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Abstract

We propose a new fractional statistics for arbitrary dimensions, based on

an extension of Pauli’s exclusion principle, to allow for finite multi-occupancies

of a single quantum state. By explicitly constructing the many-body Hilbert

space, we obtain a new algebra of operators and a new thermodynamics. The

new statistics is different from fractional exclusion statistics; and in a certain

limit, it reduces to the case of parafermi statistics.
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The thermodynamics of a macroscopic system is determined microscopically by

the statistics of its constituent particles and elementary excitations. Herein lies a

fundamental significance of statistics. Ever since Heisenberg’s second paper on matrix

mechanics, it has been known that a many-body wavefunction is symmetric under

permutations of identical bosons, but it is antisymmetric for identical fermions. The

corresponding commutation and anticommutation relations bilinear in field operators

result in bose and fermi statistics respectively. Particles are accordingly classified

into bosons and fermions. The overriding difference between the two groups is that

bosons condense while fermions exclude. But it is natural to inquire whether there

are any meaningful generalizations of statistics intermediate between these two.

Attempts to generalize statistics dates back at least to Green’s work in 1953

[1][2]. Green found that the principles of quantum mechanics also allow two kinds of

statistics called parabose statistics and parafermi statistics of positive integral order

M (the M=1 cases reduce to the familiar Bose-Einstein statistics and Fermi-Dirac

statistics respectively). They are described by trilinear commutation relations among

the creation and annihilation operators. Subsequently, the case of non-integral M was

investigated for possible deviations from Bose and Fermi statistics, and in particular,

for possible violations of Pauli’s exclusion principle [3][4]. This saga culminated with

a recent study of infinite statistics [5] in which all representations of the symmetric

group can occur; this case is realized by the q-mutator algebras.

Another type of interpolating statistics, spearheaded by Wilczek, is provided by

the concept of anyons [6]. Anyons are particles whose wavefunctions acquire an ar-

bitrary phase when two of them are braided; they obey fractional statistics. More

recently, Haldane introduced another definition of statistics based on a generalization

of the Pauli principle [7][8]. Unlike the anyon fractional exchange statistics which is

meaningful only in two spatial dimensions, Haldane’s fractional exclusion statistics is

formulated in arbitrary dimensions. The thermodynamics based on exclusion statis-

tics is studied in Ref.[8]. The issue whether anyons obey fractional exclusion statistics
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in the framework of quantum field theory is addressed in Ref.[9]. In this Letter we

introduce another type of statistics which is based on a (different) logical extension

of the Pauli principle. In the new statistics, we allow for multi-occupancy of a single

quantum state by up to a maximum number M of identical particles. The M = 1 case

yields the conventional Fermi statistics while the M → ∞ case corresponds to the

conventional Bose statistics. The new statistics bears some resemblance to fractional

exclusion statistics but is distinct from it.

In the literature a frequently used approach to study the quantum features of

(especially fermi and fermi-like) many-body systems is to start with assumptions of

commutation relations among certain operators. In this letter, we would like to start

with the construction of Hilbert space of quantum states and then “derive” some

relations of the operators. Consider the Hilbert space spanned by the eigenstates of

the particle number operator N̂ , {|j >, j = 0, 1, 2, · · ·}. The j-particle state |j >

satisfies

N̂ |j >= j|j > , < j|k >= δjk . (1)

Obviously, the ground state is the zero-particle state |0 >. We define the one-particle

state as a superposition of M single states |ei >:

|1 >= c1c2 · · · cM−1|e1 > +s1c2 · · · cM−1|e2 > + · · ·+sM−1|eM > , (2)

where ci = cosθi, si = sinθi, θi 6= 0, or multiples of π/2. The use of the angles is just

a matter of convenience. In this case, the one-particle state can be thought of as a

unit vector on a (M−1)-sphere. The M single states |ei >, i = 1, 2, · · · M, satisfy

< ei|ej >= δij , and (|ei >)2 = 0 . (3)

The latter condition can be understood as a reflection of the Pauli exclusion principle,

namely, a two-|ei > state is forbidden.

The two-particle state is defined as a superposition of the tensor products
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|ei > |ej >

|2 >=
M
∑

i<j

cij|ei > |ej > . (4)

Similarly, three and more particle states can be defined as a superposition of tensor

products |ei > |ej > |ek > with c-number coefficients cijk and so on. How to determine

cij , cijk and so on, in term of the angles θi, will be discussed later. We should

emphasize that in a tensor product of single states, we adopt the rule that the order

of single states does not make a difference, i.e. |ei > |ej >= |ej > |ei >. Due to the

second condition in Eq.(3), the M-particle state

|M >=
M
∏

i=1

|ei > , (5)

is the maximal-particle state, the state with the maximum number of M particles.

There are no states beyond it, i.e. states |j > for j > M do not exist.

Now, we introduce the annihilation and creation operators, a and a†,

a|j >= fj|j − 1 > , a†|j >= f ∗
j+1|j + 1 > . (6)

In particular, a|0 >= 0 and a†|0 >= |1 >. Hereafter we choose f1 and all fj to be real

for convenience (this does not affect the physics we will discuss in the single particle

species case). One can readily check the following commutation relation of N̂ with a

and a†

N̂a− aN̂ = −a , and N̂a† − a†N̂ = a† . (7)

Starting from the one-particle state Eq.(2), using the relation

(a†)j|0 >= (|1 >)j ∼ |j > , or aj |j >∼ |0 > , (8)

the normalization condition in Eq.(1), and f0 = 0 and f1 = 1, one can systematically

determine the amplitude f2 and the coefficients cij, f3 and cijk, and so on, set by set.

To be concrete, let us take M = 2 and 3 as examples. For M = 2, the one-particle

state is |1 >= c|e1 > +s|e2 >. Acting the creation operator a† on |1 >, one has
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a†|1 >= (|1 >)2 = 2cs|e1 > |e2 >= f2|2 >. Therefore f2 = 2cosθsinθ. Obviously |2 >

is the maximal-particle state since |3 >= 0. This is tantamount to fj = 0 for j > 2,

or equivalently (a†)3 = a3 = 0.

For M = 3, the one-particle state is |1 >= c1c2|e1 > +s1c2|e2 > +s2|e3 >.

From a†|1 >= (|1 >)2 = f2|2 >, we obtain f2 = 2s1c1c
2
2

√

1 + t22/s
2
1c

2
1 with t2 =

tanθ2 and |2 >= 1/
√

1 + t22/s
2
1c

2
1 (|e1 > |e2 > +t2/s1|e1 > |e3 > +t2/c1|e2 > |e3 >).

Using a†|2 >= f3|3 > with |3 >= |e1 > |e2 > |e3 >, we readily obtain f3 =

3s2/
√

1 + t22/s
2
1c

2
1. The amplitudes fj = 0 for j > 3, equivalently (a†)4 = a4 = 0.

Let us consider the operator algebra of a and a†. First, for a general M, there are

no simple bi-linear operator relations like [a, a†]± = 1 that the conventional boson

and fermion operators satisfy. Instead, here we have

(aa† + a†a)|j >= (f 2
j + f 2

j+1)|j > . (9)

For M = 1, we recover the anti-commutation relation for fermions.

For any given M, aj = (a†)j = 0 only if j > M. Therefore, there exist (M+1)-linear

relations between a and a†. For example, for M = 2, one has the cubic relations

a2a† + f 2
2a

†a2 = f 2
2a , (10)

a2a† + a†a2 + aa†a = Tr(aa†)a , (11)

where Tr(aa†) =
∑M

j=1 f
2
j , plus the hermitian conjugate relations.

For M = 3, there are the quartic relations like

a3a† + f 2
3a

†a3 = f 2
3 a

2 , (12)

a3a† + a†a3 + a2a†a+ aa†a2 = Tr(aa†)a2 , (13)

plus the hermitian conjugate relations. We speculate that the multi-linear relations

among a and a† in the limit M → ∞ (and with a suitable choice of the theta angles)

actually reduce to the bilinear commutation relation for Bose statistics.
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Next we consider the particle number operator N̂ in terms of the creation and

annihilation operators a† and a. One way to do this is to ssume, for a given M,

N̂ = C1a
†a+ C2(a

†)2a2 + · · ·+ CM(a
†)MaM . (14)

Then the M coefficients Cj, j = 1, 2, · · ·,M, can be determined by using the M

independent equations N̂ |k >= k|k >, k = 1, 2, · · ·,M. For example, for M = 2:

C1 = 1 and C2 = (2 − f 2
2 )/f

2
2 . For M = 3: C1 = 1, C2 = (2 − f 2

2 )/f
2
2 , and

C3 = (3/f 2
3 − 3 + f 2

2 )/f
2
2 .

The particle number operator N̂ can be expressed in other forms for certain values

of the theta angles. For example, if the θi’s in Eq.(2) are chosen so that the one

particle state is |1 >= 1/
√
M(|e1 > +|e2 > + · · · |eM >) and if the operators a and

a† are replaced by operators b/
√
M and b†/

√
M, the particle number operator takes

the form N̂ = 1
2
(b†b− bb†) + M

2
1. This latter form was used in the study of parafermi

statistics [1][2].

With the Hilbert space of quantum states for the new statistics and the diagonal

particle number operator now available, it is natural and straightforward to con-

sider the quantum statistical mechanics of a system that is compatible with such a

construction (note that systems of this kind are not necessarily described by a free

theory).

Let us assume a single particle to have energy ǫ = ǫ(p), then the Hamiltonian

operator takes the form

Ĥ = ǫN̂ . (15)

The energy spectrum of the system for a given M is given by {ǫ, 2ǫ, · ··, Mǫ}, similar

to that for a spin system in a magnetic field.

The grand partition function is

Z = Tre−β(Ĥ−µN̂) =
M
∑

j=0

< j|e−β(Ĥ−µN̂)|j >=
∏

p

M
∑

j=0

(ze−βǫ)j , (16)

where β is the reciprocal of temperature T , µ is the chemical potential, the fugacity

is z = eβµ, and the Boltzmann constant is kB = 1. For M = 1, Z =
∏

p(1 + ze−βǫ)
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is the partition function for free fermions; while for M = ∞, Z =
∏

p 1/(1 − ze−βǫ)

recovers the partition function of free bosons [10]. For M 6= 1 and ∞, Z describes a

system interpolating between free fermions and free bosons. Note that the resulting

thermodynamics is insensitive to the particular values of the set of amplitudes fj . In

particular, for the M = 2 case, even when the one-particle state |1 > is predominantly

|e1 > or |e2 >, the statistics is very different from Fermi statistics, suggesting that

the models discussed in Ref.[3] do not yield weak violations of the Pauli principle as

correctly pointed out in Ref.[4].

With the grand partition function Z, one can calculate various thermodynamical

quantities. The particle number

N = z
∂

∂z
lnZ =

∑

p

∑M
j=1 j(ze

−βǫ)j
∑M

j=0(ze
−βǫ)j

. (17)

Accordingly, the average occupation numbers are

n(ǫ) =

∑M
j=1 j(ze

−βǫ)j
∑M

j=0(ze
−βǫ)j

. (18)

At T = 0, n(ǫ) = 0 for ǫ > µ; while n(ǫ) = M for ǫ < µ. The fermi energy ǫF is

defined by the particle density n = N/V = (1/V )
∑

p<pF
n(ǫ) at absolute zero. As

T → ∞, n(ǫ) = M/2.

One can also calculate the entropy S by applying S = −∂F/∂T, where F = −T lnZ

is the grand potential. Using Eq.(18) to invert ze−βǫ in term of the average occupation

number n(ǫ) one can then express S in term of n(ǫ). For example, for M = 2, we find

S =
∑

p

(−lnn(ǫ) + (1− n(ǫ))lnx+ ln(1 + 2x)) , (19)

where x = (
√

1 + 6n(ǫ)− 3n2(ǫ)− 1 + n(ǫ))/2(2− n(ǫ)).

The equation of state is given by

βPV = lnZ =
∑

p

ln
M
∑

j=0

(ze−βǫ)j , (20)

where P denotes the pressure and V the volume. In the large volume (V → ∞) limit,

we replace the sum over momentum p by the integral over p:
∑

p → V
∫

dDp/(2π)D.
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Such a replacement is clearly valid only if the summand is finite for all p. For the

bose gas (the limit of M → ∞), the summand −ln(1− ze−βǫ) in Eq.(20) diverges as

the fugacity z → 1, because the single term corresponding to p = 0 diverges. This

is of course related to the Bose-Einstein condensation. On the other hand, for any

finite M, the summand in Eq.(20) is finite for any value of ǫ(p).

In all our discussions so far we have made no reference to any specific spatial

dimensions. We now consider a planar system. Furthermore, we assume the single

particle energy ǫ take the form ǫ(p) = p2/(2m), with m being the (effective) mass

of the particles or excitations so that the system is an ideal gas. Using Eq.(20) and

Eq.(17), and performing the integrations over p, we readily obtain

βP =
1

λ2

∞
∑

k=1

zk

k2

(

1− zMk

M+ 1

)

(z ≤ 1), (21)

=
1

λ2

[

π2

3

M

M+ 1
+

M

2
(lnz)2 −

∞
∑

k=1

z−k

k2

(

1− z−Mk

M+ 1

)]

(z ≥ 1), (22)

n =
N

V
=

1

λ2
ln
1− z(M+1)

1− z
, (23)

where λ =
√

2πβ/m is the thermal wavelength. Solving for z in Eq.(23) and substi-

tuting it into Eq.(21), in the high temperature and low density limit, i.e. λ2n ≪ 1,

we can conduct a virial expansion in the form βP = n (1 +B2λ
2n+B3(λ

2n)2 + · · ·).
For M = 2, we find B2 = −1/4, B3 = 25/36, · · ·; and for M = 3, B2 = −1/4,

B3 = 1/36, · · ·. Actually from Eq.(21) and Eq.(23), it is not difficult to check that

for any M > 1, the second virial coefficient is −1/4, the same as for the ideal bose

gas (M = ∞). It implies that (for sufficiently small λ2n) the quantum effect on the

ideal gas, for all M except M = 1, is equivalent to an attractive “interaction” among

excitations. For ideal fermi gas (M = 1) this effect is a repulsive one as B2 = +1/4.

In the low temperature and high density limit, i.e. λ2n ≫ 1, most particles are

in the states with energy ǫ < ǫF = 2πn/Mm. Using U = F + TS + µN , we obtain

the internal energy

U =
1

2
NǫF

(

1 +
2π2

3(M + 1)
(
T

ǫF
)2 + · · ·

)

. (24)
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The first term is the ground state energy, a result that can be verified by using
∑

p<pF
Mp2/(2m) = NǫF/2. From the above equation the specific heat at constant

volume can be readily found: CV /N ≃ 2π2

3(M+1)
T
ǫF
. These suggest that in the low

temperature and high density limit, a system in which each quantum state has a

maximum multi-occupancy of M < ∞ is like the fermion system (M= 1).

A comparison of the quantum statistical mechanics obtained here with that for

exclusion statistics can now be made. Both fractional statistics, based on general-

izations of Pauli’s exclusion principle, are well defined in arbitrary dimensions. At

zero temperature, the n(ǫ) distributions in the two thermodynamics are the same if

the statistical parameter g in exclusion statistics is identified with 1/M in the new

statistics. But there are profound differences between the two statistics. The second

virial coefficient for a free planar exclusion statistical system, such as the free anyon

system, is given by B2 = 1/4 − g/2 (where g = 0, 1 for fermion and boson statistics

respectively) [8][9]. Accordingly the statistical interaction is attractive, neutral, or

repulsive, depending on the value of g. In particular, for semions with g = 1/2, it

is neutral (to this order); and for others with fractional g = 1/M (M > 2), it is

repulsive. In contrast, we find an attractive interaction for all M > 1 in the new

statistics discussed above. Moreover, the particle distribution n(ǫ) are in general

very different in the two statistics. For example, the distribution of semions from

the exclusion statistical derivation takes the form [8]: n(ǫ) = 1/
√

1/4 + e2βǫ/z2. This

is different (except at zero temperature) from the one given by Eq.(18) for M = 2,

n(ǫ) = (2 + eβǫ/z)/(1 + eβǫ/z + e2βǫ/z2). Integrating out the distributions over ǫ, we

find the resulting densities are different too. The statistical weights W for fractional

exclusion statistics are also quite different from those for the new statistics. For in-

stance, for N identical semions occupying G states, it reads W =

(

G+ 1
2
(N − 1)
N

)

in exclusion statistics [7][8], whereas for M = 2 in the new statistics we obtain

W =

[N
2
]

∑

0

(

N − k
k

)(

G
N − k

)

, (25)
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where [N
2
] denotesN/2 and (N−1)/2 forN = even and odd, respectively. We conclude

that the statistics associated with multi-occupancy of a single quantum state and the

resulting operator algebra are different from the exclusion statistics defined in Ref.[7]

(in contrast to a recent proposal [11], in which the exclusion statistical parameter g is

assumed to be connected to the maximum occupancy number M by g = 1/M and the

statistical distributions in exclusion statistics are connected to the amplitudes fj).

We thank K. Dy, E. Merzbacher, V.P. Nair, G.W. Semenoff, and Y.-S. Wu for

useful conversations. This work was supported in part by the U.S. DOE grant No.

DE-FG05-85ER-40219.

Note added: After this paper was completed, we noticed a recent interesting work

[12], in which an issue relevant to this paper was also addressed.
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