A STUDY OF SATURATED TENSOR CONE FOR SYMMETRIZABLE KAC-MOODY ALGEBRAS

MERRICK BROWN AND SHRAWAN KUMAR

1. Introduction

Let \mathfrak{g} be a symmetrizable Kac-Moody Lie algebra with the standard Cartan subalgebra \mathfrak{h} and the Weyl group W. Let P_{+}be the set of dominant integral weights. For $\lambda \in P_{+}$, let $L(\lambda)$ be the irreducible, integrable, highest weight representation of \mathfrak{g} with highest weight λ. For a positive integer s, define the saturated tensor semigroup as
$\Gamma_{s}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in P_{+}^{s+1}: \exists N>1\right.$ with $\left.L(N \mu) \subset L\left(N \lambda_{1}\right) \otimes \cdots \otimes L\left(N \lambda_{s}\right)\right\}$.
The aim of this paper is to begin a systematic study of Γ_{s} in the infinite dimensional symmetrizable Kac-Moody case. In this paper, we produce a set of necessary inequalities satisfied by Γ_{s}, which we describe now. Let $X=G^{\text {min }} / B$ be the standard full KM-flag variety associated to \mathfrak{g}, where G^{min} is the 'minimal' Kac-Moody group with Lie algebra \mathfrak{g} and B is the standard Borel subgroup of $G^{\text {min }}$. For $w \in W$, let $X_{w}=\overline{B w B / B} \subset X$ be the corresponding Schubert variety. Let $\left\{\varepsilon^{w}\right\}_{w \in W} \subset H^{*}(X, \mathbb{Z})$ be the (Schubert) basis dual (with respect to the standard pairing) to the basis of the singular homology of X given by the fundamental classes of X_{w}. The following result is our first main theorem valid for any symmetrizable \mathfrak{g} (cf. Theorem (3.3).

Theorem 1.1. Let $\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in \Gamma_{s}$. Then, for any $u_{1}, \ldots, u_{s}, v \in W$ such that $n_{u_{1}, \ldots, u_{s}}^{v} \neq 0$, where

$$
\varepsilon^{u_{1}} \ldots \varepsilon^{u_{s}}=\sum_{w} n_{u_{1}, \ldots, u_{s}}^{w} \varepsilon^{w}
$$

we have

$$
\left(\sum_{j=1}^{s} \lambda_{j}\left(u_{j} x_{i}\right)\right)-\mu\left(v x_{i}\right) \geq 0, \text { for any } x_{i}
$$

where $x_{i} \in \mathfrak{h}$ is dual to the simple roots of \mathfrak{g}.
The proof of the theorem relies on the Kac-Moody analogue of the BorelWeil theorem and the Geometric Invariant Theory (specifically the HilbertMumford index). We conjecture that the above inequalities are sufficient as well to describe Γ_{s}. In fact, we conjecture a much sharper result, where much fewer inequalities suffice to describe the semigroup Γ_{s}. To explain our conjecture, we need some more notation.

Let $P \supset B$ be a (standard) parabolic subgroup and let $X_{P}:=G^{\text {min }} / P$ be the corresponding partial flag variety. Let W_{P} be the Weyl group of P (which is, by definition, the Weyl group of the Levi L of P) and let W^{P} be the set of minimal length coset representatives of cosets in W / W_{P}. The projection map $X \rightarrow X_{P}$ induces an injective homomorphism $H^{*}\left(X_{P}, \mathbb{Z}\right) \rightarrow$ $H^{*}(X, \mathbb{Z})$ and $H^{*}\left(X_{P}, \mathbb{Z}\right)$ has the Schubert basis $\left\{\varepsilon_{P}^{w}\right\}_{w \in W^{P}}$ such that ε_{P}^{w} goes to ε^{w} for any $w \in W^{P}$. As defined by Belkale-Kumar [BK, $\left.\S 6\right]$ in the finite dimensional case (and extended here in Section 7 for any symmetrizable Kac-Moody case), there is a new deformed product \odot_{0} in $H^{*}\left(X_{P}, \mathbb{Z}\right)$, which is commutative and associative. Now, we are ready to state our conjecture (see Conjecture 7.3).
1.2. Conjecture. Let \mathfrak{g} be any indecomposable symmetrizable Kac-Moody Lie algebra and let $\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in P_{+}^{s+1}$. Assume further that none of λ_{j} is W-invariant and $\mu-\sum_{j=1}^{s} \lambda_{j} \in Q$, where Q is the root lattice of G. Then, the following are equivalent:
(a) $\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in \Gamma_{s}$.
(b) For every standard maximal parabolic subgroup P in $G^{\text {min }}$ and every choice of $s+1$-tuples $\left(w_{1}, \ldots, w_{s}, v\right) \in\left(W^{P}\right)^{s+1}$ such that ϵ_{P}^{v} occurs with coefficient 1 in the deformed product

$$
\epsilon_{P}^{w_{1}} \odot_{0} \cdots \odot_{0} \epsilon_{P}^{w_{s}} \in\left(H^{*}\left(X_{P}, \mathbb{Z}\right), \odot_{0}\right)
$$

the following inequality holds:

$$
\left(\sum_{j=1}^{s} \lambda_{j}\left(w_{j} x_{P}\right)\right)-\mu\left(v x_{P}\right) \geq 0, \quad\left(I_{\left(w_{1}, \ldots, w_{s}, v\right)}^{P}\right)
$$

where $\alpha_{i_{P}}$ is the (unique) simple root not in the Levi of P and $x_{P}:=x_{i_{P}}$.
This conjecture is motivated from its validity in the finite case due to Belkale-Kumar [BK, Theorem 22]. (For a survey of these results in the finite case, see $\left[\mathrm{K}_{5}\right]$.) So far, the only evidence of its validity in the infinite dimensional case is shown for $s=2$ and \mathfrak{g} of types $A_{1}^{(1)}$ and $A_{2}^{(2)}$ (cf. Theorems 7.5 and 8.6). In these cases, we explicitly determine Γ_{2} and thereby show the validity of the conjecture.

A positive integer d_{o} is called a saturation factor for \mathfrak{g} if for any $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime} \in$ P_{+}such that $\Lambda-\Lambda^{\prime}-\Lambda^{\prime \prime} \in Q$ and $L(N \Lambda)$ is a submodule of $L\left(N \Lambda^{\prime}\right) \otimes L\left(N \Lambda^{\prime \prime}\right)$, for some $N \in \mathbb{Z}_{>0}$, then $L\left(d_{o} \Lambda\right)$ is a submodule of $L\left(d_{o} \Lambda^{\prime}\right) \otimes L\left(d_{o} \Lambda^{\prime \prime}\right)$.

We prove the following result on saturation factors (cf. Corollaries 6.4 and 8.7).

Theorem 1.3. For $A_{1}^{(1)}$, any integer $d_{o}>1$ is a saturation factor. For $A_{2}^{(2)}$, 4 is a saturation factor.

The proof in these affine rank-2 cases makes use of basic representation theory of the Virasoro algebra (in particular, Lemma 4.1). Let δ be the smallest positive imaginary root of \mathfrak{g}. To determine the saturated tensor
semigroup, we show that it is enough to know the components of $L\left(\lambda_{1}\right) \otimes$ $L\left(\lambda_{2}\right)$ which are δ-maximal, i.e., the components $L(\mu) \subset L\left(\lambda_{1}\right) \otimes L\left(\lambda_{2}\right)$ such that $L(\mu+n \delta) \nsubseteq L\left(\lambda_{1}\right) \otimes L\left(\lambda_{2}\right)$ for any $n>0$. Let $m_{\lambda_{1}, \lambda_{2}}^{\mu}$ be the multiplicity of $L(\mu)$ in $L\left(\lambda_{1}\right) \otimes L\left(\lambda_{2}\right)$. If $L(\mu)$ is a δ-maximal component of $L\left(\lambda_{1}\right) \otimes L\left(\lambda_{2}\right)$, then $\sum_{n \in \mathbb{Z}_{\leq 0}} L(\mu+n \delta)^{\oplus m_{\lambda_{1}, \lambda_{2}}^{\mu+n \delta}}$ is a unitarizable coset module for the Virasoro algebra arising from the Sugawara construction for the diagonal embedding $\mathfrak{g} \hookrightarrow \mathfrak{g} \oplus \mathfrak{g}$. Proposition 5.5 for $A_{1}^{(1)}$ (and the analogous Proposition 8.2 for $A_{2}^{(2)}$) determining the maximal δ-components plays a crucial role in the proofs.

Acknowledgements. We thank Evgeny Feigin and Victor Kac for some helpful correspondences. Both the authors were partially supported by the NSF grant number DMS-1201310.

2. Notation

We take the base field to be the field of complex numbers \mathbb{C}. By a variety, we mean an algebraic variety over \mathbb{C}, which is reduced but not necessarily irreducible.

Let G be any symmetrizable Kac-Moody group over \mathbb{C} completed along the negative roots (as opposed to completed along the positive roots as in $\left[\mathrm{K}_{3}\right.$, Chapter 6$]$) and $G^{\text {min }} \subset G$ be the 'minimal' Kac-Moody group as in $\left[\mathrm{K}_{3}\right.$, $\S 7.4]$. Let B be the standard (positive) Borel subgroup, B^{-}the standard negative Borel subgroup, $H=B \cap B^{-}$the standard maximal torus and W the Weyl group (cf. $\left[\mathrm{K}_{3}\right.$, Chapter 6$]$). Let U (resp. U^{-}) be the unipotent radical $[B, B]$ (resp. $\left.\left[B^{-}, B^{-}\right]\right)$of B (resp. B^{-}). Let

$$
\bar{X}=G / B
$$

be the 'thick' flag variety which contains the standard KM-flag variety

$$
X=G^{\min } / B .
$$

If G is not of finite type, \bar{X} is an infinite dimensional non quasi-compact scheme (cf. [Ka, §4]) and X is an ind-projective variety (cf. $\left[\mathrm{K}_{3}, \S 7.1\right]$). The group $G^{\min }$ acts on \bar{X} and X.

More generally, for any standard parabolic subgroup $P \supset B$, define the partial flag variety

$$
X_{P}=G^{\min } / P,
$$

and

$$
\bar{X}_{P}=G / P .
$$

Recall that if W_{P} is the Weyl group of P (which is, by definition, the Weyl Group W_{L} of its Levi subgroup L), then in each coset of W / W_{P} we have a unique member w of minimal length. Let W^{P} be the set of the minimal length representatives in the cosets of W / W_{P}.

For any $w \in W^{P}$, define the Schubert cell:

$$
C_{w}^{P}:=B w P / P \subset G / P
$$

endowed with the reduced subscheme structure. Then, it is a locally closed subvariety of the ind-variety G / P isomorphic with the affine space $\mathbb{A}^{\ell(w)}, \ell(w)$ being the length of $w\left(c f .\left[K_{3}, \S 7.1\right]\right)$. Its closure is denoted by X_{w}^{P}, which is an irreducible (projective) subvariety of G / P of dimension $\ell(w)$. We denote the point $w P \in C_{w}^{P}$ by \dot{w}. We abbreviate C_{w}^{B}, X_{w}^{B} by C_{w}, X_{w} respectively.

Similarly, define the opposite Schubert cell

$$
C_{P}^{w}:=B^{-} w P / P \subset \bar{X}_{P}
$$

and the opposite Schubert variety

$$
X_{P}^{w}:=\overline{C^{w}} \subset \bar{X}_{P}
$$

both endowed with the reduced subscheme structures. Then, X_{P}^{w} is a finite codimensional irreducible subscheme of $\bar{X}_{P}\left(\mathrm{cf} .\left[\mathrm{K}_{3}\right.\right.$, Section 7.1] and [Ka, $\S 4])$. As above, we abbreviate C_{B}^{w}, X_{B}^{w} by C^{w}, X^{w} respectively.

For any integral weight λ (i.e., any character e^{λ} of H), we have a $G^{\mathrm{min}_{-}}$ equivariant line bundle $\mathcal{L}_{B}(\lambda)$ on X associated to the character $e^{-\lambda}$ of H. Similarly, we have a G-equivariant line bundle $\mathcal{L}_{B^{-}}(\lambda)$ on $X^{-}:=G / B^{-}$ associated to the character e^{λ} of H.

By the Bruhat decomposition

$$
X_{P}=\sqcup_{w \in W^{P}} C_{w}^{P}
$$

the singular homology $H_{*}\left(X_{P}, \mathbb{Z}\right)$ of X_{P} with integral coefficients has a basis $\left\{\mu\left(X_{w}^{P}\right)\right\}_{w \in W^{P}}$, where $\mu\left(X_{w}^{P}\right) \in H_{2 \ell(w)}\left(X_{P}, \mathbb{Z}\right)$ denotes the fundamental class of X_{w}^{P}. Let $\left\{\epsilon_{P}^{w}\right\}_{w \in W^{P}}$ be the dual basis of the singular cohomology $H^{*}\left(X_{P}, \mathbb{Z}\right)$ under the standard pairing of cohomology with homology, i.e.,

$$
\epsilon_{P}^{u}\left(\mu\left(X_{v}^{P}\right)\right)=\delta_{u, v}, \text { for any } u, v \in W^{P}
$$

Thus, $\epsilon_{P}^{w} \in H^{2 \ell(w)}\left(X_{P}, \mathbb{Z}\right)$. If $P=B$, we abbreviate ϵ_{P}^{u} by ϵ^{u}.
Let $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ be the set of simple roots, $\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset \mathfrak{h}$ the set of simple coroots and $\left\{s_{1}, \ldots, s_{r}\right\} \subset W$ the corresponding simple reflections, where $\mathfrak{h}:=$ Lie H. Let $\rho \in X(H)$ be any weight satisfying

$$
\rho\left(\alpha_{i}^{\vee}\right)=1, \quad \text { for all } \quad 1 \leq i \leq r,
$$

where $X(H)$ is the character group of H (identified as a subgroup of \mathfrak{h}^{*} via the derivative). When G is a finite dimensional semisimple group, ρ is unique, but for a general Kac-Moody group G, it may not be unique.

Choose elements $x_{i} \in \mathfrak{h}$ such that

$$
\begin{equation*}
\alpha_{j}\left(x_{i}\right)=\delta_{i, j}, \text { for any } 1 \leq i, j \leq r \tag{1}
\end{equation*}
$$

Observe that x_{i} may not be unique.
Define the set of dominant integral weights

$$
P_{+}:=\left\{\lambda \in X(H): \lambda\left(\alpha_{i}^{\vee}\right) \in \mathbb{Z}_{+} \forall 1 \leq i \leq r\right\}
$$

and the set of dominant integral regular weights

$$
P_{++}:=\left\{\lambda \in X(H): \lambda\left(\alpha_{i}^{\vee}\right) \in \mathbb{Z}_{\geq 1} \forall 1 \leq i \leq r\right\}
$$

where \mathbb{Z}_{+}is the set of non-negative integers. The integrable highest weight (irreducible) modules of G^{min} are parameterized by P_{+}. For $\lambda \in P_{+}$, let $L(\lambda)$ be the corresponding integrable highest weight (irreducible) G-module with highest weight λ.

3. Necessary Inequalities for the Saturated Tensor Semigroup

Fix a positive integer s and define the saturated tensor semigroup $\Gamma_{s}=$ $\Gamma_{s}(G):$
$\Gamma_{s}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in P_{+}^{s+1}: \exists N>1\right.$ with $\left.L(N \mu) \subset L\left(N \lambda_{1}\right) \otimes \cdots \otimes L\left(N \lambda_{s}\right)\right\}$.

It is indeed a semigroup by the anlogue of the Borel-Weil theorem for the Kac-Moody case (see the identity (3) in the proof of Theorem 3.3). We give a certain set of inequalities satisfied by Γ_{s}. But, we first recall some basic results about the Hilbert-Mumford index.
3.1. Definition. Let S be any (not necessarily reductive) algebraic group acting on a (not necessarily projective) variety \mathbb{X} and let \mathbb{L} be an S-equivariant line bundle on \mathbb{X}. Let $O(S)$ be the set of all one parameter subgroups (for short OPS) in S. Take any $x \in \mathbb{X}$ and $\delta \in O(S)$ such that the limit $\lim _{t \rightarrow 0} \delta(t) x$ exists in \mathbb{X} (i.e., the morphism $\delta_{x}: \mathbb{G}_{m} \rightarrow \mathbb{X}$ given by $t \mapsto \delta(t) x$ extends to a morphism $\left.\widetilde{\delta}_{x}: \mathbb{A}^{1} \rightarrow \mathbb{X}\right)$. Then, following Mumford, define a number $\mu^{\mathbb{L}}(x, \delta)$ as follows: Let $x_{o} \in \mathbb{X}$ be the point $\widetilde{\delta}_{x}(0)$. Since x_{o} is \mathbb{G}_{m}-invariant via δ, the fiber of \mathbb{L} over x_{o} is a \mathbb{G}_{m}-module; in particular, it is given by a character of \mathbb{G}_{m}. This integer is defined as $\mu^{\mathbb{L}}(x, \delta)$.

We record the following standard properties of $\mu^{\mathbb{L}}(x, \delta)$ (cf. [MFK, Chap. $2, \S 1]):$
3.2. Proposition. For any $x \in \mathbb{X}$ and $\delta \in O(S)$ such that $\lim _{t \rightarrow 0} \delta(t) x$ exists in \mathbb{X}, we have the following (for any S-equivariant line bundles $\mathbb{L}, \mathbb{L}_{1}, \mathbb{L}_{2}$):
(a) $\mu^{\mathbb{L}_{1} \otimes \mathbb{L}_{2}}(x, \delta)=\mu^{\mathbb{L}_{1}}(x, \delta)+\mu^{\mathbb{L}_{2}}(x, \delta)$.
(b) If there exists $\sigma \in H^{0}(\mathbb{X}, \mathbb{L})^{S}$ such that $\sigma(x) \neq 0$, then $\mu^{\mathbb{L}}(x, \delta) \geq 0$.
(c) If $\mu^{\mathbb{L}}(x, \delta)=0$, then any element of $H^{0}(\mathbb{X}, \mathbb{L})^{S}$ which does not vanish at x does not vanish at $\lim _{t \rightarrow 0} \delta(t) x$ as well.
(d) For any S-variety \mathbb{X}^{\prime} together with an S-equivariant morphism f : $\mathbb{X}^{\prime} \rightarrow \mathbb{X}$ and any $x^{\prime} \in \mathbb{X}^{\prime}$ such that $\lim _{t \rightarrow 0} \delta(t) x^{\prime}$ exists in \mathbb{X}^{\prime}, we have $\mu^{f^{*} \mathbb{L}}\left(x^{\prime}, \delta\right)=\mu^{\mathbb{L}}\left(f\left(x^{\prime}\right), \delta\right)$.
(e) (Hilbert-Mumford criterion) Assume that \mathbb{X} is projective, S is connected and reductive and \mathbb{L} is ample. Then, $x \in \mathbb{X}$ is semistable (with respect to \mathbb{L}) if and only if $\mu^{\mathbb{L}}(x, \delta) \geq 0$, for all $\delta \in O(S)$.

In particular, if $x \in \mathbb{X}$ is semistable and δ-fixed, then $\mu^{\mathbb{L}}(x, \delta)=0$.
The following theorem is one of our main results giving a collection of necessary inequalities defining the semigroup Γ_{s}.
3.3. Theorem. Let G be any symmetrizable Kac-Moody group and let $\left(\lambda_{1}, \cdots, \lambda_{s}, \mu\right) \in$ Γ_{s}. Then, for any $u_{1}, \ldots, u_{s}, v \in W$ such that $n_{u_{1}, \ldots, u_{s}}^{v} \neq 0$, where

$$
\varepsilon^{u_{1}} \cdots \varepsilon^{u_{s}}=\sum_{w} n_{u_{1}, \ldots, u_{s}}^{w} \varepsilon^{w} \in H^{*}(X, \mathbb{Z}),
$$

we have

$$
\left(\sum_{j=1}^{s} \lambda_{j}\left(u_{j} x_{i}\right)\right)-\mu\left(v x_{i}\right) \geq 0, \quad \text { for any } x_{i},
$$

where x_{i} is defined by the equation (11).
Proof. Let

$$
Z:=\left\{\left(\bar{g}_{1}, \ldots, \bar{g}_{s}\right) \in\left(X^{-}\right)^{s}: g_{1} X^{u_{1}} \cap \cdots \cap g_{s} X^{u_{s}} \cap X_{v} \neq \emptyset\right\}
$$

where $X^{-}:=G / B^{-}$and $\bar{g}_{j}=g_{j} B^{-}$. Then, Z contains a nonempty open set by Proposition 3.7 (In fact, by Proposition 3.7, $Z=\left(X^{-}\right)^{s}$, but we do not need this stronger result.)

Take a nonzero $\sigma \in H^{0}\left(\left(X^{-}\right)^{s} \times X, \mathcal{L}^{N}\right)^{G^{\text {min }}}$, where

$$
\mathcal{L}:=\mathcal{L}_{B^{-}}\left(\lambda_{1}\right) \boxtimes \cdots \boxtimes \mathcal{L}_{B^{-}}\left(\lambda_{s}\right) \boxtimes \mathcal{L}_{B}(\mu) .
$$

Such a nonzero σ exists, for some $N>0$, since by $\left[\mathrm{K}_{3}\right.$, Corollary 8.3.12(a) and Lemma 8.3.9],

$$
\begin{align*}
H^{0}\left(\left(X^{-}\right)^{s} \times X, \mathcal{L}^{N}\right)^{G^{\min }} & \simeq \operatorname{Hom}_{G^{\min }}\left(L\left(N \lambda_{1}\right)^{\vee} \otimes \cdots \otimes L\left(N \lambda_{s}\right)^{\vee} \otimes L(N \mu), \mathbb{C}\right) \\
& \simeq \operatorname{Hom}_{G^{\min }}\left(L(N \mu),\left[L\left(N \lambda_{1}\right)^{\vee} \otimes \cdots \otimes L\left(N \lambda_{s}\right)^{\vee}\right]^{*}\right) \\
& \simeq \operatorname{Hom}_{G^{\min }}\left(L(N \mu),\left[L\left(N \lambda_{1}\right)^{\vee} \otimes \cdots \otimes L\left(N \lambda_{s}\right)^{\vee}\right]^{\vee}\right) \\
& \simeq \operatorname{Hom}_{G^{\min }}\left(L(N \mu), L\left(N \lambda_{1}\right) \otimes \cdots \otimes L\left(N \lambda_{s}\right)\right) \\
& \neq 0, \tag{3}
\end{align*}
$$

since $\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in \Gamma_{s}$, where, for a $G^{\min }$-module M, M^{\vee} denotes the direct sum of the H-weight spaces of the full dual module M^{*}.

Pick $\left(\bar{g}_{1}, \ldots, \bar{g}_{s}\right) \in Z$ such that $\sigma\left(\bar{g}_{1}, \ldots, \bar{g}_{s}, \overline{1}\right) \neq 0$, where $\overline{1}=1 \cdot B$. Since $\left(\bar{g}_{1}, \ldots, \bar{g}_{s}\right) \in Z$, there exists $u_{1}^{\prime} \geq u_{1}, \cdots, u_{s}^{\prime} \geq u_{s}$ and $v^{\prime} \leq v$ such that $g_{1} C^{u_{1}^{\prime}} \cap \cdots \cap g_{s} C^{u_{s}^{\prime}} \cap C_{v^{\prime}}$ is nonempty. Now, pick $g \in G^{\text {min }}$ such that

$$
\begin{equation*}
g B \in g_{1} C^{u_{1}^{\prime}} \cap \cdots \cap g_{s} C^{u_{s}^{\prime}} \cap C_{v^{\prime}} . \tag{4}
\end{equation*}
$$

By Proposition [3.2, for any $\delta \in O\left(G^{\min }\right), \mu^{\mathcal{L}}(\bar{x}, \delta(t)) \geq 0$, where $\bar{x}=$ $\left(\bar{g}_{1}, \ldots, \bar{g}_{s}, \overline{1}\right)$ (since $\sigma(\bar{x}) \neq 0$). By the following Lemma 3.4, applied to the OPS $\delta(t)=g t^{x_{i}} g^{-1}$, we get

$$
\begin{equation*}
\left(\sum_{j=1}^{s} \lambda_{j}\left(u_{j}^{\prime} x_{i}\right)\right)-\mu\left(v^{\prime} x_{i}\right) \geq 0 . \tag{5}
\end{equation*}
$$

But, by [K_{3}, Lemma 8.3.3],

$$
\left(u_{j}^{\prime}\right)^{-1} \lambda_{j} \leq u_{j}^{-1}\left(\lambda_{j}\right) .
$$

Thus,

$$
\lambda_{j}\left(u_{j}^{\prime} x_{i}\right) \leq \lambda_{j}\left(u_{j} x_{i}\right)
$$

Similarly,

$$
\mu\left(v^{\prime} x_{i}\right) \geq \mu\left(v x_{i}\right)
$$

Thus, from (5), we get

$$
\left(\sum_{j=1}^{s} \lambda_{j}\left(u_{j} x_{i}\right)\right)-\mu\left(v x_{i}\right) \geq 0
$$

This proves the theorem.
3.4. Lemma. Let $g \in G^{\min }$ be as in the equation (4). Consider the one parameter subgroup $\delta(t)=g t^{x_{i}} g^{-1} \in O\left(G^{\text {min }}\right)$. Then,
(a) $\mu^{\mathcal{L}_{B^{-}}\left(\lambda_{j}\right)}\left(g_{j} B^{-}, \delta(t)\right)=\lambda_{j}\left(u_{j}^{\prime} x_{i}\right)$.
(b) $\mu^{\mathcal{L}_{B}(\mu)}(1 \cdot B, \delta(t))=-\mu\left(v^{\prime} x_{i}\right)$.

Proof. (a) $\mu^{\mathcal{L}_{B^{-}}\left(\lambda_{j}\right)}\left(g_{j} B^{-}, \delta(t)\right)=\mu^{\mathcal{L}_{B^{-}}\left(\lambda_{j}\right)}\left(g^{-1} g_{j} B^{-}, t^{x_{i}}\right)$.
By assumption, $g_{j}^{-1} g \in U^{-} u_{j}^{\prime} B$. Write

$$
g_{j}^{-1} g=b_{j}^{-} u_{j}^{\prime} p_{j}, \quad \text { for some } b_{j}^{-} \in U^{-}, p_{j} \in B
$$

Thus,

$$
1=g^{-1} g_{j} b_{j}^{-} u_{j}^{\prime} p_{j}
$$

Let

$$
b_{j}(t)=b_{j}^{-} u_{j}^{\prime} t^{-x_{i}}\left(u_{j}^{\prime}\right)^{-1}\left(b_{j}^{-}\right)^{-1} \in B^{-}
$$

Then,

$$
\begin{equation*}
t^{x_{i}} g^{-1} g_{j} b_{j}(t)=t^{x_{i}} p_{j}^{-1} t^{-x_{i}}\left(u_{j}^{\prime}\right)^{-1}\left(b_{j}^{-}\right)^{-1} \tag{6}
\end{equation*}
$$

Consider the G_{m}-invariant section (via $t^{x_{i}}$) of $\mathcal{L}_{B^{-}}\left(\lambda_{j}\right)$:

$$
\begin{aligned}
\hat{\sigma}(t) & =\left(t^{x_{i}} g^{-1} g_{j}, 1\right) \quad \bmod B^{-} \\
& =\left(t^{x_{i}} g^{-1} g_{j} b_{j}(t), \lambda_{j}\left(b_{j}(t)^{-1}\right)\right) \quad \bmod B^{-}
\end{aligned}
$$

Clearly, $\lim _{t \rightarrow 0} t^{x_{i}} g^{-1} g_{j} b_{j}(t)$ exists in G by (6).
Now,

$$
\begin{aligned}
\lambda_{j}\left(b_{j}(t)^{-1}\right) & =\lambda_{j}\left(b_{j}^{-} u_{j}^{\prime} t^{x_{i}}\left(u_{j}^{\prime}\right)^{-1}\left(b_{j}^{-}\right)^{-1}\right) \\
& =\lambda_{j}\left(t^{u_{j}^{\prime} x_{i}}\right)
\end{aligned}
$$

This gives

$$
\mu^{\mathcal{L}_{B^{-}}\left(\lambda_{j}\right)}\left(g_{j} B^{-}, \delta(t)\right)=\lambda_{j}\left(u_{j}^{\prime}\left(x_{i}\right)\right)
$$

This proves the (a) part of the lemma.
(b) $\mu^{\mathcal{L}_{B}(\mu)}(1 \cdot B, \delta(t))=\mu^{\mathcal{L}_{B}(\mu)}\left(g^{-1} B, t^{x_{i}}\right)$. By assumption, $g \in B v^{\prime} \cdot B$.

Write

$$
g=b v^{\prime} p, \quad \text { for } b \in U, p \in B
$$

Thus,

$$
1=g^{-1} b v^{\prime} p .
$$

Let

$$
b(t)=b v^{\prime} t^{-x_{i}}\left(v^{\prime}\right)^{-1} b^{-1} \in B .
$$

Now,

$$
t^{x_{i}} g^{-1} b(t)=t^{x_{i}} p^{-1} t^{-x_{i}}\left(v^{\prime}\right)^{-1} b^{-1} .
$$

Thus,

$$
\lim _{t \rightarrow 0} t^{x_{i}} g^{-1} b(t) \text { exists in } G^{\min }
$$

Consider the G_{m}-invariant section (via $t^{x_{i}}$)

$$
\begin{aligned}
\hat{\sigma}(t) & =\left(t^{x_{i}} g^{-1}, 1\right) \quad \bmod B \\
& =\left(t^{x_{i}} g^{-1} b(t), \mu(b(t))\right) \quad \bmod B .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mu(b(t)) & =\mu\left(b v^{\prime} t^{-x_{i}}\left(v^{\prime}\right)^{-1} b^{-1}\right) \\
& =\mu\left(t^{-v^{\prime} x_{i}}\right) .
\end{aligned}
$$

This gives

$$
\mu^{\mathcal{L}_{B}(\mu)}(1 \cdot B, \delta(t))=-\mu\left(v^{\prime}\left(x_{i}\right)\right) .
$$

This proves the (b)-part and hence the lemma is proved.
3.5. Definition. For a quasi-compact scheme Y, an \mathcal{O}_{Y}-module \mathcal{S} is called coherent if it is finitely presented as an \mathcal{O}_{Y}-module and any \mathcal{O}_{Y}-submodule of finite type admits a finite presentation.

An $\mathcal{O}_{\bar{X}}$-module \mathcal{S} is called coherent if $\mathcal{S}_{\left.\right|^{S}}$ is a coherent $\mathcal{O}_{V^{S}}$-module for any finite ideal $S \subset W$ (where a subset $S \subset W$ is called an ideal if for $x \in S$ and $y \leq x \Rightarrow y \in S$), where V^{S} is the quasi-compact open subset of \bar{X} defined by

$$
V^{S}=\bigcup_{w \in S} w U^{-} B / B .
$$

Let $K^{0}(\bar{X})$ denote the Grothendieck group of coherent $\mathcal{O}_{\bar{X}}$-modules \mathcal{S}.
Similarly, define $K_{0}(X):=\lim _{n \rightarrow \infty} K_{0}\left(X_{n}\right)$, where $\left\{X_{n}\right\}_{n \geq 1}$ is the filtration of X giving the ind-projective variety structure (i.e., $X_{n}=\bigcup_{\ell(w) \leq n} C_{w}$) and $K_{0}\left(X_{n}\right)$ is the Grothendieck group of coherent sheaves on the projective variety X_{n}.

We also define

$$
K^{\operatorname{top}}(X):=\operatorname{Invlt}_{n \rightarrow \infty} K^{\operatorname{top}}\left(X_{n}\right)
$$

where $K^{\operatorname{top}}\left(X_{n}\right)$ is the topological K-group of the projective variety X_{n}.
Let $*: K^{\operatorname{top}}\left(X_{n}\right) \rightarrow K^{\mathrm{top}}\left(X_{n}\right)$ be the involution induced from the operation which takes a vector bundle to its dual. This, of course, induces the involution $*$ on $K^{\text {top }}(X)$.

For any $w \in W$,

$$
\left[\mathcal{O}_{X_{w}}\right] \in K_{0}(X) .
$$

3.6. Lemma. $\left\{\left[\mathcal{O}_{X_{w}}\right]\right\}_{w \in W}$ forms a basis of $K_{0}(X)$ as a \mathbb{Z}-module.

Proof. By [CG, §5.2.14 and Theorem 5.4.17], the result follows.
For $u \in W$, by $[\mathrm{KS}, \S 2], \mathcal{O}_{X^{u}}$ is a coherent $\mathcal{O}_{\bar{X}}$-module. In particular, $\mathcal{O}_{\bar{X}}$ is a coherent $\mathcal{O}_{\bar{X}}$-module.

Define a pairing

$$
\langle,\rangle: K^{0}(\bar{X}) \otimes K_{0}(X) \rightarrow \mathbb{Z},\langle[\mathcal{S}],[\mathcal{F}]\rangle=\sum_{i}(-1)^{i} \chi\left(X_{n}, \mathcal{T o r}_{i}^{\mathcal{O}} \bar{x}(\mathcal{S}, \mathcal{F})\right),
$$

if \mathcal{S} is a coherent sheaf on \bar{X} and \mathcal{F} is a coherent sheaf on X supported in X_{n} (for some n), where χ denotes the Euler-Poincaré characteristic. Then, as in $\left[\mathrm{K}_{4}\right.$, Lemma 3.4], the above pairing is well defined.

By [KS, Proof of Proposition 3.4], for any $u \in W$,

$$
\begin{equation*}
\mathcal{E} x t_{\mathcal{O}_{\bar{X}}}^{k}\left(\mathcal{O}_{X^{u}}, \mathcal{O}_{\bar{X}}\right)=0 \quad \forall k \neq \ell(u) . \tag{7}
\end{equation*}
$$

Define the sheaf

$$
\omega_{X^{u}}:=\mathcal{E} x t_{\mathcal{O}_{\bar{X}}}^{\ell(u)}\left(\mathcal{O}_{X^{u}}, \mathcal{O}_{\bar{X}}\right) \otimes \mathcal{L}(-2 \rho),
$$

which, by the analogy with the Cohen-Macaulay (for short CM) schemes of finite type, will be called the dualizing sheaf of X^{u}.

Now, set the sheaf on \bar{X}

$$
\begin{aligned}
\xi^{u} & :=\mathcal{L}(\rho) \omega_{X^{u}} \\
& =\mathcal{L}(-\rho) \mathcal{E} x t_{\mathcal{O}_{\bar{X}}}^{\ell(u)}\left(\mathcal{O}_{X^{u}}, \mathcal{O}_{\bar{X}}\right) .
\end{aligned}
$$

Then, as proved in $\left[\mathrm{K}_{4}\right.$, Proposition 3.5], for any $u, w \in W$,

$$
\begin{equation*}
\left\langle\left[\xi^{u}\right],\left[\mathcal{O}_{X_{w}}\right]\right\rangle=\delta_{u, w} . \tag{8}
\end{equation*}
$$

With these preliminaries, we are ready to prove the following result.
3.7. Proposition. With the notation as in the proof of Theorem 3.3. $Z=$ $\left(X^{-}\right)^{s}$, if ε^{v} occurs in $\varepsilon^{u_{1}} \cdots \varepsilon^{u_{s}}$ with nonzero coefficient.

Proof. We give the proof in the case $s=2$. The proof for general s is similar.
For $u, v \in W$, express

$$
\varepsilon^{u} \varepsilon^{v}=\sum_{\substack{w \\ \ell(w)=\ell(u)+\ell(v)}} n_{u, v}^{w} \varepsilon^{w} .
$$

Express the product in topological K-theory $K^{\operatorname{top}}(X)$ of $X=G^{\min } / B$:

$$
\psi_{o}^{u} \psi_{o}^{v}=\sum_{\ell(w) \geq \ell(u)+\ell(v)} m_{u, v}^{w} \psi_{o}^{w},
$$

where $\psi^{w}:=* \tau^{w^{-1}}\left(\tau^{w}\right.$ being the Kostant-Kumar 'basis' of $K_{H}^{\text {top }}(X)$ as in [KK, Remark 3.14]) and $\left\{\psi_{o}^{w}\right\}_{w \in W}$ is the corresponding 'basis' of $K^{\text {top }}(X) \simeq$ $\mathbb{Z} \otimes_{R(H)} K_{H}^{\mathrm{top}}(X)$, cf. [KK, Proposition 3.25]).

Then, by [KK, Proposition 2.30],

$$
\begin{equation*}
n_{u, v}^{w}=m_{u, v}^{w}, \quad \text { if } \ell(w)=\ell(u)+\ell(v) . \tag{9}
\end{equation*}
$$

Let $\Delta: X \rightarrow X \times X$ be the diagonal map. Then, by $\left[\mathrm{K}_{4}\right.$, Proposition 4.1] and the identity (8), for any $u, v, w \in W, g_{1}, g_{2} \in G^{\min }$,

$$
\begin{aligned}
m_{u, v}^{w} & =\left\langle\left[\xi^{u} \boxtimes \xi^{v}\right],\left[\Delta_{*} \mathcal{O}_{X_{w}}\right]\right\rangle \\
& =\left\langle\left[\xi^{u} \boxtimes \xi^{v}\right],\left[\left(g_{1}^{-1}, g_{2}^{-1}\right) \cdot\left(\Delta_{*} \mathcal{O}_{X_{w}}\right)\right]\right\rangle,
\end{aligned}
$$

since $\left[\left(g_{1}^{-1}, g_{2}^{-1}\right) \cdot \Delta_{*} \mathcal{O}_{X_{w}}\right]=\left[\Delta_{*} \mathcal{O}_{X_{w}}\right]$ as elements of $K_{0}(X \times X)$. Thus,

$$
\begin{align*}
m_{u, v}^{w} & =\left\langle\left[\xi^{u} \boxtimes \xi^{v}\right],\left[\left(g_{1}^{-1}, g_{2}^{-1}\right) \cdot\left(\Delta_{*} \mathcal{O}_{X_{w}}\right)\right]\right\rangle \tag{10}\\
& :=\sum_{i}(-1)^{i} \chi\left(\bar{X} \times \bar{X}, \mathcal{T o r}_{i}^{\mathcal{O}_{\bar{X}} \times \bar{X}}\left(\xi^{u} \boxtimes \xi^{v},\left(g_{1}^{-1}, g_{2}^{-1}\right) \cdot\left(\Delta_{*} \mathcal{O}_{X_{w}}\right)\right)\right.
\end{align*}
$$

Now, by definition, the support of ξ^{u} is contained in X^{u} and hence the support of the sheaf

$$
\mathcal{S}_{i}:=\mathcal{T} \text { or }_{i}{ }_{\overline{\mathcal{O}} \times \bar{x}}\left(\xi^{u} \boxtimes \xi^{v},\left(g_{1}^{-1}, g_{2}^{-1}\right) \cdot \Delta_{*} \mathcal{O}_{X_{w}}\right)
$$

is contained in

$$
\begin{equation*}
X^{u} \times X^{v} \cap\left(\left(g_{1}^{-1}, g_{2}^{-1}\right) \cdot \Delta\left(X_{w}\right)\right) \tag{11}
\end{equation*}
$$

which is empty if

$$
\begin{equation*}
\left(g_{1} X^{u}\right) \cap\left(g_{2} X^{v}\right) \cap X_{w}=\emptyset . \tag{12}
\end{equation*}
$$

Thus, if the equation (12) is true, then the Tor sheaf $\mathcal{S}_{i}=0 \forall i \geq 0$. Thus, if the equation (12) is satisfied,

$$
m_{u, v}^{w}=0
$$

Now, assume that $\ell(w)=\ell(u)+\ell(v)$. Then, by the equation (9),

$$
n_{u, v}^{w}=0, \quad \text { if the equation (12) is satisfied. }
$$

But, since by assumption, $n_{u, v}^{w} \neq 0$, we see that

$$
\left(g_{1} X^{u}\right) \cap\left(g_{2} X^{v}\right) \cap X_{w} \neq \emptyset, \text { for any } g_{1}, g_{2} \in G^{\min } .
$$

But since $G^{\min } /\left(G^{\min } \cap B^{-}\right) \xrightarrow{\sim} X^{-}$, we get the proposition.

4. Tensor Product Decomposition for Affine Kac-Moody Lie Algebras

4.1. The Virasoro Algebra. We recall the definition of the Virasoro algebra and its basic representation theory, which we need. The Virasoro algebra Vir has a basis $\left\{C, L_{n}: n \in \mathbb{Z}\right\}$ over \mathbb{C} and the Lie bracket is given by

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m,-n} C \text { and }[\text { Vir, C }]=0
$$

Let $\operatorname{Vir}_{0}:=\mathbb{C} L_{0} \oplus \mathbb{C} C$. Then, a Vir module V is said to be a highest weight representation if there exists a Vir_{0}-eigenvector $v_{o} \in V$ such that $L_{n} v_{o}=0$ for $n \in \mathbb{Z}_{>0}$ and $U\left(\bigoplus_{n<0} \mathbb{C} L_{n}\right) v_{o}=V$. Such a V is said to have highest weight $\lambda \in \operatorname{Vir}_{0}^{*}$ if $X v_{o}=\lambda(X) v_{o}$, for all $X \in \operatorname{Vir}_{0}$. (It is easy to see that such a v_{o} is unique up to a scalar multiple and hence λ is unique.) The irreducible highest weight representations of Vir are in 1-1 correspondence with elements of Vir_{0}^{*} given by the highest weight. Denote the basis of Vir_{0}^{*}
dual to the basis $\left\{L_{0}, C\right\}$ of Vir_{0} as $\{h, z\}$. For any $\mu \in \operatorname{Vir}_{0}^{*}$, denote the μ-th weight space of V by V_{μ}, i.e.,

$$
V_{\mu}:=\left\{v \in V: X \cdot v=\mu(X) v \forall X \in \operatorname{Vir}_{0}\right\} .
$$

Define a Vir module V to be unitarizable if there exists a positive definite Hermitian form (\cdot, \cdot) on V so that $\left(L_{n} v, w\right)=\left(v, L_{-n} w\right)$ for all $n \in \mathbb{Z}$ and $(C v, w)=(v, C w)$. It is easy to see that if M is a Vir-submodule of V, then M^{\perp} is also a submodule. Hence, any unitarizable representation of Vir is completely reducible. Note that for a unitarizable highest weight Vir-representation V with highest weight λ, if v_{o} is a highest weight vector, then
$0 \leq\left(L_{-n} v_{o}, L_{-n} v_{o}\right)=\left(L_{n} L_{-n} v_{o}, v_{o}\right)=\left(2 n \lambda\left(L_{0}\right)+\frac{1}{12}\left(n^{3}-n\right) \lambda(C)\right)\left(v_{o}, v_{o}\right)$
for all $n>0$. Therefore, both $\lambda\left(L_{0}\right)$ and $\lambda(C)$ must be nonnegative real numbers.

Lemma 4.1. Let V be a unitarizable, highest weight (irreducible) representation of Vir with highest weight λ.
(a) If $\lambda\left(L_{0}\right) \neq 0$, then $V_{\lambda+n h} \neq 0$, for any $n \in \mathbb{Z}_{+}$.
(b) If $\lambda\left(L_{0}\right)=0$ and $\lambda(C) \neq 0$, then $V_{\lambda+n h} \neq 0$, for any $n \in \mathbb{Z}_{>1}$ and $V_{\lambda+h}=0$.
(c) If $\lambda\left(L_{0}\right)=\lambda(C)=0$, then V is one dimensional.

Proof. If $\lambda\left(L_{0}\right) \neq 0$, then by the equation (13) (since both of $\lambda\left(L_{0}\right)$ and $\left.\lambda(C) \in \mathbb{R}_{+}\right), L_{-n} v_{o} \neq 0$, for any $n \in \mathbb{Z}_{+}$.

If $\lambda\left(L_{0}\right)=0$ and $\lambda(C) \neq 0$, then again by the equation (13), $L_{-n} v_{o} \neq 0$, for any $n \in \mathbb{Z}_{>1}$. Also, $L_{-1} v_{o}=0$.

If $\lambda\left(L_{0}\right)=\lambda(C)=0$, then (by the equation (13) again), $L_{-n} v_{o}=0$, for any $n \in \mathbb{Z}_{\geq 1}$. This shows that V is one dimensional.
4.2. Tensor product decomposition: A general method. Let \mathfrak{g} be the untwisted affine Kac-Moody Lie algebra associated to a finite dimensional simple Lie algebra \mathfrak{g}, i.e.,

$$
\mathfrak{g}=\left(\dot{g} \otimes \mathbb{C}\left[t, t^{-1}\right]\right) \oplus \mathbb{C} c \oplus \mathbb{C} d .
$$

Let $\stackrel{\circ}{\mathfrak{h}}$ be a Cartan subalgebra of $\stackrel{\circ}{\mathfrak{g}}$. Then,

$$
\mathfrak{h}:=\stackrel{\circ}{\mathfrak{h}} \otimes 1 \oplus \mathbb{C} c \oplus \mathbb{C} d
$$

is the standard Cartan subalgebra of \mathfrak{g}. Let $\delta \in \mathfrak{h}^{*}$ be the smallest positive imaginary root of \mathfrak{g} (so that the positive imaginary roots of \mathfrak{g} are precisely $\left.\left\{n \delta, n \in \mathbb{Z}_{\geq 1}\right\}\right)$. Then, δ is given by $\delta_{\mid \mathfrak{b} \oplus \mathbb{C} c} \equiv 0$ and $\delta(d)=1$. For any $\Lambda \in P_{+}$, let $P(\Lambda)$ be the set of weights of $L(\Lambda)$ and let $P^{o}(\Lambda)$ be the set of δ-maximal weights of $L(\Lambda)$, i.e.,

$$
P^{o}(\Lambda)=\left\{\lambda \in \mathfrak{h}^{*}: \lambda \in P(\Lambda) \text { but } \lambda+n \delta \notin P(\Lambda) \text { for any } n>0\right\} .
$$

For any $\lambda \in X(H)$, define the δ-character of $L(\Lambda)$ through λ by

$$
c_{\Lambda, \lambda}=\sum_{n \in \mathbb{Z}} \operatorname{dim} L(\Lambda)_{\lambda+n \delta} e^{n \delta}
$$

Since δ is W-invariant,

$$
\begin{equation*}
c_{\Lambda, \lambda}=c_{\Lambda, w \lambda}, \text { for any } w \in W \tag{14}
\end{equation*}
$$

Moreover, $P^{o}(\Lambda)$ is W-stable. It is obvious that

$$
\begin{equation*}
\operatorname{ch} L(\Lambda)=\sum_{\lambda \in P^{o}(\Lambda)} c_{\Lambda, \lambda} e^{\lambda} \tag{15}
\end{equation*}
$$

By $\left[K_{3}\right.$, Exercise 13.1.E.8], for any $\lambda \in P\left(\Lambda^{\prime}\right)$ and $\Lambda^{\prime \prime} \in P_{+}, \Lambda^{\prime \prime}+\lambda+\rho$ belongs to the Tits cone. Hence, there exists $v \in W$ such that $v^{-1}\left(\Lambda^{\prime \prime}+\lambda+\rho\right) \in P_{+}$. Moreover, if $\Lambda^{\prime \prime}+\lambda+\rho$ has nontrivial W-isotropy, then its isotropy group must contain a reflection (cf. [K_{3}, Proposition 1.4.2(a)]). Thus, for such a $\lambda \in P\left(\Lambda^{\prime}\right)$, i.e., if $\Lambda^{\prime \prime}+\lambda+\rho$ has nontrivial W-isotropy,

$$
\begin{equation*}
\sum_{w \in W} \varepsilon(w) e^{w\left(\Lambda^{\prime \prime}+\lambda+\rho\right)}=0 \tag{16}
\end{equation*}
$$

Define

$$
\bar{P}_{+}:=\left\{\Lambda \in P_{+}: \Lambda(d)=0\right\}
$$

For any $m \in \mathbb{Z}_{+}$, let

$$
P_{+}^{(m)}:=\left\{\Lambda \in P_{+}: \Lambda(c)=m\right\}
$$

and let

$$
\bar{P}_{+}^{(m)}:=\bar{P}_{+} \cap P_{+}^{(m)}
$$

Then, $\bar{P}_{+}^{(m)}$ provides a set of representatives in $P_{+}^{(m)} \bmod \left(P_{+} \cap \mathbb{C} \delta\right)$.
For any $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime} \in P_{+}$, define

$$
\begin{gathered}
T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}=\left\{\lambda \in P^{o}\left(\Lambda^{\prime}\right): \exists v_{\Lambda, \Lambda^{\prime \prime}, \lambda} \in W \text { and } S_{\Lambda, \Lambda^{\prime \prime}, \lambda} \in \mathbb{Z}\right. \text { with } \\
\left.\lambda+\Lambda^{\prime \prime}+\rho=v_{\Lambda, \Lambda^{\prime \prime}, \lambda}(\Lambda+\rho)+S_{\Lambda, \Lambda^{\prime \prime}, \lambda} \delta\right\}
\end{gathered}
$$

Observe that since $\Lambda+\rho+n \delta \in P_{++}$for any $n \in \mathbb{Z}$, such a $v_{\Lambda, \Lambda^{\prime \prime}, \lambda}$ and $S_{\Lambda, \Lambda^{\prime \prime}, \lambda}$ are unique by $\left[\mathrm{K}_{3}\right.$, Proposition 1.4.2 (a), (b)] (if they exist). Also, observe that

$$
\begin{equation*}
T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}=\emptyset, \text { unless } \Lambda(c)=\Lambda^{\prime}(c)+\Lambda^{\prime \prime}(c) \text { and } \Lambda^{\prime}+\Lambda^{\prime \prime}-\Lambda \in Q \tag{17}
\end{equation*}
$$

where Q is the root lattice of \mathfrak{g}.
Proposition 4.2. For any Λ^{\prime} and $\Lambda^{\prime \prime} \in P_{+}$,

$$
\operatorname{ch}\left(L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)\right)=\sum_{\Lambda \in \bar{P}_{+}^{(m)}} \operatorname{ch} L(\Lambda)\left(\sum_{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right) c_{\Lambda^{\prime}, \lambda} e^{S_{\Lambda, \Lambda^{\prime \prime}, \lambda} \delta}\right)
$$

where $m:=\Lambda^{\prime}(c)+\Lambda^{\prime \prime}(c)$.

Moreover, $\sum_{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right) c_{\Lambda^{\prime}, \lambda} e^{S_{\Lambda, \Lambda^{\prime \prime}, \lambda^{\delta}}{ }^{\delta}}$ is the character of a unitary representation (though, in general, not irreducible) of the Virasoro algebra Vir with central charge

$$
\operatorname{dim} \stackrel{\circ}{\mathfrak{g}} \cdot\left(\frac{m^{\prime}}{m^{\prime}+g}+\frac{m^{\prime \prime}}{m^{\prime \prime}+g}-\frac{m}{m+g}\right),
$$

where $m^{\prime}:=\Lambda^{\prime}(c), m^{\prime \prime}:=\Lambda^{\prime \prime}(c)$ and g is the dual Coxeter number of \mathfrak{g}.
Proof. By the Weyl-Kac character formula (cf. [K_{3}, Theorem 2.2.1]) and the identity (15), for any $\Lambda^{\prime}, \Lambda^{\prime \prime} \in P_{+}$,

$$
\begin{aligned}
\left(\sum_{w \in W} \varepsilon(w) e^{w \rho}\right) & \cdot \operatorname{ch} L\left(\Lambda^{\prime}\right) \cdot \operatorname{ch} L\left(\Lambda^{\prime \prime}\right) \\
& =\left(\sum_{\lambda \in P^{o}\left(\Lambda^{\prime}\right)} c_{\Lambda^{\prime}, \lambda} e^{\lambda}\right) \cdot\left(\sum_{w \in W} \varepsilon(w) e^{w\left(\Lambda^{\prime \prime}+\rho\right)}\right) \\
& =\sum_{\lambda \in P^{o}\left(\Lambda^{\prime}\right)} c_{\Lambda^{\prime}, \lambda} \sum_{w \in W} \varepsilon(w) e^{w\left(\Lambda^{\prime \prime}+\lambda+\rho\right)}, \text { by (14) } \\
& =\sum_{\Lambda \in \bar{P}_{+}^{(m)}} \sum_{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} c_{\Lambda^{\prime}, \lambda} \sum_{w \in W} \varepsilon(w) e^{w\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}(\Lambda+\rho)\right)+S_{\Lambda, \Lambda^{\prime \prime}, \lambda} \delta}, \text { by (16) } \\
& =\sum_{\Lambda \in \bar{P}_{+}^{(m)}} \sum_{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} c_{\Lambda^{\prime}, \lambda} \sum_{w \in W} \varepsilon(w) \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right) e^{w(\Lambda+\rho)} e^{S_{\Lambda, \Lambda^{\prime \prime}, \lambda} \delta} \\
& =\sum_{\Lambda \in \bar{P}_{+}^{(m)}} \sum_{w \in W} \varepsilon(w) e^{w(\Lambda+\rho)} \sum_{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right) c_{\Lambda^{\prime}, \lambda} e^{S_{\Lambda, \Lambda^{\prime \prime}, \lambda^{\prime}}} .
\end{aligned}
$$

Thus,

$$
\operatorname{ch}\left(L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)\right)=\sum_{\Lambda \in \bar{P}_{+}^{(m)}} \operatorname{ch} L(\Lambda)\left(\sum_{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right) c_{\Lambda^{\prime}, \lambda} e^{S_{\Lambda, \Lambda^{\prime \prime}, \lambda} \delta}\right)
$$

To prove the second part of the proposition, use [KR, Proposition 10.3]. This proves the proposition.
4.3. Remark. For an affine Kac-Moody Lie algebra \mathfrak{g}, if we consider the tensor product decomposition of $L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)$ with respect to the derived subalgebra \mathfrak{g}^{\prime} (i.e., without the d-action), then the components $L(\Lambda)$ are precisely of the form $\Lambda \in \Lambda^{\prime}+\Lambda^{\prime \prime}+\stackrel{\circ}{Q}$, where $\stackrel{\circ}{Q}$ is the root lattice of $\stackrel{\circ}{\mathfrak{g}}$ (cf. [KW]). Thus, the determination of the eigen semigroup and the saturated eigen semigroup is fairly easy for \mathfrak{g}^{\prime}.

Let $\theta=\sum_{i=1}^{\ell} h_{i} \alpha_{i}$ be the highest root of \mathfrak{g} (with respect to a choice of the positive roots), written as a linear combination of the simple roots

$$
\begin{aligned}
& \left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\} \text { of } \stackrel{\circ}{\mathfrak{g} .} \text { Let } \\
& \qquad S:=\left\{\sum_{i=0}^{\ell} n_{i} \alpha_{i}: n_{i} \geq 0 \text { for any } i \text { and } 0 \leq n_{i}<h_{i} \text { for some } 0 \leq i \leq \ell\right\}
\end{aligned}
$$

where $h_{0}:=1$.
Proposition 4.4. Let \mathfrak{g} be an untwisted affine Kac-Moody Lie algebra as above. Then, for any $\Lambda \in P_{+}$with $\Lambda(c)>0$,

$$
P^{o}(\Lambda)_{+}=S(\Lambda) \cap P_{+}
$$

where $P^{o}(\Lambda)_{+}:=P^{o}(\Lambda) \cap P_{+}$and $S(\Lambda)=\{\Lambda-\beta: \beta \in S\}$.
Proof. Take $\lambda \in S(\Lambda)$. Then, for any $n \geq 1$,

$$
\Lambda-(\lambda+n \delta)=\left(\sum_{i=0}^{\ell} n_{i} \alpha_{i}\right)-n \delta=\left(n_{0}-n\right) \alpha_{0}+\sum_{i=1}^{\ell}\left(n_{i}-n h_{i}\right) \alpha_{i}
$$

since $\alpha_{0}:=\delta-\theta$. Now, the coefficient of some α_{i} in the above sum is negative, for any positive n, since $\lambda \in S(\Lambda)$. Thus, $\lambda+n \delta$ could not be a weight of $L(\Lambda)$ for any positive n. Therefore, if $\lambda \in P(\Lambda) \cap S(\Lambda)$, then it is δ-maximal.

By [Kac, Proposition 12.5(a)], if $\Lambda(c) \neq 0$, then $S(\Lambda) \cap P_{+} \subset P(\Lambda)$. Therefore, $S(\Lambda) \cap P_{+} \subset P^{o}(\Lambda)_{+}$.

Conversely, take $\lambda \in P^{o}(\Lambda)_{+}$. Then, $\lambda \in P(\Lambda) \cap P_{+}$and $\lambda+\delta \notin P(\Lambda)$. Express $\lambda=\Lambda-n_{0} \alpha_{0}-\sum_{i=1}^{\ell} n_{i} \alpha_{i}$, for some $n_{i} \in \mathbb{Z}_{+}$. Then,

$$
\lambda+\delta=\Lambda-\left(n_{0}-1\right) \alpha_{0}-\sum_{i=1}^{\ell}\left(n_{i}-h_{i}\right) \alpha_{i}
$$

Again applying [Kac, Proposition 12.5(a)], $\lambda+\delta \notin P(\Lambda)$ if and only if $\lambda+\delta \not \leq \Lambda$, i.e., for some $0 \leq i \leq \ell, n_{i}<h_{i}$. Thus, $\lambda \in S(\Lambda)$. This proves the proposition.

$$
\text { 5. } A_{1}^{(1)} \mathrm{CASE}
$$

In this section, we consider $\mathfrak{g}=\widehat{\mathfrak{s l}_{2}}=\left(\bigoplus_{n \in \mathbb{Z}} \mathbb{C} t^{n} \otimes \mathfrak{s l}_{2}\right) \oplus \mathbb{C} c \oplus \mathbb{C} d$. In this case $\mathfrak{h}^{*}=\mathbb{C} \alpha \oplus \mathbb{C} \delta \oplus \mathbb{C} \Lambda_{0}$, where α is the simple root of $\mathfrak{s l}_{2}$ and $\Lambda_{0 \circ \circ}{ }_{\mid \mathfrak{h} \oplus \mathbb{C} d} \equiv 0$ and $\Lambda_{0}(c)=1$. Then, Λ_{0} is a zeroeth fundamental weight. The simple roots of $\widehat{\mathfrak{s l}_{2}}$ are $\alpha_{0}:=\delta-\alpha$ and $\alpha_{1}:=\alpha$. The simple coroots are $\alpha_{0}^{\vee}:=c-\alpha^{\vee}$ and $\alpha_{1}^{\vee}:=\alpha^{\vee}$. It is easy to see that an element of \mathfrak{h}^{*} of the form $m \Lambda_{0}+\frac{j}{2} \alpha$ belongs to P_{+}if and only if $m, j \in \mathbb{Z}_{+}$and $m \geq j$.

Specializing Proposition 4.4 to the case of $\mathfrak{g}=\widehat{\mathfrak{s l}_{2}}$, we get the following.
5.1. Corollary. For $\mathfrak{g}=\widehat{\mathfrak{s l}_{2}}$ and $\Lambda=m \Lambda_{0}+\frac{j}{2} \alpha \in P_{+}$,

$$
\begin{equation*}
P^{o}(\Lambda)_{+}=\left\{\Lambda-k \alpha, \Lambda-l(\delta-\alpha): k, l \in \mathbb{Z}_{+} \text {and } k \leq \frac{j}{2}, l \leq \frac{m-j}{2}\right\} \tag{18}
\end{equation*}
$$

Proof. The corollary follows from Proposition 4.4 since $m_{1} \Lambda_{0}+\frac{m_{2}}{2} \alpha+m_{3} \delta$ belongs to P_{+}if and only if $m_{1}, m_{2} \in \mathbb{Z}_{+}$and $m_{1} \geq m_{2}$.

Let π be the projection $\mathfrak{h}^{*}=\mathbb{C} \Lambda_{0} \oplus \mathbb{C} \alpha \oplus \mathbb{C} \delta \rightarrow \mathbb{C} \Lambda_{0} \oplus \mathbb{C} \alpha$.
5.2. Lemma. Let $\mathfrak{g}=\widehat{\mathfrak{s l}_{2}}$. For $\Lambda=m \Lambda_{0}+\frac{j}{2} \alpha \in P_{+}$(i.e., $m, j \in \mathbb{Z}_{+}$and $m \geq j)$ such that $m>0$,

$$
\begin{equation*}
\pi\left(P^{o}(\Lambda)\right)=\{\Lambda+k \alpha: k \in \mathbb{Z}\} . \tag{19}
\end{equation*}
$$

Moreover, for any $k \in \mathbb{Z}$, let n_{k} be the unique integer such that $\Lambda+k \alpha+n_{k} \delta \in$ $P^{o}(\Lambda)$. Then, writing $k=q m+r, 0 \leq r<m$, we have:

$$
\begin{equation*}
n_{k}=n_{r}-q(k+r+j) \tag{20}
\end{equation*}
$$

Proof. The assertion (19) follows from the identity (18) together with the action of the affine Weyl group $W \simeq \stackrel{\circ}{W} \times\left(\mathbb{Z} \alpha^{\vee}\right)$ on \mathfrak{h}^{*}, where $\stackrel{\circ}{W}$ is the Weyl group of $\mathfrak{s l}_{2}$ and $\mathbb{Z} \alpha^{\vee}$ acts on \mathfrak{h}^{*} via:

$$
\begin{equation*}
T_{n \alpha^{\vee}}(\mu)=\mu+n \mu(c) \alpha-\left[n \mu\left(\alpha^{\vee}\right)+n^{2} \mu(c)\right] \delta, \text { for } n \in \mathbb{Z}, \mu \in \mathfrak{h}^{*} . \tag{21}
\end{equation*}
$$

Since $P^{o}(\Lambda)$ is W-stable, the identity (20) can be established from the action of the affine Weyl group element $T_{-q \alpha^{\vee}}$ on $\Lambda+k \alpha+n_{k} \delta$.

The value of n_{r} for $0 \leq r<m$ can be determined from the identity (18) by applying $T_{\alpha^{\vee}}, T_{\alpha^{\vee}} \cdot s_{1}$ to $\Lambda-k \alpha$ and applying $1, T_{\alpha^{\vee}} \cdot s_{1}$ to $\Lambda-l(\delta-\alpha)$, where s_{1} is the nontrivial element of $\stackrel{\circ}{W}$. We record the result in the following lemma.
5.3. Lemma. With the notation as in the above lemma, the value of n_{r} for any integer $0 \leq r<m$ is given by

$$
n_{r}= \begin{cases}-r, & \text { for } 0 \leq r \leq m-j \\ m-j-2 r & \text { for } m-j \leq r<m\end{cases}
$$

5.4. Lemma. Take the following elements in P_{+}:

$$
\Lambda=m \Lambda_{0}+\frac{j}{2} \alpha, \Lambda^{\prime}=m^{\prime} \Lambda_{0}+\frac{j^{\prime}}{2} \alpha, \Lambda^{\prime \prime}=m^{\prime \prime} \Lambda_{0}+\frac{j^{\prime \prime}}{2} \alpha,
$$

where $m:=m^{\prime}+m^{\prime \prime}$ and we assume that $m^{\prime}>0$. Then,

$$
\begin{aligned}
& \pi\left(T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}\right)=\left\{\Lambda^{\prime}+k \alpha: k \in \mathbb{Z},\right. k \equiv \frac{1}{2}\left(j-j^{\prime}-j^{\prime \prime}\right) \\
&\text { or } \left.k \equiv-\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)-1 \bmod M\right\}
\end{aligned}
$$

where $M:=m+2$. In particular, by the equation (17), $T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$ is nonempty if and only if $\frac{j-j^{\prime}-j^{\prime \prime}}{2} \in \mathbb{Z}$.

Moreover, for $\lambda=\Lambda^{\prime}+k \alpha+n_{k} \delta \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$,

$$
v_{\Lambda, \Lambda^{\prime \prime}, \lambda}= \begin{cases}T_{\frac{k-\frac{1}{2}\left(j-j^{\prime}-j^{\prime \prime}\right)}{M} \alpha^{\vee}}, & \text { if } k \equiv \frac{1}{2}\left(j-j^{\prime}-j^{\prime \prime}\right) \quad \bmod M \\ s_{1} T_{-\frac{k+\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)+1}{M} \alpha^{\vee}}, & \text { if } k \equiv-\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)-1 \bmod M,\end{cases}
$$

where $T_{n \alpha} \vee$ is defined by the equation (21). Further,

$$
S_{\Lambda, \Lambda^{\prime \prime}, \lambda}=n_{k}+\frac{\left(k-\frac{1}{2}\left(j-j^{\prime}-j^{\prime \prime}\right)\right)\left(k+\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)+1\right)}{M} .
$$

Proof. Follows from the fact that $W=\stackrel{\circ}{W} \rtimes \mathbb{Z} \alpha^{\vee}$ and that $\rho=2 \Lambda_{0}+\frac{1}{2} \alpha$.
We have the following very crucial result.
Proposition 5.5. Fix $\Lambda, \Lambda^{\prime}$ and $\Lambda^{\prime \prime}$ as in Lemma 5.4 and asume that $\frac{j-j^{\prime}-j^{\prime \prime}}{2} \in$ \mathbb{Z} and both of $m^{\prime}, m^{\prime \prime}>0$. Then, the maximum of $\left\{S_{\Lambda, \Lambda^{\prime \prime}, \lambda}: \lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}\right.$ and $\left.\varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right)=1\right\}$ is achieved precisely when $\pi(\lambda)=\Lambda^{\prime}+\frac{1}{2}\left(j-j^{\prime}-j^{\prime \prime}\right) \alpha$.

Proof. By Lemma 5.4 and the explicit description of the length function of $T_{n \alpha \vee}$ (cf. [K K_{3}, Exercise 13.1.E.3]),

$$
\pi\left\{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}: \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right)=1\right\}=\left\{\Lambda^{\prime}+k_{l} \alpha: l \in \mathbb{Z}\right\},
$$

where $M:=m+2$ and $k_{l}:=\frac{j-j^{\prime}-j^{\prime \prime}}{2}+l M$. Take $\lambda=\Lambda^{\prime}+k_{l} \alpha \in \pi\left(T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}\right)$ for $l \in \mathbb{Z}$. Write $k_{l}=q_{l} m^{\prime}+r_{l}$ for $q_{l} \in \mathbb{Z}$ and $0 \leq r_{l}<m^{\prime}$. Then, by Lemmas 5.2, 5.3 and 5.4, for $\lambda=\Lambda^{\prime}+k_{l} \alpha$ (setting $J:=\frac{j-j^{\prime}-j^{\prime \prime}}{2}$),

$$
\begin{aligned}
S_{\Lambda, \Lambda^{\prime \prime}, \lambda} & =n_{r_{l}}-\frac{\left(J+j^{\prime}+l M+r_{l}\right)\left(J+l M-r_{l}\right)}{m^{\prime}}+l(l M+1+j) \\
& =l^{2} M\left(1-\frac{M}{m^{\prime}}\right)+l\left(1+j-\frac{M\left(j-j^{\prime \prime}\right)}{m^{\prime}}\right)-\frac{\left(j-j^{\prime \prime}\right)^{2}-j^{\prime 2}}{4 m^{\prime}}+\frac{r_{l}^{2}}{m^{\prime}}+\frac{r_{l} j^{\prime}}{m^{\prime}}+n_{r_{l}} \\
& =l^{2} M\left(1-\frac{M}{m^{\prime}}\right)+l\left(1+j-\frac{M}{m^{\prime}}\left(j-j^{\prime \prime}\right)\right)-\frac{\left(j-j^{\prime \prime}\right)^{2}-j^{\prime 2}}{4 m^{\prime}}+p\left(k_{l}\right),
\end{aligned}
$$

where

$$
p\left(k_{l}\right):=\frac{r_{l}^{2}}{m^{\prime}}+\frac{r_{l}}{m^{\prime}} j^{\prime}+n_{k_{l}} .
$$

Let $P=P_{m^{\prime}, j^{\prime}}: \mathbb{R} \rightarrow \mathbb{R}$ be the following function:
$P(s):= \begin{cases}\frac{\left(s-\frac{m^{\prime}}{2} k\right)^{2}}{m^{\prime}}-\frac{\left(j^{\prime}\right)^{2}}{4 m^{\prime}}, & \text { if }\left|s-\frac{m^{\prime}}{2} k\right| \leq \frac{j^{\prime}}{2} \text { for some } k \in 2 \mathbb{Z} \\ \frac{\left(s-\frac{m^{\prime}}{2} k\right)^{2}}{m^{\prime}}-\frac{\left(m^{\prime}-j^{\prime}\right)^{2}}{4 m^{\prime}}, & \text { if }\left|s-\frac{m^{\prime}}{2} k\right| \leq \frac{m^{\prime}-j^{\prime}}{2} \text { for some } k \in 2 \mathbb{Z}+1 .\end{cases}$
Let $k_{s} \in \mathbb{Z}$ be such a k. (Of course, k_{s} depends upon m^{\prime} and j^{\prime}.)
Claim 5.6. $P(s)=p\left(s-\frac{j^{\prime}}{2}\right)$ for $s \in \frac{j^{\prime}}{2}+\mathbb{Z}$.
Proof. Clearly, both of P and p are periodic with period m^{\prime}. So, it is enough to show that $P(s)=p\left(s-\frac{j^{\prime}}{2}\right)$, for $s-\frac{j^{\prime}}{2}$ equal to any of the integral points of the interval $\left[-j^{\prime}, m^{\prime}-j^{\prime}\right]$. By Lemma 5.3 and the identity (20), for any integer $-j^{\prime} \leq r \leq 0$,

$$
p(r)=\frac{1}{m^{\prime}} r\left(r+j^{\prime}\right),
$$

and for any integer $0 \leq r \leq m^{\prime}-j^{\prime}$,

$$
p(r)=\frac{r\left(r+j^{\prime}\right)}{m^{\prime}}-r .
$$

From this, the claim follows immediately.
Fix $m^{\prime}>0$. Let

$$
\begin{aligned}
I:=\left\{\left(t, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right) \in \mathbb{R}^{5}: 0\right. & \leq j^{\prime} \leq m^{\prime}, 1 \leq m^{\prime \prime}, \\
0 & \left.\leq j^{\prime \prime} \leq m^{\prime \prime}, 0 \leq j \leq m^{\prime}+m^{\prime \prime}\right\} .
\end{aligned}
$$

Define $F: I \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
F:\left(t, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right) \mapsto & t^{2} M\left(1-\frac{M}{m^{\prime}}\right)+t\left(j\left(1-\frac{M}{m^{\prime}}\right)+1+\frac{M}{m^{\prime}} j^{\prime \prime}\right) \\
& +\frac{\left(j^{\prime}\right)^{2}-\left(j-j^{\prime \prime}\right)^{2}}{4 m^{\prime}}+P\left(\frac{1}{2}\left(j-j^{\prime \prime}\right)+t M\right) .
\end{aligned}
$$

Thus, F is a continuous, piecewise smooth function with failure of differentiability along the set

$$
\left\{\left(t, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right) \in I: \frac{1}{2}\left(j \pm j^{\prime}-j^{\prime \prime}\right)+t M \in m^{\prime} \mathbb{Z}\right\}
$$

Claim 5.7. Let $\Delta(t)=\Delta\left(t, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right):=F\left(t+1, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right)-F\left(t, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right)$. Then, on I,
(1) Δ is a nonincreasing function of t
(2) Δ is increasing with respect to $j^{\prime \prime}$
(3) Δ is nonincreasing in j
(4) $\Delta(0)$ is decreasing in $m^{\prime \prime}$
(5) $\Delta(-1)$ is nondecreasing in $m^{\prime \prime}$.

Proof. We compute and give bounds for the partial derivatives of Δ, where they exist.

$$
\begin{aligned}
\Delta(t)= & 2 t M\left(1-\frac{M}{m^{\prime}}\right)+\left((j+M)\left(1-\frac{M}{m^{\prime}}\right)+1+\frac{M}{m^{\prime}} j^{\prime \prime}\right) \\
& +P\left(t M+M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)-P\left(t M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\partial_{t} \Delta(t) & =2 M\left(1-\frac{M}{m^{\prime}}\right)+M\left(P^{\prime}\left(t M+M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)-P^{\prime}\left(t M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)\right) \\
& =2 M\left(1-\frac{M}{m^{\prime}}\right)+2 \frac{M}{m^{\prime}}\left(M-\frac{m^{\prime}}{2} k_{1}+\frac{m^{\prime}}{2} k_{0}\right) \\
& =2 M\left(1-\frac{k_{1}-k_{0}}{2}\right),
\end{aligned}
$$

where $k_{1}:=k_{(t+1) M+\frac{1}{2}\left(j-j^{\prime \prime}\right)}$ and $k_{0}:=k_{t M+\frac{1}{2}\left(j-j^{\prime \prime}\right)}$. Since $2 \leq k_{1}-k_{0}$, we see that $\partial_{t} \Delta \leq 0$, wherever $\partial_{t} \Delta$ exists. Since Δ is continuous everywhere
and differentiable on all but a discrete set, Δ is nonincreasing in t.

$$
\partial_{j^{\prime \prime}} \Delta(t)=\frac{M}{m^{\prime}}-\frac{1}{2}\left(P^{\prime}\left(t M+M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)-P^{\prime}\left(t M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)\right)
$$

Now, $\left|P^{\prime}\right| \leq 1$, so $\frac{M}{m^{\prime}}+1 \geq \partial_{j^{\prime \prime}} \Delta \geq \frac{M}{m^{\prime}}-1=\frac{m^{\prime \prime}+2}{m^{\prime}}>0$.
For (3):

$$
\begin{aligned}
\partial_{j} \Delta(t) & =1-\frac{M}{m^{\prime}}+\frac{1}{2}\left(P^{\prime}\left(t M+M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)-P^{\prime}\left(t M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)\right) \\
& =1-\frac{M}{m^{\prime}}+\frac{1}{m^{\prime}}\left(M-\frac{m^{\prime}}{2} k_{1}+\frac{m^{\prime}}{2} k_{0}\right) \\
& =1-\frac{k_{1}-k_{0}}{2} \leq 0
\end{aligned}
$$

(4) and (5) follow from the following calculation:

$$
\begin{aligned}
\partial_{m^{\prime \prime}} \Delta= & 2 t\left(1-2 \frac{M}{m^{\prime}}\right)+\left(1-2 \frac{M}{m^{\prime}}+\frac{1}{m^{\prime}}\left(j^{\prime \prime}-j\right)\right) \\
& +(t+1) P^{\prime}\left(t M+M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)-t P^{\prime}\left(t M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\partial_{m^{\prime \prime}} \Delta(0) & =1-2 \frac{M}{m^{\prime}}+\frac{1}{m^{\prime}}\left(j^{\prime \prime}-j\right)+P^{\prime}\left(M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right) \\
& \leq 1-2 \frac{M}{m^{\prime}}+\frac{m^{\prime \prime}}{m^{\prime}}+1 \\
& =\frac{-m^{\prime \prime}-4}{m^{\prime}}<0
\end{aligned}
$$

and

$$
\begin{aligned}
\partial_{m^{\prime \prime}} \Delta(-1) & =-2\left(1-2 \frac{M}{m^{\prime}}\right)+\left(1-2 \frac{M}{m^{\prime}}+\frac{1}{m^{\prime}}\left(j^{\prime \prime}-j\right)\right)+P^{\prime}\left(-M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right) \\
& =-1+2 \frac{M}{m^{\prime}}+\frac{1}{m^{\prime}}\left(j^{\prime \prime}-j\right)+P^{\prime}\left(-M+\frac{1}{2}\left(j-j^{\prime \prime}\right)\right) \\
& =-1+2 \frac{M}{m^{\prime}}+\frac{1}{m^{\prime}}\left(j^{\prime \prime}-j\right)-2 \frac{M}{m^{\prime}}+\frac{1}{m^{\prime}}\left(j-j^{\prime \prime}\right)-k_{0} \\
& =-1-k_{0}
\end{aligned}
$$

Note that $k_{0} \leq-1$ since $-\frac{\left(j-j^{\prime \prime}\right)}{2}-M<-\frac{m^{\prime}}{2}$. Thus, $\partial_{m^{\prime \prime}} \Delta(-1) \geq 0$.
Claim 5.8. The maximum of $F=F\left(-, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right): \mathbb{Z} \rightarrow \mathbb{R}$ occurs at 0 .
Proof. We show that $\Delta(-1)>0>\Delta(0)$. Since Δ is nonincreasing in t, it would follow that $F(0)>F(t)$ for all $t \in \mathbb{Z}_{\neq 0}$.

Let us begin with $\Delta(-1)$. By the previous claim 5.7, $\Delta(-1)$ is as small as possible when $m^{\prime \prime}=1, j^{\prime \prime}=0$, and $j=m^{\prime}+1$. So, let us compute with these values:

$$
\begin{aligned}
\Delta(-1) & \geq \frac{6}{m^{\prime}}+1+P\left(\frac{1}{2} m^{\prime}+\frac{1}{2}\right)-P\left(-2-\frac{1}{2} m^{\prime}-\frac{1}{2}\right) \\
& =\frac{6}{m^{\prime}}+1+\frac{\left(\frac{1}{2} m^{\prime}+\frac{1}{2}-\frac{1}{2} m^{\prime} k_{1}\right)^{2}}{m^{\prime}}-\frac{\left(2+\frac{1}{2} m^{\prime}+\frac{1}{2}+\frac{1}{2} m^{\prime} k_{0}\right)^{2}}{m^{\prime}} \\
& + \begin{cases}\frac{m^{\prime}}{4}-\frac{j^{\prime}}{2} & \text { if } k_{0} \text { odd, } k_{1} \text { even } \\
0 & \text { if } k_{1}-k_{0} \text { even } \\
\frac{j^{\prime}}{2}-\frac{m^{\prime}}{4} & \text { if } k_{1} \text { odd, } k_{0} \text { even. } .\end{cases}
\end{aligned}
$$

Note that for $m^{\prime} \geq 5$, the possible values of $\left(k_{1}, k_{0}\right)$ are $(1,-1) ;(1,-2)$; or $(2,-2)$. So, the result, that $\Delta(-1)>0$, is established by considering such pairs directly and by cases for smaller m^{\prime}.

For $\Delta(0)$, we take $m^{\prime \prime}=1, j^{\prime \prime}=1$, and $j=0$.

$$
\begin{aligned}
\Delta(0) & =\left(\frac{-3\left(3+m^{\prime}\right)}{m^{\prime}}+1+\frac{3+m^{\prime}}{m^{\prime}}\right)+P\left(\frac{1}{2}+2+m^{\prime}\right)-P\left(-\frac{1}{2}\right) \\
& =1-\frac{2\left(3+m^{\prime}\right)}{m^{\prime}}+P\left(\frac{1}{2}+2+m^{\prime}\right)-P\left(-\frac{1}{2}\right) \\
& =1-\frac{2\left(3+m^{\prime}\right)}{m^{\prime}}+\frac{\left(\frac{1}{2}+2+m^{\prime}-\frac{1}{2} m^{\prime} k_{1}\right)^{2}}{m^{\prime}}-\frac{\left(\frac{1}{2}+\frac{1}{2} m^{\prime} k_{0}\right)^{2}}{m^{\prime}} \\
& + \begin{cases}\frac{m^{\prime}}{4}-\frac{j^{\prime}}{2} & \text { if } k_{0} \text { odd, } k_{1} \text { even } \\
0 & \text { if } k_{1}-k_{0} \text { even } \\
\frac{j^{\prime}}{2}-\frac{m^{\prime}}{4} & \text { if } k_{1} \text { odd, } k_{0} \text { even. }\end{cases}
\end{aligned}
$$

For $m^{\prime} \geq 5$, the possible values of $\left(k_{1}, k_{0}\right)$ are $(3,-1)$; $(3,0)$; or $(2,0)$. So, again the result, that $\Delta(0)<0$, is established by considering such pairs directly and by cases for smaller m^{\prime}.

This completes the proof of the proposition.
Remark 5.9. We have shown that $F\left(l, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right)=S_{\Lambda, \Lambda^{\prime \prime}, \lambda}$ for integral values of l. If l is not an integer, then $\lambda_{l}:=\Lambda^{\prime}+(l M+J) \alpha$ may not be in $\pi\left(T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}\right)$, in which case $S_{\Lambda, \Lambda^{\prime \prime}, \lambda_{l}}$ is not defined. On the other hand, if $\lambda_{l} \in \pi\left(T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}\right)$, we note that the equality $F\left(l, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right)=S_{\Lambda, \Lambda^{\prime \prime}, \lambda_{l}}$ holds, as can be seen by letting $k_{l}=l M-\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)-1$ in the above proof.

Now, let us apply the same analysis to the case that $\varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right)=-1$. By Lemma 5.4, this corresponds to $k_{l}=-\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)-1+l M$. For $\lambda=\Lambda^{\prime}+k_{l} \alpha$, let us denote the function $S_{\Lambda, \Lambda^{\prime \prime}, \lambda}$ by $G_{\mathbb{Z}}(l)=G_{\mathbb{Z}}\left(l, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right)$. Thus, $G_{\mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{Z}$.
5.10. Lemma. Define the function $G=G\left(-, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right): \mathbb{R} \rightarrow \mathbb{R}$ by

$$
G\left(t, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right)=F\left(t-\frac{j+1}{M}, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right) .
$$

Then, $G_{\mathbb{Z}}=G_{\mathbb{Z}}$.
Hence, $S_{\Lambda, \Lambda^{\prime \prime}, \lambda}$ has a maximum when $l=0$ or $l=1$.

Proof. By the proof of Proposition 5.5 and Remark 5.9, $S_{\Lambda, \Lambda^{\prime \prime}, \lambda+(j+1) \alpha}=$ $F(l)$, for $\lambda=\Lambda^{\prime}+k_{l} \alpha$. Since $\lambda=\Lambda^{\prime}+\left(-\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)-1+l M\right) \alpha$, by Proposition 5.5, $S_{\Lambda, \Lambda^{\prime \prime}, \lambda}=F\left(l-\frac{j+1}{M}\right)$. This proves the lemma.

From Lmma 5.10 and the definition of F, it is easy to see that

$$
\begin{equation*}
G\left(1-t, m^{\prime}-j^{\prime}, m^{\prime \prime}, m^{\prime \prime}-j^{\prime \prime}, m^{\prime}+m^{\prime \prime}-j\right)+\frac{1}{2}\left(j^{\prime}+j^{\prime \prime}-j\right)=G\left(t, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right), \tag{22}
\end{equation*}
$$

for any $t \in \mathbb{R}$. Hence, if the maximum of $G_{\mathbb{Z}}$ occurs at 1 , it is equal to

$$
\begin{equation*}
G\left(0, m^{\prime}-j^{\prime}, m^{\prime \prime}, m^{\prime \prime}-j^{\prime \prime}, m^{\prime}+m^{\prime \prime}-j\right)+\frac{1}{2}\left(j^{\prime}+j^{\prime \prime}-j\right) . \tag{23}
\end{equation*}
$$

We also record the following identity, which is easy to prove from the definition of F.
$F\left(0, m^{\prime}-j^{\prime}, m^{\prime \prime}, m^{\prime \prime}-j^{\prime \prime}, m^{\prime}+m^{\prime \prime}-j\right)+\frac{1}{2}\left(j^{\prime}+j^{\prime \prime}-j\right)=F\left(0, j^{\prime}, m^{\prime \prime}, j^{\prime \prime}, j\right)$.
As a corollary of Proposition 5.5 and Lemma 5.10, we get the following 'Non-Cancellation Lemma'.
5.11. Corollary. Let $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}$ be as in Proposition 5.5 and let

$$
\begin{aligned}
& \mu_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}:=\max \left\{S_{\Lambda, \Lambda^{\prime \prime}, \lambda}: \lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}} \text { and } \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right)=1\right\}, \\
& \bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}:=\max \left\{S_{\Lambda, \Lambda^{\prime \prime}, \lambda}: \lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}} \text { and } \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right)=-1\right\} .
\end{aligned}
$$

Assume that $\mu_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}=\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$. Then,

$$
\mu_{\Lambda}^{\Lambda^{\prime \prime}, \Lambda^{\prime}} \neq \bar{\mu}_{\Lambda}^{\Lambda^{\prime \prime}, \Lambda^{\prime}} .
$$

Proof. We proceed in two cases:
Case I. Suppose the maximum $\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$ occurs when $\pi(\lambda)=\Lambda^{\prime}-\left(\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)+\right.$ 1) α (cf. Lemma 5.10). This means that the δ-maximal weights of $L\left(\Lambda^{\prime}\right)$ through $\Lambda^{\prime}-\left(\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)+1\right) \alpha$ and through $\Lambda^{\prime}+\frac{1}{2}\left(j-j^{\prime}-j^{\prime \prime}\right) \alpha$ have the same δ coordinate (cf. Proposition 5.5). By (next) Lemma 5.12, we know that this occurs if and only if one of the following two conditions are satisfied:
(1) $\left|\frac{1}{2}\left(j-j^{\prime \prime}\right)\right| \leq \frac{j^{\prime}}{2}$ and $\frac{1}{2}\left(j+j^{\prime \prime}\right)+1 \leq \frac{j^{\prime}}{2}$, or
(2) $\frac{1}{2}\left(j+j^{\prime \prime}\right)+1=\frac{1}{2}\left(j-j^{\prime \prime}\right)$.

The latter is clearly impossible, while the former condition is fulfilled precisely when $\frac{1}{2}\left(j+j^{\prime \prime}\right)+1 \leq \frac{j^{\prime}}{2}$.

So, for the equality $\mu_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}=\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$ in this case, the neccesary and sufficient condition is:

$$
\begin{equation*}
\frac{1}{2}\left(j+j^{\prime \prime}\right)+1 \leq \frac{j^{\prime}}{2} \tag{25}
\end{equation*}
$$

Case II. Suppose the maximum $\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$ occurs when $\pi(\lambda)=\Lambda^{\prime}-\left(\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)+\right.$ $1-M) \alpha$. Then, by the identities (23) and (24), we get
$G\left(0, m^{\prime}-j^{\prime}, m^{\prime \prime}, m^{\prime \prime}-j^{\prime \prime}, m^{\prime}+m^{\prime \prime}-j\right)=F\left(0, m^{\prime}-j^{\prime}, m^{\prime \prime}, m^{\prime \prime}-j^{\prime \prime}, m^{\prime}+m^{\prime \prime}-j\right)$.
So, from the case I, we get in this case II, $\mu_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}=\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$ if and only if

$$
\begin{equation*}
\frac{1}{2}\left(\left(m^{\prime}+m^{\prime \prime}-j\right)+\left(m^{\prime \prime}-j^{\prime \prime}\right)\right)+1 \leq \frac{1}{2}\left(m^{\prime}-j^{\prime}\right) \tag{27}
\end{equation*}
$$

So, if either of the inequalities (25) or (27) is satisfied, then none of them can be satisfied for the triple $\left(\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}\right)$ replaced by $\left(\Lambda, \Lambda^{\prime \prime}, \Lambda^{\prime}\right)$. This proves the corollary.
Lemma 5.12. Suppose $\Lambda^{\prime}-\left(\frac{1}{2}\left(j+j^{\prime}+j^{\prime \prime}\right)+1\right) \alpha+n_{1} \delta$ and $\Lambda^{\prime}+\frac{1}{2}\left(j-j^{\prime}-j^{\prime \prime}\right) \alpha+$ $n_{2} \delta$ are δ-maximal weights of $L\left(\Lambda^{\prime}\right)$. Then $n_{1}=n_{2}$ if and only if

$$
\left|\frac{1}{2}\left(j-j^{\prime \prime}\right)\right| \leq \frac{j^{\prime}}{2} \quad \text { and } \quad \frac{1}{2}\left(j+j^{\prime \prime}\right)+1 \leq \frac{j^{\prime}}{2}
$$

or $\frac{1}{2}\left(j+j^{\prime \prime}\right)+1=\frac{1}{2}\left(j-j^{\prime \prime}\right)$.
Proof. Fix an integer n and consider the set $P_{n}=\left\{\nu \in P\left(\Lambda^{\prime}\right): \Lambda^{\prime}-\nu=\right.$ $k \alpha+n \delta, k \in \mathbb{Z}\}$. We give a description of $P_{n} \cap P^{o}\left(\Lambda^{\prime}\right)$. Clearly, $P_{n}=$ $\left\{\lambda, \lambda-\alpha, \ldots, \lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha\right\}$ for some $\lambda=\lambda_{n}$ and that this λ is uniquely determined by n (cf. [K K_{3}, Exercise 2.3.E.2]). Suppose that some $\mu \in P_{n}$ is not δ-maximal, then none of $\left\{\mu, \ldots, \mu-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha\right\}$ are δ-maximal, since if $\mu+k \delta \in P\left(\Lambda^{\prime}\right)$, then the whole string $\left\{\mu+k \delta, \ldots, \mu+k \delta-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha\right\} \subset P\left(\Lambda^{\prime}\right)$. In particular, if $\lambda-\alpha$ is δ-maximal, then so is λ. Hence, $\mathfrak{g}_{\delta-\alpha} L\left(\Lambda^{\prime}\right)_{\lambda}=0$ and $\mathfrak{g}_{\alpha} L\left(\Lambda^{\prime}\right)_{\lambda}=0$. Therefore, λ is the highest weight Λ^{\prime}. Thus, $P_{n} \cap P^{o}\left(\Lambda^{\prime}\right)$ is either empty, or $\lambda=\Lambda^{\prime}$ (in the case that $n=0$), or the set $\left\{\lambda, s_{1} \lambda\right\}$. From this and Corollary 5.1 the lemma follows easily.

6. SATURATION FACTOR FOR THE $A_{1}^{(1)}$ CASE

We assume that $\mathfrak{g}=\widehat{\mathfrak{s l}_{2}}$ in this section.
Definition 6.1. Let $\Lambda^{\prime} \in P_{+}^{\left(m^{\prime}\right)}, \Lambda^{\prime \prime} \in P_{+}^{\left(m^{\prime \prime}\right)}$ and $\Lambda \in P_{+}^{\left(m^{\prime}+m^{\prime \prime}\right)}$. Then, we call $L(\Lambda+n \delta)$ the δ-maximal component of $L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)$ through Λ if $L(\Lambda+n \delta)$ is a submodule of $L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)$ but $L(\Lambda+m \delta)$ is not a component for any $m>n$.
Theorem 6.2. Let $\Lambda^{\prime}, \Lambda^{\prime \prime}, \Lambda$ be as in Proposition5.5. Then, $L(\Lambda+n \delta)$ is a δ-maximal component of $L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)$ if $n=\min \left(n_{1}, n_{2}\right)$, where n_{1} is such that $\Lambda-\Lambda^{\prime \prime}+n_{1} \delta \in P^{o}\left(\Lambda^{\prime}\right)$ and n_{2} is such that $\Lambda-\Lambda^{\prime}+n_{2} \delta \in P^{o}\left(\Lambda^{\prime \prime}\right)$.

Proof. This follows immediately by combining Propositions 4.2, 5.5 and Lemma 5.4.

Lemma 6.3. Fix a positive integer N. Let $\Lambda \in \bar{P}_{+}$and let $\lambda \in \Lambda+Q$, where Q is the root lattice $\mathbb{Z} \alpha \oplus \mathbb{Z} \delta$ of $\widehat{\mathfrak{s l}_{2}}$. Then, $N \lambda \in P^{o}(N \Lambda)$ if and only if $\lambda \in P^{o}(\Lambda)$.

Proof. The validity of the lemma is clear for $\lambda \in P^{o}(\Lambda)_{+}$from Corollary 5.1. But since $P^{o}(\Lambda)=W \cdot\left(P^{o}(\Lambda)_{+}\right)$, and the action of W on \mathfrak{h}^{*} is linear, the lemma follows for any $\lambda \in P^{o}(\Lambda)$.

Corollary 6.4. Let $d_{o} \in \mathbb{Z}_{>1}$. Let $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime} \in P_{+}$be such that $\Lambda-\Lambda^{\prime}-\Lambda^{\prime \prime} \in$ Q and $L(N \Lambda)$ is a submodule of $L\left(N \Lambda^{\prime}\right) \otimes L\left(N \Lambda^{\prime \prime}\right)$, for some $N \in \mathbb{Z}_{>0}$. Then, $L\left(d_{o} \Lambda\right)$ is a submodule of $L\left(d_{o} \Lambda^{\prime}\right) \otimes L\left(d_{o} \Lambda^{\prime \prime}\right)$.

Such a d_{o} is called a saturation factor.
Proof. If $\Lambda^{\prime}(c)=0$ or $\Lambda^{\prime \prime}(c)=0$, then

$$
L\left(N \Lambda^{\prime}\right) \otimes L\left(N \Lambda^{\prime \prime}\right) \simeq L\left(N\left(\Lambda^{\prime}+\Lambda^{\prime \prime}\right)\right),
$$

for any $N \geq 1$. Thus, the corollary is clearly true in this case. So, let us assume that both of $\Lambda^{\prime}(c)>0$ and $\Lambda^{\prime \prime}(c)>0$. Let $L(N \Lambda+n \delta)$ be the δ maximal component of $L\left(N \Lambda^{\prime}\right) \otimes L\left(N \Lambda^{\prime \prime}\right)$ through $L(N \Lambda)$, for some $n \geq 0$. For any $\Psi \in P_{+}$, let $\bar{\Psi} \in \bar{P}_{+}$be the projection $\pi(\Psi)$ defined just before Lemma 5.2. Applying Theorem 6.2 to $\bar{\Lambda}^{\prime}, \bar{\Lambda}^{\prime \prime}, \bar{\Lambda}$, and observing that

$$
\begin{equation*}
L(\bar{\Psi}+k \delta) \simeq L(\bar{\Psi}) \otimes L(k \delta) \tag{28}
\end{equation*}
$$

and $L(k \delta)$ is one dimensional, we get that there is a δ-maximal component $L(\Lambda+\widetilde{n} \delta)$ of $L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)$ through $L(\Lambda)$, for some (unique) $\widetilde{n} \in \mathbb{Z}$.

Again applying Theorem 6.2 to $N \bar{\Lambda}^{\prime}, N \bar{\Lambda}^{\prime \prime}, N \bar{\Lambda}$, and observing (using Corollary (5.1) that

$$
\begin{equation*}
P^{o}(N \bar{\Psi}) \supset N P^{o}(\bar{\Psi}), \tag{29}
\end{equation*}
$$

we get that $L(N \Lambda+N \widetilde{n} \delta)$ is the δ-maximal component of $L\left(N \Lambda^{\prime}\right) \otimes L\left(N \Lambda^{\prime \prime}\right)$ through $L(N \Lambda)$. Thus, $n=N \widetilde{n}$. In particular,

$$
\begin{equation*}
\widetilde{n} \geq 0 . \tag{30}
\end{equation*}
$$

Let

$$
\begin{equation*}
\sum_{\lambda \in T_{\bar{\Lambda}}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} \varepsilon\left(v_{\bar{\Lambda}, \Lambda^{\prime \prime}, \lambda}\right) c_{\Lambda^{\prime}, \lambda} e^{S_{\bar{\Lambda}, \Lambda^{\prime \prime}, \lambda} \delta}=\sum_{k \in \mathbb{Z}_{+}} c_{k} e^{(\Lambda(d)+\widetilde{n}-k) \delta} \tag{31}
\end{equation*}
$$

for some $c_{k} \in \mathbb{Z}_{+}$with c_{0} nonzero. By Proposition 4.2 this is the character of a unitarizable Virasoro representation with each irreducible component having the same nonzero central charge. Thus, by Lemma 4.1, for any $k>1$, we get $c_{k} \neq 0$.

By the above argument, $L\left(d_{o} \Lambda+d_{o} \widetilde{n} \delta\right)$ is the δ-maximal component of $L\left(d_{o} \Lambda^{\prime}\right) \otimes L\left(d_{o} \Lambda^{\prime \prime}\right)$ through $L\left(d_{o} \Lambda\right)$. If $\widetilde{n}=0$, we get that

$$
L\left(d_{o} \Lambda\right) \subset L\left(d_{o} \Lambda^{\prime}\right) \otimes L\left(d_{o} \Lambda^{\prime \prime}\right) .
$$

If $\widetilde{n}>0$, then $d_{o} \widetilde{n}$ being >1, by the analogue of (31) for $d_{o} \Lambda^{\prime}, d_{o} \Lambda^{\prime \prime}$ and $d_{o} \Lambda, L\left(d_{o} \Lambda\right) \subset L\left(d_{o} \Lambda^{\prime}\right) \otimes L\left(d_{o} \Lambda^{\prime \prime}\right)$. (Here we have used that $L_{0}=-d+p$ on any \mathfrak{g}-isotypical component of $L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)$ with highest weight in $\Lambda+\mathbb{Z} \delta$, for a number p depending only upon $\bar{\Lambda}, \Lambda^{\prime}$ and $\Lambda^{\prime \prime}$, cf. [KR, Identity 10.25 on page 116].) This proves the corollary.

Remark 6.5. We note that $L\left(2 \Lambda_{0}-\delta\right)$ is not a component of $L\left(\Lambda_{0}\right) \otimes L\left(\Lambda_{0}\right)$ (cf. [Kac, Exercise 12.16]). But, of course, $L\left(2 \Lambda_{0}\right)$ is a δ-maximal component. By the identity (31), we know that $L\left(2 d_{o} \Lambda_{0}-d_{o} \delta\right)$ must be a component of $L\left(d_{o} \Lambda_{0}\right) \otimes L\left(d_{o} \Lambda_{0}\right)$, for any $d_{o}>1$. So d_{o} can not be taken to be 1 in Corollary 6.4.

7. A Conjecture

In this section, G is any symmetrizable Kac-Moody group. We recall the following definition of the deformed product due to Belkale-Kumar [BK]. (Even though they gave the definition in the finite case, the same definition works in the symmetrizable Kac-Moody case, though with only one parameter.)
7.1. Definition. Let P be any standard parabolic subgroup of G. Recall from Section 2 that $\left\{\epsilon_{P}^{w}\right\}_{w \in W^{P}}$ is a basis of the singular cohomology $H^{*}\left(X_{P}, \mathbb{Z}\right)$. Write the standard cup product in $H^{*}\left(X_{P}, \mathbb{Z}\right)$ in this basis as follows:

$$
\begin{equation*}
\epsilon_{P}^{u} \cdot \epsilon_{P}^{v}=\sum_{w \in W^{P}} n_{u, v}^{w} \epsilon_{P}^{w}, \text { for some (unique) } n_{u, v}^{w} \in \mathbb{Z} \tag{32}
\end{equation*}
$$

Introduce the indeterminate τ and define a deformed cup product \odot as follows:

$$
\begin{equation*}
\epsilon_{P}^{u} \odot \epsilon_{P}^{v}=\sum_{w \in W^{P}} \tau^{\left(u^{-1} \rho+v^{-1} \rho-w^{-1} \rho-\rho\right)\left(x_{P}\right)} n_{u, v}^{w} \epsilon_{P}^{w}, \tag{33}
\end{equation*}
$$

where $x_{P}:=\sum_{\alpha_{i} \in \Delta \backslash \Delta(P)} x_{i}, \Delta(P)$ is the set of simple roots of the Levi L of P and, as in Section 2, Δ is the set of simple roots of G.

The following lemma is a generalization of the corresponding result in the finite case (cf. [BK, Proposition 17]).
7.2. Proposition. (a) The product \odot is associative and clearly commutative.
(b) Whenever $n_{u, v}^{w}$ is nonzero, the exponent of τ in the above is a nonnegative integer.

Proof. The proof of the associativity of \odot is identical to the proof given in [BK, Proof of Proposition 17 (b)].
(b) The proof of this part follows the proof of [BK, Theorem 43]. Consider the decreasing filtration $\mathcal{A}=\left\{\mathcal{A}_{m}\right\}_{m \geq 0}$ of $H^{*}\left(X_{P}, \mathbb{C}\right)$ defined as follows:

$$
\mathcal{A}_{m}:=\bigoplus_{w \in W^{P}:\left(\rho-w^{-1} \rho\right)\left(x_{P}\right) \geq m} \mathbb{C} \epsilon_{P}^{w} .
$$

A priori $\left\{\mathcal{A}_{m}\right\}_{m \geq 0}$ may not be a multiplicative filtration.
We next introduce another filtration $\left\{\overline{\mathcal{F}}_{m}\right\}_{m \geq 0}$ of $H^{*}\left(X_{P}, \mathbb{C}\right)$ in terms of the Lie algebra cohomology. Recall that $H^{*}\left(X_{P}, \mathbb{C}\right)$ can be identified canonically with the Lie algebra cohomology $H^{*}(\mathfrak{g}, \mathfrak{l})$, where \mathfrak{l} is the Lie algebra of the Levi subgroup L of P (cf. [K_{2}, Theorem 1.6]). The underlying cochain complex $C^{\bullet}=C^{\bullet}(\mathfrak{g}, \mathfrak{l})$ for $H^{*}(\mathfrak{g}, \mathfrak{l})$ can be written as

$$
C^{\bullet}:=\left[\wedge^{\bullet}(\mathfrak{g} / \mathfrak{l})^{*}\right]^{\mathfrak{l}}=\operatorname{Hom}_{\mathfrak{l}}\left(\wedge^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes \wedge^{\bullet}\left(\mathfrak{u}_{P}^{-}\right), \mathbb{C}\right),
$$

where $\mathfrak{u}_{P}\left(\right.$ resp. $\left.\mathfrak{u}_{P}^{-}\right)$is the nil-radical of the Lie algebra of P (resp. the opposite parabolic subgroup P^{-}). Define a decreasing multiplicative filtration $\mathcal{F}=\left\{\mathcal{F}_{m}\right\}_{m \geq 0}$ of the cochain complex C^{\bullet} by subcomplexes:

$$
\mathcal{F}_{m}:=\operatorname{Hom}_{\mathfrak{l}}\left(\frac{\wedge^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes \wedge^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)}{\bigoplus_{s+t \leq m-1} \wedge_{(s)}^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes \wedge_{(t)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)}, \mathbb{C}\right),
$$

where $\wedge_{(s)}^{\bullet}\left(\mathfrak{u}_{P}\right)\left(\right.$ resp. $\left.\wedge_{(s)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)\right)$denotes the subspace of $\wedge^{\bullet}\left(\mathfrak{u}_{P}\right)\left(\right.$ resp. $\left.\wedge^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)\right)$ spanned by the \mathfrak{h}-weight vectors of weight β with P-relative height

$$
\operatorname{ht}_{P}(\beta):=\left|\beta\left(x_{P}\right)\right|=s
$$

Now, define the filtration $\overline{\mathcal{F}}=\left\{\overline{\mathcal{F}}_{m}\right\}_{m \geq 0}$ of $H^{*}(\mathfrak{g}, \mathfrak{l}) \simeq H^{*}\left(X_{P}, \mathbb{C}\right)$ by

$$
\overline{\mathcal{F}}_{m}:=\text { Image of } H^{*}\left(\mathcal{F}_{m}\right) \rightarrow H^{*}\left(C^{\bullet}\right) .
$$

The filtration \mathcal{F} of C^{\bullet} gives rise to the cohomology spectral sequence $\left\{E_{r}\right\}_{r \geq 1}$ converging to $H^{*}\left(C^{\bullet}\right)=H^{*}\left(X_{P}, \mathbb{C}\right)$. By [K_{3}, Proof of Proposition 3.2.11], for any $m \geq 0$,

$$
E_{1}^{m}=\bigoplus_{s+t=m}\left[H_{(s)}^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes H_{(t)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)\right]^{\mathfrak{l}}
$$

where $H_{(s)}^{\bullet}\left(\mathfrak{u}_{P}\right)$ denotes the cohomology of the subcomplex $\left(\wedge_{(s)}^{\bullet}\left(\mathfrak{u}_{P}\right)\right)^{*}$ of the standard cochain complex $\wedge^{\bullet}\left(\mathfrak{u}_{P}\right)^{*}$ associated to the Lie algebra \mathfrak{u}_{P} and similarly for $H_{(t)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)$. Moreover, by loc. cit., the spectral sequence degenerates at the E_{1} term, i.e.,

$$
\begin{equation*}
E_{1}^{m}=E_{\infty}^{m} . \tag{34}
\end{equation*}
$$

Further, by the definition of P-relative height,

$$
\left[H_{(s)}^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes H_{(t)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)\right]^{\mathfrak{l}} \neq 0 \Rightarrow s=t .
$$

Thus,

$$
\begin{aligned}
E_{1}^{m} & =0, \quad \text { unless } m \text { is even and } \\
E_{1}^{2 m} & =\left[H_{(m)}^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes H_{(m)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)\right]^{\mathfrak{l}} .
\end{aligned}
$$

In particular, from (34) and the general properties of spectral sequences (cf. [K_{3}, Theorem E.9]), we have a canonical algebra isomorphism:

$$
\begin{equation*}
\operatorname{gr}(\overline{\mathcal{F}}) \simeq \bigoplus_{m \geq 0}\left[H_{(m)}^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes H_{(m)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)\right]^{\mathfrak{l}}, \tag{35}
\end{equation*}
$$

where $\left[H_{(m)}^{\bullet}\left(\mathfrak{u}_{P}\right) \otimes H_{(m)}^{\bullet}\left(\mathfrak{u}_{P}^{-}\right)\right]^{\mathfrak{l}}$ sits inside $\operatorname{gr}(\overline{\mathcal{F}})$ precisely as the homogeneous part of degree $2 m$; homogeneous parts of $\operatorname{gr}(\overline{\mathcal{F}})$ of odd degree being zero.

Finally, we claim that, for any $m \geq 0$,

$$
\begin{equation*}
\mathcal{A}_{m}=\overline{\mathcal{F}}_{2 m}: \tag{36}
\end{equation*}
$$

Following Kumar $\left[\mathrm{K}_{1}\right]$, take the d- ∂ harmonic representative \hat{s}^{w} in C^{\bullet} for the cohomology class ϵ_{P}^{w}. An explicit expression is given in $\left[\mathrm{K}_{1}\right.$, Proposition 3.17]. From this explicit expression, we easily see that

$$
\begin{equation*}
\mathcal{A}_{m} \subset \overline{\mathcal{F}}_{2 m}, \text { for all } m \geq 0 \tag{37}
\end{equation*}
$$

Moreover, from the definition of \mathcal{A}, for any $m \geq 0$,

$$
\operatorname{dim} \frac{\mathcal{A}_{m}}{\mathcal{A}_{m+1}}=\#\left\{w \in W^{P}:\left(\rho-w^{-1} \rho\right)\left(x_{P}\right)=m\right\} .
$$

Also, by the isomorphism (35) and [K_{3}, Theorem 3.2.7],

$$
\operatorname{dim} \frac{\overline{\mathcal{F}}_{2 m}}{\overline{\mathcal{F}}_{2 m+1}}=\#\left\{w \in W^{P}:\left(\rho-w^{-1} \rho\right)\left(x_{P}\right)=m\right\} .
$$

Thus,

$$
\begin{equation*}
\operatorname{dim} \frac{\mathcal{A}_{m}}{\mathcal{A}_{m+1}}=\operatorname{dim} \frac{\overline{\mathcal{F}}_{2 m}}{\overline{\mathcal{F}}_{2 m+1}} . \tag{38}
\end{equation*}
$$

Of course,

$$
\begin{equation*}
\mathcal{A}_{0}=\overline{\mathcal{F}}_{0} . \tag{39}
\end{equation*}
$$

Thus, combining the equations (37), (38) and (39), we get (36). It is easy to see that the filtration $\left\{\overline{\mathcal{F}}_{2 m}\right\}_{m \geq 0}$ is multiplicative and hence so is $\left\{\mathcal{A}_{m}\right\}_{m \geq 0}$. This proves the (b) part of the proposition.

The cohomology of X_{P} obtained by setting $\tau=0$ in $\left(H^{*}\left(X_{P}, \mathbb{Z}\right) \otimes \mathbb{Z}[\tau], \odot\right)$ is denoted by $\left(H^{*}\left(X_{P}, \mathbb{Z}\right), \odot_{0}\right)$. Thus, as a \mathbb{Z}-module, it is the same as the singular cohomology $H^{*}\left(X_{P}, \mathbb{Z}\right)$ and under the product \odot_{0} it is associative (and commutative).

The following conjecture is a generalization of the corresponding result in the finite case due to Belkale-Kumar [BK, Theorem 22].
7.3. Conjecture. Let G be any indecomposable symmetrizable Kac-Moody group (i.e., its generalized Cartan matrix is indecomposable, cf. [K_{3}, \S 1.1]) and let $\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in P_{+}^{s+1}$. Assume further that none of λ_{j} is W invariant and $\mu-\sum_{j=1}^{s} \lambda_{j} \in Q$, where Q is the root lattice of G. Then, the following are equivalent:
(a) $\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in \Gamma_{s}$.
(b) For every standard maximal parabolic subgroup P in G and every choice of $s+1$-tuples $\left(w_{1}, \ldots, w_{s}, v\right) \in\left(W^{P}\right)^{s+1}$ such that ϵ_{P}^{v} occurs with coefficient 1 in the deformed product

$$
\epsilon_{P}^{w_{1}} \odot_{0} \cdots \odot_{0} \epsilon_{P}^{w_{s}} \in\left(H^{*}\left(X_{P}, \mathbb{Z}\right), \odot_{0}\right)
$$

the following inequality holds:

$$
\left(\sum_{j=1}^{s} \lambda_{j}\left(w_{j} x_{P}\right)\right)-\mu\left(v x_{P}\right) \geq 0, \quad\left(I_{\left(w_{1}, \ldots, w_{s}, v\right)}^{P}\right)
$$

where $\alpha_{i_{P}}$ is the (unique) simple root in $\Delta \backslash \Delta(P)$ and $x_{P}:=x_{i_{P}}$.
7.4. Remark. (a) By Theorem 3.3, the above inequalities $I_{\left(w_{1}, \ldots, w_{s}, v\right)}^{P}$ are indeed satisfied for any $\left(\lambda_{1}, \ldots, \lambda_{s}, \mu\right) \in \Gamma_{s}$.
(b) If G is an affine Kac-Moody group, then the condition that $\lambda \in P_{+}$is W-invariant is equivalent to the condition that $\lambda(c)=0$.
7.5. Theorem. Let $\mathfrak{g}=\widehat{\mathfrak{s l}_{2}}$. Let $\lambda, \mu, \nu \in P_{+}$be such that $\lambda+\mu-\nu \in Q$ and both of $\lambda(c)$ and $\mu(c)$ are nonzero. Then, the following are equivalent:
(a) $(\lambda, \mu, \nu) \in \Gamma_{2}$.
(b) The following set of inequalities is satisfied for all $w \in W$ and $i=0,1$.

$$
\begin{aligned}
& \lambda\left(x_{i}\right)+\mu\left(w x_{i}\right)-\nu\left(w x_{i}\right) \geq 0, \quad \text { and } \\
& \lambda\left(w x_{i}\right)+\mu\left(x_{i}\right)-\nu\left(w x_{i}\right) \geq 0 .
\end{aligned}
$$

In particular, Conjecture 7.3 is true for $\mathfrak{g}=\widehat{\mathfrak{s l}_{2}}$ and $s=2$.
Proof. By Lemma 5.2, there exist (unique) $n_{1}, n_{2} \in \mathbb{Z}$ such that

$$
\nu-\mu+n_{1} \delta \in P^{o}(\lambda), \quad \text { and } \nu-\lambda+n_{2} \delta \in P^{o}(\mu) .
$$

Let $n:=\min \left(n_{1}, n_{2}\right)$. By our description of the δ-maximal components as in Theorem 6.2 applied to $\bar{\lambda}, \bar{\mu}, \bar{\nu}$ and using the identity (28), we see that $L(\nu+n \delta)$ is a δ-maximal component of $L(\lambda) \otimes L(\mu)$. Thus, by the equation (29), for any $N \geq 1, L(N \nu+N n \delta)$ is a δ-maximal component of $L(N \lambda) \otimes L(N \mu)$. In particular, by Proposition 4.2 and Lemma 4.1.

$$
\begin{equation*}
L(N \nu) \subset L(N \lambda) \otimes L(N \mu) \quad \text { for some } N>1 \quad \text { if and only if } n \geq 0 \tag{40}
\end{equation*}
$$

By [Kac, Proposition 12.5 (a)], if a weight $\gamma+k \delta \in P(\lambda)$ (for some $k \in \mathbb{Z}_{+}$), then $\gamma \in P(\lambda)$. Thus,

$$
\begin{equation*}
n \geq 0 \text { if and only if } \nu \in(P(\lambda)+\mu) \cap(P(\mu)+\lambda) . \tag{41}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
P(\lambda)=(\lambda+Q) \cap C_{\lambda}, \tag{42}
\end{equation*}
$$

where $C_{\lambda}:=\left\{\gamma \in \mathfrak{h}^{*}: \lambda\left(x_{i}\right)-\gamma\left(w x_{i}\right) \geq 0\right.$ for all $w \in W$ and all $\left.x_{i}\right\}$. Clearly,

$$
P(\lambda) \subset(\lambda+Q) \cap C_{\lambda} .
$$

Since $\lambda+Q$ and C_{λ} are W-stable, and $\lambda+Q$ is contained in the Tits cone (by $\left[\mathrm{K}_{3}\right.$, Exercise 13.1.E.8(a)]), $(\lambda+Q) \cap C_{\lambda}=W \cdot\left((\lambda+Q) \cap C_{\lambda} \cap P_{+}\right)$.

Conversely, take $\gamma \in(\lambda+Q) \cap C_{\lambda} \cap P_{+}$. Then, $(\lambda-\gamma)\left(x_{i}\right) \geq 0$ and $(\lambda-\gamma)(c)=0$ and hence $\lambda-\gamma \in \oplus_{i} \mathbb{Z}_{+} \alpha_{i}$, i.e., $\lambda \geq \gamma$. Thus, by [Kac, Proposition 12.5(a)], $\gamma \in P(\lambda)$. This proves (42). Now, combining (40), (41) and (42), we get $L(N \nu) \subset L(N \lambda) \otimes L(N \mu)$ for some $N>1$ if and only if for all $w \in W$ and $i=0,1$,

$$
\lambda\left(x_{i}\right)-(\nu-\mu)\left(w x_{i}\right) \geq 0, \text { and } \mu\left(x_{i}\right)-(\nu-\lambda)\left(w x_{i}\right) \geq 0 .
$$

This proves the equivalence of (a) and (b) in the theorem.
To prove the 'In particular' statement of the theorem, let P_{0} (resp. P_{1}) be the maximal parabolic subgroup of $G=\widehat{\mathrm{SL}_{2}}$ with $\Delta\left(P_{0}\right)=\left\{\alpha_{1}\right\}$ (resp. $\left.\Delta\left(P_{1}\right)=\left\{\alpha_{0}\right\}\right)$. For any $n \geq 0$, let

$$
w_{n}:=\ldots s_{0} s_{1} s_{0} \text { (n-factors) and } v_{n}:=\ldots s_{1} s_{0} s_{1} \text { (n-factors). }
$$

Then, by $\left[\mathrm{K}_{3}\right.$, Exercise 11.3.E.4], $H^{*}\left(G / P_{0}\right)$ has a \mathbb{Z}-basis $\left\{\epsilon_{P_{0}}^{n}\right\}_{n \geq 0}$, where $\epsilon_{P_{0}}^{n}:=\epsilon_{P_{0}}^{w_{n}}$. Moreover,

$$
\epsilon_{P_{0}}^{n} \cdot \epsilon_{P_{0}}^{m}=\binom{n+m}{n} \epsilon_{P_{0}}^{n+m} .
$$

In particular, $\epsilon_{P_{0}}^{n+m}$ appears with coefficient one in $\epsilon_{P_{0}}^{n} \cdot \epsilon_{P_{0}}^{m}$ if and only if at least one of n or m is 0 .

By using the diagram automorphism of $\widehat{\mathrm{SL}_{2}}$, one similarly gets that $H^{*}\left(G / P_{1}\right)$ has a \mathbb{Z}-basis $\left\{\epsilon_{P_{1}}^{n}\right\}_{n \geq 0}$, where $\epsilon_{P_{1}}^{n}:=\epsilon_{P_{1}}^{v_{n}}$, with the product given by

$$
\epsilon_{P_{1}}^{n} \cdot \epsilon_{P_{1}}^{m}=\binom{n+m}{n} \epsilon_{P_{1}}^{n+m} .
$$

Moreover, from the definition of the deformed product \odot_{0}, clearly

$$
\epsilon_{P_{0}}^{0} \odot_{0} \epsilon_{P_{0}}^{m}=\epsilon_{P_{0}}^{0} \cdot \epsilon_{P_{0}}^{m},
$$

and similarly for P_{1}. From this the 'In particular' statement of the theorem follows.
7.6. Remark. (1) It is easy to see that if $\lambda=m \delta$ for some $m \in \mathbb{Z}$, then the equivalence of (a) and (b) in the above theorem breaks down.
(2) Though we have proved Conjecture 7.3 for $\widehat{\mathrm{SL}_{2}}$ only for $s=2$, it is quite likely that a similar proof will prove it for any s (for $\widehat{\mathrm{SL}_{2}}$).

$$
\text { 8. The } A_{2}^{(2)} \text { CASE }
$$

By a method similar to that of $A_{1}^{(1)}$, we handle the $A_{2}^{(2)}$ case, with minor modifications where necessary. Write $\mathfrak{h}=\mathbb{C} c \oplus \mathbb{C} \alpha^{\vee} \oplus \mathbb{C} d$ and $\mathfrak{h}^{*}=\mathbb{C} \omega_{0} \oplus$ $\mathbb{C} \alpha \oplus \mathbb{C} \delta$, where $\alpha\left(\alpha^{\vee}\right)=2, \delta(d)=1, \omega_{0}(c)=1$, and all other values are 0 . Then $\left(\mathfrak{h},\left\{\alpha_{0}:=\delta-2 \alpha, \alpha_{1}:=\alpha\right\},\left\{\alpha_{0}^{\vee}:=c-\frac{1}{2} \alpha^{\vee}, \alpha_{1}^{\vee}:=\alpha^{\vee}\right\}\right)$ is a realization of the GCM

$$
\left(\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right)
$$

of $A_{2}^{(2)}$. The fundamental weights are ω_{0} and $\omega_{1}=\frac{1}{2} \omega_{0}+\frac{1}{2} \alpha$. This easily allows one to compute the dominant δ-maximal weights. Analogous to Corollary [5.1, we have the following:
8.1. Lemma. Let λ be a dominant integral weight. Then, the dominant δ-maximal weights of $L(\lambda)$ are the dominant weights of the form

$$
P_{+} \cap\left\{\lambda-j \alpha, \lambda+k(2 \alpha-\delta), \lambda+\alpha-\delta+l(2 \alpha-\delta): j, k, l \in \mathbb{Z}_{\geq 0}\right\} .
$$

Moreover, $P^{o}(\lambda)$ is the W-orbit of the above.
Again, to determine the saturated tensor cone, it is enough to describe the δ-maximal components. Thus, to determine the δ-maximal components, by virtue of proposition 4.2, we must find the highest δ-degree term in $\sum_{\lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}} \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right) c_{\Lambda^{\prime}, \lambda} e^{S_{\Lambda, \Lambda^{\prime \prime}, \lambda^{\prime}}}$. This computation is done in a somewhat
similar manner as in the $A_{1}^{(1)}$ case, but there are some important modifications. First, we need to use two different piecewise smooth functions to describe the δ-maximal weights of $L(\lambda)$. An upper function A^{+}interpolates the δ-maximal weights which are in the W-orbit of the dominant weights of the form

$$
\left\{\lambda-j \alpha, \lambda+k(2 \alpha-\delta): j, k \in \mathbb{Z}_{\geq 0}\right\}
$$

while another function A^{-}interpolates the δ-maximal weights in the W-orbit of the dominant weights of the form

$$
\left\{\lambda-j \alpha, \lambda+\alpha-\delta+l(2 \alpha-\delta): j, l \in \mathbb{Z}_{\geq 0}\right\} .
$$

Now, all of the arguments made in the $\widehat{\mathfrak{s l}_{2}}$ case must be made for two extensions of $S_{\Lambda, \Lambda^{\prime \prime}, \lambda}$ to non-integral values, using A^{+}and A^{-}respectively. Let $\Lambda:=m_{0} \omega_{0}+m_{1} \omega_{1}, \Lambda^{\prime}:=m_{0}^{\prime} \omega_{0}+m_{1}^{\prime} \omega_{1}$, and $\Lambda^{\prime \prime}:=m_{0}^{\prime \prime} \omega_{0}+m_{1}^{\prime \prime} \omega_{1}$. The following result is an analogue of Proposition 5.5 and Lemma 5.10 for the $A_{2}^{(2)}$ case.

Proposition 8.2. Let $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}$ be as above. Assume that both of $\Lambda^{\prime}(c)$ and $\Lambda^{\prime \prime}(c)>0$ and $\Lambda-\Lambda^{\prime}-\Lambda^{\prime \prime} \in Q$, where $Q=\mathbb{Z} \alpha+\mathbb{Z} \delta$ is the root lattice of $A_{2}^{(2)}$. Then, the maximum $\mu_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$ of the set

$$
\left\{S_{\Lambda, \Lambda^{\prime \prime}, \lambda}: \lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}, \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right)=1\right\}
$$

occurs when $\lambda \equiv \Lambda^{\prime}+\frac{1}{2}\left(m_{1}-m_{1}^{\prime}-m_{1}^{\prime \prime}\right) \alpha \bmod \mathbb{C} \delta$. The maximum $\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$ of the set

$$
\left\{S_{\Lambda, \Lambda^{\prime \prime}, \lambda}: \lambda \in T_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}, \varepsilon\left(v_{\Lambda, \Lambda^{\prime \prime}, \lambda}\right)=-1\right\}
$$

occurs when $\lambda \equiv \Lambda^{\prime}-\left(\frac{1}{2}\left(m_{1}^{\prime}+m_{1}^{\prime \prime}+m_{1}\right)+1\right) \alpha \bmod \mathbb{C} \delta$ or when $\lambda \equiv$ $\Lambda^{\prime}-\left(\frac{1}{2}\left(m_{1}^{\prime}+m_{1}^{\prime \prime}+m_{1}\right)-2\left(\Lambda^{\prime}(c)+\Lambda^{\prime \prime}(c)+1\right)\right) \alpha \bmod \mathbb{C} \delta$.
8.3. Corollary. Let $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}$ be as in Proposition 8.2. Assume further that $\Lambda^{\prime}(c) \geq 2, \Lambda^{\prime \prime}(c) \geq 2, m_{1}^{\prime}, m_{1}^{\prime \prime} \neq 1$. Then, if $\mu_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}=\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$, we have

$$
\mu_{\Lambda}^{\Lambda^{\prime \prime}, \Lambda^{\prime}} \neq \bar{\mu}_{\Lambda}^{\Lambda^{\prime \prime}, \Lambda^{\prime}} .
$$

The proof of Corollary 8.3 requires a description of the situations in which $\mu_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}=\bar{\mu}_{\Lambda}^{\Lambda^{\prime}, \Lambda^{\prime \prime}}$. We reduce these situations to certain cases, and show that in most of these cases, if the roles of Λ^{\prime} and $\Lambda^{\prime \prime}$ are interchanged, then (as in the $\widehat{\mathfrak{s l}_{2}}$ case) the equality does not occur. In the remaining cases, we show that $\Lambda^{\prime}(c)<2, \Lambda^{\prime \prime}(c)<2, m_{1}^{\prime}=1$, or $m_{1}^{\prime \prime}=1$.

Theorem 8.4. Let $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}$ be as in Proposition 8.2. Then, $L(\Lambda+n \delta)$ is a δ-maximal component of $L\left(\Lambda^{\prime}\right) \otimes L\left(\Lambda^{\prime \prime}\right)$ if $n=\min \left(n_{1}, n_{2}\right)$, where n_{1} is such that $\Lambda-\Lambda^{\prime \prime}+n_{1} \delta \in P^{o}\left(\Lambda^{\prime}\right)$ and n_{2} is such that $\Lambda-\Lambda^{\prime}+n_{2} \delta \in P^{o}\left(\Lambda^{\prime \prime}\right)$.

Lemma 8.5. Fix a positive integer N. Let $\Lambda \in \bar{P}_{+}$and let $\lambda \in \Lambda+Q$. Then, $N \lambda \in P^{o}(N \Lambda)$ if and only if $\lambda \in P^{o}(\Lambda)$.

Combining the above results, we get a description of Γ_{2}, which is identical to that of $\widehat{\mathfrak{s l}_{2}}$ (cf. Theorem 7.5).
8.6. Theorem. Let $\mathfrak{g}=A_{2}^{(2)}$. Let $\lambda, \mu, \nu \in P_{+}$be such that $\lambda+\mu-\nu \in Q$ and both of $\lambda(c)$ and $\mu(c)$ are nonzero. Then, the following are equivalent:
(a) $(\lambda, \mu, \nu) \in \Gamma_{2}$.
(b) The following set of inequalities is satisfied for all $w \in W$ and $i=0,1$.

$$
\begin{aligned}
& \lambda\left(x_{i}\right)+\mu\left(w x_{i}\right)-\nu\left(w x_{i}\right) \geq 0, \quad \text { and } \\
& \lambda\left(w x_{i}\right)+\mu\left(x_{i}\right)-\nu\left(w x_{i}\right) \geq 0 .
\end{aligned}
$$

In particular, Conjecture 7.3 is true for this case as well for $s=2$.
The 'In particular' statement of the above theorem follows by using the description of the cup product in the cohomology of the full flag variety of $A_{2}^{(2)}$ given by Kitchloo [Ki].

It is clear that if the level of $L\left(\Lambda^{\prime}\right)$ or $L\left(\Lambda^{\prime \prime}\right)$ is zero, then the tensor product has a single component. Thus, it is already saturated. Assume now that the levels of both of $L\left(\Lambda^{\prime}\right)$ and $L\left(\Lambda^{\prime \prime}\right)$ are >0. Then, since there are representations of level $\frac{1}{2}$, the conditions of Corollary 8.3 are satisfied for any $N \Lambda, N \Lambda^{\prime}, N \Lambda^{\prime \prime}$ with $\Lambda-\Lambda^{\prime}-\Lambda^{\prime \prime} \in Q$, provided $N \geq 4$. Hence:
Corollary 8.7. For $A_{2}^{(2)}, 4$ is a saturation factor.
8.8. Remark. When the Kac-Moody Lie algebra \mathfrak{g} is infinite dimensional, then the saturated tensor semigroup Γ_{s} is not finitely generated, for any $s \geq 2$. Thus, it is not clear a priori that there exists a saturation factor for such a \mathfrak{g}.

References

[BK] P. Belkale and S. Kumar. Eigenvalue problem and a new product in cohomology of flag varieties, Inventiones Math. 166 (2006), 185-228.
[CG] N. Chriss and V. Ginzburg. Representation Theory and Complex Geometry, Birkhäuser (1997).
[Kac] V. Kac. Infinite Dimensional Lie Algebras, Third Edition, Cambridge University Press (1990).
[KR] V. Kac and A. Raina. Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific Publishing Company Pvt. Ltd. (1987).
[KW] V. Kac and M. Wakimoto. Modular and conformal invariance constraints in representation theory of affine algebras, Advances in Math. 70 (1988), 156-234.
[Ka] M. Kashiwara. The flag manifold of Kac-Moody Lie algebra, in: Algebraic Analysis, Geometry, and Number Theory (J-I. Igusa, ed.), The Johns Hopkins University Press, Baltimore, 1989, pp. 161-190.
[KS] M. Kashiwara and M. Shimozono. Equivariant K-theory of affine flag manifolds and affine Grothendieck polynomials, Duke Math. J. 148 (2009), 501-538.
[Ki] N. Kitchloo. On the topology of Kac-Moody groups, Preprint (2011).
[KK] B. Kostant and S. Kumar. T-equivariant K-theory of generalized flag varieties, J. Diff. Geometry 32 (1990), 549-603.
[K_{1}] S. Kumar. Geometry of Schubert cells and cohomology of Kac-Moody Lie algebras, J. Diff. Geometry 20 (1984), 389-431.
$\left[K_{2}\right]$ S. Kumar. Rational homotopy theory of flag varieties associated to Kac-Moody groups, In: Infinite Dimensional Groups with Applications, MSRI Publications vol. 4 (1985), 233-273.
$\left[\mathrm{K}_{3}\right]$ S. Kumar. Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204, Birkhäuser (2002).
$\left[\mathrm{K}_{4}\right]$ S. Kumar. Positivity in T-Equivariant K-theory of flag varieties associated to KacMoody groups, Preprint (2012).
[K_{5}] S. Kumar. Additive Eigenvalue Problem (a survey), Preprint (2013).
[MFK] D. Mumford, J. Fogarty and F. Kirwan. Geometric Invariant Theory, 3rd edn., Ergebnisse der Mathematik und Ihrer Grenzgebiete, Vol. 34, Springer (1994).

Address: Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250
(emails: shrawan@email.unc.edu; merrickb@email.unc.edu).

