄ᾱ[∂qΦ(x)γ
qκκ̄γmnpακγ

mnp
ρσ γm̄n̄p̄ᾱκ̄γ

m̄n̄p̄
ρ̄σ̄ θρθσ θ̄ρ̄θ̄σ̄ + · · ·]. (2.8)

With results from the appendix this can be written in a more convenient form as

Vaxion =
1

16
λαλ̄ᾱ[∂qΦ(x)γ

qκκ̄γmαργ
m
κσγm̄ᾱρ̄γ

m̄
κ̄σ̄θ

ρθσθ̄ρ̄θ̄σ̄ + · · ·]. (2.9)

In the next section we use these vertex operators to calculate the three-graviton and the

two-axion one-graviton correlation functions in flat space.

3. Correlation functions

3.1. Three-graviton tree amplitude in flat space

The three-graviton amplitude is as follows

Aggg = < 0|Vgraviton(z1, z̄1)Vgraviton(z2, z̄2)Vgraviton(z3, z̄3)|0 > . (3.1)

Using (2.7) we will find two different types of terms that will contribute to the amplitude.

These will have the form hmnhpq∂r∂shtu and hmn∂rhpq∂shtu. There will be three terms

of the first kind and six of the second. We begin by looking at a term of the first kind.

Term1 ≡1

4
< λαλβλγ λ̄ᾱλ̄β̄ λ̄γ̄hmn(x)hpq(x)∂r∂shtu(x)

× γmαργ
p
βσγwγδγ

rtw
κτ γnᾱρ̄γ

q

β̄σ̄
γvγ̄δ̄γ

suv
κ̄τ̄

× θρθσθδθκθτ θ̄ρ̄θ̄σ̄θ̄δ̄ θ̄κ̄θ̄τ̄ >

=
1

4
< hmn(x)hpq(x)∂r∂shtu(x) >X

< λαλβλγ λ̄ᾱλ̄β̄λ̄γ̄γmαργ
p
βσγwγδγ

rtw
κτ γnᾱρ̄γ

q

β̄σ̄
γvγ̄δ̄γ

suv
κ̄τ̄

× θρθσθδθκθτ θ̄ρ̄θ̄σ̄θ̄δ̄ θ̄κ̄θ̄τ̄ > .

(3.2)

Since λ and θ have conformal weight zero, only their zero modes will survive the bracket. In

accordance with Berkovits’ prescription [1-3], we are keeping only terms containing five θs

and three λs. These are the only ones that will contribute to the amplitude because there
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is only one state (λγθ)(λγθ)(λγθ)(θγθ)|0 > in the cohomology of Q with ghost number

three. We can show that

< λαλβλγθρθσθτθωθκ >=Tαβγ
α1β1γ1

γα1[ρ
q γβ1σ

r γγ1τ
s γqrsωκ] (3.3)

where [ ] stands for antisymmetrization over the indices ρ, σ, τ, ω and κ, with no overall

normalization factor. One can obtain a similar expression for < λ̄ᾱλ̄β̄ λ̄γ̄ θ̄ρ̄θ̄σ̄θ̄τ̄ θ̄ω̄θ̄κ̄ >.

Here Tαβγ
α1β1γ1

is defined [1] as

T
αβγ
α1β1γ1

=
N

4032
[δ(αα1

δ
β
β1
δγ)γ1

− 1

40
γ(αβm δ

γ)
(α1

γmβ1γ1)
] . (3.4)

The brackets ( ) corresponds to symmetrization over the enclosed indices with no overall

normalization, and Tαβγ
αβγ = N . Using (3.3) we evaluate the following useful terms.

< λαλβλγγmαργnβτγpγσγ
mnp
κδ θρθτθσθκθδ > = 2880.

< λαλβλγγtαργnβτγpγσγ
mnp
κδ θρθτθσθκθδ > = 288ηmt.

< λαλβλγγtαργ
u
βτγpγσγ

mnp
κδ θρθτθσθκθδ > = 32ηt[mηn]u.

< λαλβλγγtαργ
u
βτγ

v
γσγ

mnp
κδ θρθτθσθκθδ > = 4(ηtmηnuηpv + ηtnηupηvm + ηtpηumηvn

− ηtnηumηvp − ηtpηunηvm − ηtmηupηvn) .

(3.5)

Note that the normalization used in (3.5) corresponds to N = 1
304 , which follows from

a long but straightforward calculation of traces over various combinations of γ-matrices.

Using the third term from (3.5) in (3.2) we find

Term1 = 256(ηmrηtpηnsηuq + ηmtηrpηnuηsq − ηmtηrpηnsηuq − ηmrηtpηnuηsq)

× < hmn(x)hpq(x)∂r∂shtu(x) >X

= 256 < 2hmn(x)hpq(x)∂
m∂nhpq(x) + 2hmn(x)∂

nhpq(x)∂
phmq(x) >X

(3.6)

Similarly we now evaluate a term of the second kind.

Term2 ≡− 1

4
< λαλβλγ λ̄ᾱλ̄β̄ λ̄γ̄hmn(x)∂phqr(x)∂shtu(x)

× γmαργ
n
ᾱρ̄γ

q
βσγvβ̄τ̄γ

prv

κ̄δ̄
γwγτγ

stw
κδ γuγ̄σ̄

× θρθσθτθκθδθ̄ρ̄θ̄σ̄θ̄τ̄ θ̄κ̄θ̄δ̄ >

=− 256(ηmsηtqηnpηru + ηmtηsqηnrηpu − ηmtηsqηnpηru − ηmsηtqηnrηpu)

× < hmn(x)∂phqr(x)∂shtu(x) >X

=256 < hmn(x)hpq(x)∂
m∂nhpq(x) + 3hmn(x)∂

nhpq(x)∂
phmq(x) >X

(3.7)
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Combining (3.6) and (3.7) we compute the amplitude to be

Aggg =3Term1 + 6Term2

=3072

∫

d10xhmn(x)hpq(x)∂
m∂nhpq(x) + 2hmn(x)∂

nhpq(x)∂
phmq(x) .

(3.8)

This is proportional to the field theory result for the three-graviton amplitude in a flat

background on shell in the ∂mhmn = 0 gauge.

3.2. Two-axion one-graviton tree amplitude in flat space

Using (2.7) and (2.9) we can compute the 2-axion, 1-graviton scattering amplitude as

Aaag = < Vgraviton(z1, z̄1)Vaxion(z2, z̄2)Vaxion(z3, z̄3) >

Aaag =
1

256
< λαλβλγ λ̄ᾱλ̄β̄ λ̄γ̄hmn(x)∂pΦ(x)∂qΦ(x)γ

m
αργ

n
ᾱρ̄

γpκκ̄γrβσγ
r
κτγsβ̄σ̄γ

s
κ̄τ̄γ

qηη̄γtγξγ
t
ηπγuγ̄ξ̄γ

u
η̄π̄

θρθσθτθξθπθ̄ρ̄θ̄σ̄θ̄τ̄ θ̄ξ̄ θ̄π̄ >

=
1

256
< hmn(x)∂pΦ(x)∂qΦ(x) >X

< λαλβλγ λ̄ᾱλ̄β̄ λ̄γ̄γmαργ
n
ᾱρ̄γ

pκκ̄γrβσγ
r
κτγsβ̄σ̄γ

s
κ̄τ̄γ

qηη̄γtγξγ
t
ηπγuγ̄ξ̄γ

u
η̄π̄

θρθσθτθξθπθ̄ρ̄θ̄σ̄θ̄τ̄ θ̄ξ̄ θ̄π̄ > .

(3.9)

We now define

Amnpq = < λαλβλγ λ̄ᾱλ̄β̄ λ̄γ̄γmαργ
n
ᾱρ̄γ

pκκ̄γrβσγ
r
κτγsβ̄σ̄γ

s
κ̄τ̄γ

qηη̄γtγξγ
t
ηπγuγ̄ξ̄γ

u
η̄π̄

θρθσθτθξθπθ̄ρ̄θ̄σ̄θ̄τ̄ θ̄ξ̄θ̄π̄ >
(3.10)

We see that Amnpq = Amnqp. Also, since hmn is traceless, the only component of Amnpq

that suvives must be Cδm(pδq)n, where C is some constant. It follows that

Aaag =C

∫

d10xhmn(x)∂
mΦ(x)∂nΦ(x) (3.11)

To calculate C requires another long but straightforward trace calculation.
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4. Graviton two-axion amplitude in AdS5 × S5

In this section we will discuss correlation functions on the AdS5×S5 background. We

will consider the two-axion one-graviton amplitude Aaag. For AdS5×S5, we introduce the

curved space gamma matrices which satisfy γmαβγnβγ + γnαβγmβγ = 2ḡmnδαγ , where ḡ
mn is

the AdS5 × S5 background metric. Similarly for the barred indices we have γmᾱβ̄γn
β̄γ̄

+

γnᾱβ̄γm
β̄γ̄

= 2ḡmnδᾱγ̄ . In this case, following [1], we can convert between the barred and

unbarred spinor indices using δαᾱ = (γ01234)αᾱ, i.e. Gα = δαᾱGᾱ and Gᾱ = δαᾱGα. Here

[01234] are the AdS5 directions. Since δαᾱ is an orthogonal matrix, contracting over two

barred indices is the same as contracting over two unbarred indices, i.e. GαG
α = GᾱG

ᾱ.

We now need to compute (3.9) using the curved space γ-matrices 2. Our rule for

summing over barred indices implies that the computation is similar to taking the trace

flat space, but now the flat metric ηmn is replaced by ḡmn. Furthermore, we can promote

the partial derivatives to covariant derivatives since they only act on the scalar axion.

Therefore, we suggest that the two-axion one-graviton string tree amplitude for Type IIB

strings on AdS5 × S5 can be obtained by covariantizing the flat space result and will have

the form

Aaag = C′

∫

d10x
√
ḡ ḡmpḡnqh

mnD̄pΦD̄qΦ . (4.1)

In order to calculate more general amplitudes on the AdS5×S5 background, one would need

to derive the invariant derivatives from the string constraint equations. One would also

need to establish the auxilliary terms in the vertex operators, using either the constraint

equations or symmetry arguments.

Appendix A. Gamma matrices.

This appendix describes the γ-matrices used in this paper. In the Weyl representation,

the ten-dimensional gamma matrices are defined as

γmA
B =

(

0 γmα
β̄

γmᾱ
β 0

)

(A.1)

where 1 ≤ A,B ≤ 32 and 1 ≤ α, ᾱ, β, β̄ ≤ 16. The ten-dimensional charge conjugation

matrix is

2 In principle, to establish (3.9) for the curved background, one also has to know the OPEs for

Q and Q̄. For this particular amplitude however, we do not need the auxilliary terms.
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CAB =

(

0 Cαβ̄

Cᾱβ 0

)

(A.2)

where

C−1
AB =

(

0 C−1
αβ̄

C−1
ᾱβ 0

)

. (A.3)

The charge conjugation matrix and its inverse can be used to raise and lower the indices

on the gamma matrices as γmAB = γmA
DC

DB and γmAB = C−1
ADγ

mD
B. As in [1] the γmαβ

and γmαβ are the off-diagonal elements of the ten-dimensional 32 × 32 Dirac-matrices and

satisfy γmγn + γnγm = 2ηmn in flat space.

The matrix γα1α2...αN denotes the completely antisymmetric product of N gamma matri-

ces. Specifically,

γmαβ = γmβα

γ
mnp
αβ =

1

3!
γ[mγnγp] = −γmnp

βα

γ
mnpqr
αβ =

1

5!
γ[mγnγpγqγr] = γ

mnpqr
βα .

(A.4)

where one can show that γm,γmnp and γmnp form a complete basis for expansion of any

matrix Aαβ. Some useful results are

γm(αβγ
m
γ)δ = 0 (A.5)

γmnp[αβγ
mnp

γ]δ = 0 (A.6)

In order to show (A.6) we start by first showing a more general result

ζαγmαρθ
ρηβγmβσθ

σ =
1

16
ζαγ

mnp
αβ ηβθργmnpρσθ

σ (A.7)

We note that
θρθσ = −θσθρ

⇒ θρθσ = Cpqrγρσpqr

⇒ L.H.S of (A.7) = ζαηβγmαργmσβC
pqrγρσpqr

(A.8)

Let us now look at the following term:

γmαργ
ρσ
pqrγmσβ = −γmβργρσpqrγmσα

⇒ γmαργ
ρσ
pqrγmσβ = Aℓmn

pqr γℓmnαβ

(A.9)
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One can now evaluate Astu
pqr by tracing over the two side of (A.9)using a γstuαβ. The result

one obtains is the following:

Astu
pqr = −δs[pδtqδur] (A.10)

Similarly one can show that

Cpqr =
−1

96
γpqrρσ θ

ρθσ (A.11)

Substituting (A.10) and (A.11) in (A.8)we get

L.H.S of (A.7) =
1

16
ζαηβγpqrρσθ

ρθσγ
pqr
αβ

=R.H.S of (A.7)
(A.12)

(A.6) then follows from (A.7) if we choose η = θ and the use the fact that γmαβ = γmβα .
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