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A STUDY OF SATURATED TENSOR CONE FOR

SYMMETRIZABLE KAC-MOODY ALGEBRAS

MERRICK BROWN AND SHRAWAN KUMAR

1. Introduction

Let g be a symmetrizable Kac-Moody Lie algebra with the standard Car-
tan subalgebra h and the Weyl group W . Let P+ be the set of dominant
integral weights. For λ ∈ P+, let L(λ) be the irreducible, integrable, highest
weight representation of g with highest weight λ. For a positive integer s,
define the saturated tensor semigroup as

Γs := {(λ1, . . . , λs, µ) ∈ P
s+1
+ : ∃N > 1 with L(Nµ) ⊂ L(Nλ1)⊗ · · · ⊗ L(Nλs)}.

The aim of this paper is to begin a systematic study of Γs in the infinite
dimensional symmetrizable Kac-Moody case. In this paper, we produce a
set of necessary inequalities satisfied by Γs, which we describe now. Let
X = Gmin/B be the standard full KM-flag variety associated to g, where
Gmin is the ‘minimal’ Kac-Moody group with Lie algebra g and B is the
standard Borel subgroup of Gmin. For w ∈ W , let Xw = BwB/B ⊂ X
be the corresponding Schubert variety. Let {εw}w∈W ⊂ H∗(X,Z) be the
(Schubert) basis dual (with respect to the standard pairing) to the basis of
the singular homology of X given by the fundamental classes of Xw. The
following result is our first main theorem valid for any symmetrizable g (cf.
Theorem 3.3).

Theorem 1.1. Let (λ1, . . . , λs, µ) ∈ Γs. Then, for any u1, . . . , us, v ∈ W
such that nvu1,...,us

6= 0, where

εu1 . . . εus =
∑

w

nwu1,...,us
εw,

we have 


s∑

j=1

λj(ujxi)


− µ(vxi) ≥ 0, for any xi,

where xi ∈ h is dual to the simple roots of g.

The proof of the theorem relies on the Kac-Moody analogue of the Borel-
Weil theorem and the Geometric Invariant Theory (specifically the Hilbert-
Mumford index). We conjecture that the above inequalities are sufficient
as well to describe Γs. In fact, we conjecture a much sharper result, where
much fewer inequalities suffice to describe the semigroup Γs. To explain our
conjecture, we need some more notation.
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Let P ⊃ B be a (standard) parabolic subgroup and let XP := Gmin/P
be the corresponding partial flag variety. Let WP be the Weyl group of P
(which is, by definition, the Weyl group of the Levi L of P ) and let WP

be the set of minimal length coset representatives of cosets in W/WP . The
projection map X → XP induces an injective homomorphism H∗(XP ,Z) →
H∗(X,Z) and H∗(XP ,Z) has the Schubert basis {εwP }w∈WP such that εwP
goes to εw for any w ∈ WP . As defined by Belkale-Kumar [BK, §6] in the
finite dimensional case (and extended here in Section 7 for any symmetrizable
Kac-Moody case), there is a new deformed product ⊙0 in H∗(XP ,Z), which
is commutative and associative. Now, we are ready to state our conjecture
(see Conjecture 7.3).

1.2. Conjecture. Let g be any indecomposable symmetrizable Kac-Moody
Lie algebra and let (λ1, . . . , λs, µ) ∈ P s+1

+ . Assume further that none of λj is
W -invariant and µ −

∑s
j=1 λj ∈ Q, where Q is the root lattice of G. Then,

the following are equivalent:
(a) (λ1, . . . , λs, µ) ∈ Γs.
(b) For every standard maximal parabolic subgroup P in Gmin and every

choice of s + 1-tuples (w1, . . . , ws, v) ∈ (WP )s+1 such that ǫvP occurs with
coefficient 1 in the deformed product

ǫw1
P ⊙0 · · · ⊙0 ǫ

ws

P ∈
(
H∗(XP ,Z),⊙0

)
,

the following inequality holds:

( s∑

j=1

λj(wjxP )
)
− µ(vxP ) ≥ 0, (IP(w1,...,ws,v)

)

where αiP is the (unique) simple root not in the Levi of P and xP := xiP .

This conjecture is motivated from its validity in the finite case due to
Belkale-Kumar [BK, Theorem 22]. (For a survey of these results in the finite
case, see [K5].) So far, the only evidence of its validity in the infinite dimen-

sional case is shown for s = 2 and g of types A
(1)
1 and A

(2)
2 (cf. Theorems

7.5 and 8.6). In these cases, we explicitly determine Γ2 and thereby show
the validity of the conjecture.

A positive integer do is called a saturation factor for g if for any Λ, Λ′, Λ′′ ∈
P+ such that Λ−Λ′−Λ′′ ∈ Q and L(NΛ) is a submodule of L(NΛ′)⊗L(NΛ′′),
for some N ∈ Z>0, then L(doΛ) is a submodule of L(doΛ

′)⊗ L(doΛ
′′).

We prove the following result on saturation factors (cf. Corollaries 6.4 and
8.7).

Theorem 1.3. For A
(1)
1 , any integer do > 1 is a saturation factor. For A

(2)
2 ,

4 is a saturation factor.

The proof in these affine rank-2 cases makes use of basic representation
theory of the Virasoro algebra (in particular, Lemma 4.1). Let δ be the
smallest positive imaginary root of g. To determine the saturated tensor
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semigroup, we show that it is enough to know the components of L(λ1) ⊗
L(λ2) which are δ-maximal, i.e., the components L(µ) ⊂ L(λ1)⊗L(λ2) such
that L(µ+nδ) * L(λ1)⊗L(λ2) for any n > 0. Let mµ

λ1,λ2
be the multiplicity

of L(µ) in L(λ1)⊗L(λ2). If L(µ) is a δ-maximal component of L(λ1)⊗L(λ2),

then
∑

n∈Z≤0
L(µ+nδ)

⊕m
µ+nδ
λ1,λ2 is a unitarizable coset module for the Virasoro

algebra arising from the Sugawara construction for the diagonal embedding

g →֒ g ⊕ g. Proposition 5.5 for A
(1)
1 (and the analogous Proposition 8.2

for A
(2)
2 ) determining the maximal δ-components plays a crucial role in the

proofs.

Acknowledgements. We thank Evgeny Feigin and Victor Kac for some
helpful correspondences. Both the authors were partially supported by the
NSF grant number DMS-1201310.

2. Notation

We take the base field to be the field of complex numbers C. By a variety,
we mean an algebraic variety over C, which is reduced but not necessarily
irreducible.

Let G be any symmetrizable Kac-Moody group over C completed along
the negative roots (as opposed to completed along the positive roots as in
[K3, Chapter 6]) and Gmin ⊂ G be the ‘minimal’ Kac-Moody group as in [K3,
§7.4]. Let B be the standard (positive) Borel subgroup, B− the standard
negative Borel subgroup, H = B ∩ B− the standard maximal torus and W
the Weyl group (cf. [K3, Chapter 6]). Let U (resp. U−) be the unipotent
radical [B,B] (resp. [B−, B−]) of B (resp. B−). Let

X̄ = G/B

be the ‘thick’ flag variety which contains the standard KM-flag variety

X = Gmin/B.

If G is not of finite type, X̄ is an infinite dimensional non quasi-compact
scheme (cf. [Ka, §4]) and X is an ind-projective variety (cf. [K3, §7.1]). The
group Gmin acts on X̄ and X.

More generally, for any standard parabolic subgroup P ⊃ B, define the
partial flag variety

XP = Gmin/P,

and
X̄P = G/P.

Recall that if WP is the Weyl group of P (which is, by definition, the Weyl
Group WL of its Levi subgroup L), then in each coset of W/WP we have
a unique member w of minimal length. Let WP be the set of the minimal
length representatives in the cosets of W/WP .

For any w ∈WP , define the Schubert cell:

CP
w := BwP/P ⊂ G/P
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endowed with the reduced subscheme structure. Then, it is a locally closed
subvariety of the ind-variety G/P isomorphic with the affine space Aℓ(w), ℓ(w)
being the length of w (cf. [K3, §7.1]). Its closure is denoted by XP

w , which is
an irreducible (projective) subvariety of G/P of dimension ℓ(w). We denote
the point wP ∈ CP

w by ẇ. We abbreviate CB
w ,X

B
w by Cw,Xw respectively.

Similarly, define the opposite Schubert cell

Cw
P := B−wP/P ⊂ X̄P ,

and the opposite Schubert variety

Xw
P := Cw ⊂ X̄P ,

both endowed with the reduced subscheme structures. Then, Xw
P is a finite

codimensional irreducible subscheme of X̄P (cf. [K3, Section 7.1] and [Ka,
§4]). As above, we abbreviate Cw

B ,X
w
B by Cw,Xw respectively.

For any integral weight λ (i.e., any character eλ of H), we have a Gmin-
equivariant line bundle LB(λ) on X associated to the character e−λ of H.
Similarly, we have a G-equivariant line bundle LB−(λ) on X− := G/B−

associated to the character eλ of H.
By the Bruhat decomposition

XP = ⊔w∈WP CP
w ,

the singular homology H∗(XP ,Z) of XP with integral coefficients has a ba-
sis {µ(XP

w )}w∈WP , where µ(XP
w ) ∈ H2ℓ(w)(XP ,Z) denotes the fundamental

class of XP
w . Let {ǫwP }w∈WP be the dual basis of the singular cohomology

H∗(XP ,Z) under the standard pairing of cohomology with homology, i.e.,

ǫuP (µ(X
P
v )) = δu,v, for any u, v ∈WP .

Thus, ǫwP ∈ H2ℓ(w)(XP ,Z). If P = B, we abbreviate ǫuP by ǫu.
Let ∆ = {α1, . . . , αr} ⊂ h∗ be the set of simple roots, {α∨

1 , . . . , α
∨
r } ⊂ h

the set of simple coroots and {s1, . . . , sr} ⊂ W the corresponding simple
reflections, where h := LieH. Let ρ ∈ X(H) be any weight satisfying

ρ(α∨
i ) = 1, for all 1 ≤ i ≤ r,

where X(H) is the character group of H (identified as a subgroup of h∗

via the derivative). When G is a finite dimensional semisimple group, ρ is
unique, but for a general Kac-Moody group G, it may not be unique.

Choose elements xi ∈ h such that

αj(xi) = δi,j, for any 1 ≤ i, j ≤ r. (1)

Observe that xi may not be unique.
Define the set of dominant integral weights

P+ := {λ ∈ X(H) : λ(α∨
i ) ∈ Z+ ∀ 1 ≤ i ≤ r},

and the set of dominant integral regular weights

P++ := {λ ∈ X(H) : λ(α∨
i ) ∈ Z≥1 ∀ 1 ≤ i ≤ r},
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where Z+ is the set of non-negative integers. The integrable highest weight
(irreducible) modules of Gmin are parameterized by P+. For λ ∈ P+, let
L(λ) be the corresponding integrable highest weight (irreducible) G-module
with highest weight λ.

3. Necessary Inequalities for the Saturated Tensor Semigroup

Fix a positive integer s and define the saturated tensor semigroup Γs =
Γs(G):

Γs := {(λ1, . . . , λs, µ) ∈ P
s+1
+ : ∃N > 1 with L(Nµ) ⊂ L(Nλ1)⊗· · ·⊗L(Nλs)}.

(2)
It is indeed a semigroup by the anlogue of the Borel-Weil theorem for the
Kac-Moody case (see the identity (3) in the proof of Theorem 3.3). We give
a certain set of inequalities satisfied by Γs. But, we first recall some basic
results about the Hilbert-Mumford index.

3.1. Definition. Let S be any (not necessarily reductive) algebraic group
acting on a (not necessarily projective) variety X and let L be an S-equivariant
line bundle on X. Let O(S) be the set of all one parameter subgroups
(for short OPS) in S. Take any x ∈ X and δ ∈ O(S) such that the limit
limt→0 δ(t)x exists in X (i.e., the morphism δx : Gm → X given by t 7→ δ(t)x

extends to a morphism δ̃x : A1 → X). Then, following Mumford, define

a number µL(x, δ) as follows: Let xo ∈ X be the point δ̃x(0). Since xo is
Gm-invariant via δ, the fiber of L over xo is a Gm-module; in particular, it
is given by a character of Gm. This integer is defined as µL(x, δ).

We record the following standard properties of µL(x, δ) (cf. [MFK, Chap.
2, §1]):

3.2. Proposition. For any x ∈ X and δ ∈ O(S) such that limt→0 δ(t)x exists
in X, we have the following (for any S-equivariant line bundles L,L1,L2):

(a) µL1⊗L2(x, δ) = µL1(x, δ) + µL2(x, δ).
(b) If there exists σ ∈ H0(X,L)S such that σ(x) 6= 0, then µL(x, δ) ≥ 0.
(c) If µL(x, δ) = 0, then any element of H0(X,L)S which does not vanish

at x does not vanish at limt→0 δ(t)x as well.
(d) For any S-variety X′ together with an S-equivariant morphism f :

X′ → X and any x′ ∈ X′ such that limt→0 δ(t)x
′ exists in X′, we have

µf
∗L(x′, δ) = µL(f(x′), δ).

(e) (Hilbert-Mumford criterion) Assume that X is projective, S is con-
nected and reductive and L is ample. Then, x ∈ X is semistable (with
respect to L) if and only if µL(x, δ) ≥ 0, for all δ ∈ O(S).

In particular, if x ∈ X is semistable and δ-fixed, then µL(x, δ) = 0.

The following theorem is one of our main results giving a collection of
necessary inequalities defining the semigroup Γs.
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3.3. Theorem. Let G be any symmetrizable Kac-Moody group and let (λ1, · · · , λs, µ) ∈
Γs. Then, for any u1, . . . , us, v ∈W such that nvu1,...,us

6= 0, where

εu1 · · · εus =
∑

w

nwu1,...,us
εw ∈ H∗(X,Z),

we have
( s∑

j=1

λj(ujxi)
)
− µ(vxi) ≥ 0, for any xi,

where xi is defined by the equation (1).

Proof. Let

Z :=
{
(ḡ1, . . . , ḡs) ∈ (X−)

s
: g1X

u1 ∩ · · · ∩ gsX
us ∩Xv 6= ∅

}
,

where X− := G/B− and ḡj = gjB
−. Then, Z contains a nonempty open set

by Proposition 3.7. (In fact, by Proposition 3.7, Z = (X−)s, but we do not
need this stronger result.)

Take a nonzero σ ∈ H0
(
(X−)s ×X,LN

)Gmin

, where

L := LB−(λ1)⊠ · · · ⊠ LB−(λs)⊠ LB(µ).

Such a nonzero σ exists, for some N > 0, since by [K3, Corollary 8.3.12(a)
and Lemma 8.3.9],

H0
(
(X−)s ×X,LN

)Gmin

≃ HomGmin

(
L(Nλ1)

∨ ⊗ · · · ⊗ L(Nλs)
∨ ⊗ L(Nµ),C

)

≃ HomGmin

(
L(Nµ), [L(Nλ1)

∨ ⊗ · · · ⊗ L(Nλs)
∨]∗
)

≃ HomGmin

(
L(Nµ), [L(Nλ1)

∨ ⊗ · · · ⊗ L(Nλs)
∨]∨
)

≃ HomGmin

(
L(Nµ), L(Nλ1)⊗ · · · ⊗ L(Nλs)

)

6= 0, (3)

since (λ1, . . . , λs, µ) ∈ Γs, where, for a Gmin-module M , M∨ denotes the
direct sum of the H-weight spaces of the full dual module M∗.

Pick (ḡ1, . . . , ḡs) ∈ Z such that σ(ḡ1, . . . , ḡs, 1̄) 6= 0, where 1̄ = 1 ·B. Since
(ḡ1, . . . , ḡs) ∈ Z, there exists u′1 ≥ u1, · · · , u

′
s ≥ us and v′ ≤ v such that

g1C
u′
1 ∩ · · · ∩ gsC

u′
s ∩Cv′ is nonempty. Now, pick g ∈ Gmin such that

gB ∈ g1C
u′
1 ∩ · · · ∩ gsC

u′
s ∩Cv′ . (4)

By Proposition 3.2, for any δ ∈ O(Gmin), µL(x̄, δ(t)) ≥ 0, where x̄ =
(ḡ1, . . . , ḡs, 1̄) (since σ(x̄) 6= 0). By the following Lemma 3.4, applied to
the OPS δ(t) = gtxig−1, we get

( s∑

j=1

λj(u
′
jxi)

)
− µ(v′xi) ≥ 0. (5)

But, by [K3, Lemma 8.3.3],

(u′j)
−1λj ≤ u−1

j (λj).
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Thus,

λj(u
′
jxi) ≤ λj(ujxi).

Similarly,

µ(v′xi) ≥ µ(vxi).

Thus, from (5), we get

( s∑

j=1

λj(ujxi)
)
− µ(vxi) ≥ 0.

This proves the theorem. �

3.4. Lemma. Let g ∈ Gmin be as in the equation (4). Consider the one
parameter subgroup δ(t) = gtxig−1 ∈ O(Gmin). Then,

(a) µLB−(λj )(gjB
−, δ(t)) = λj(u

′
jxi).

(b) µLB(µ)(1 · B, δ(t)) = −µ(v′xi).

Proof. (a) µLB−(λj )(gjB
−, δ(t)) = µLB−(λj )(g−1gjB

−, txi).

By assumption, g−1
j g ∈ U−u′jB. Write

g−1
j g = b−j u

′
jpj , for some b−j ∈ U−, pj ∈ B.

Thus,

1 = g−1gjb
−
j u

′
jpj .

Let

bj(t) = b−j u
′
jt

−xi(u′j)
−1(b−j )

−1 ∈ B−.

Then,

txig−1gjbj(t) = txip−1
j t−xi(u′j)

−1(b−j )
−1. (6)

Consider the Gm-invariant section (via txi) of LB−(λj) :

σ̂(t) =
(
txi g−1gj , 1

)
mod B−

=
(
txi g−1gjbj(t), λj(bj(t)

−1)
)

mod B−.

Clearly, limt→0 t
xi g−1gjbj(t) exists in G by (6).

Now,

λj
(
bj(t)

−1
)
= λj

(
b−j u

′
jt

xi(u′j)
−1(b−j )

−1
)

= λj
(
tu

′
jxi
)
.

This gives

µLB−(λj)(gjB
−, δ(t)) = λj(u

′
j(xi)).

This proves the (a) part of the lemma.

(b) µLB(µ)(1 · B, δ(t)) = µLB(µ)(g−1B, txi). By assumption,

g ∈ Bv′ ·B.

Write

g = bv′p, for b ∈ U, p ∈ B.
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Thus,
1 = g−1bv′p.

Let
b(t) = bv′t−xi(v′)−1b−1 ∈ B.

Now,
txig−1b(t) = txip−1t−xi(v′)−1b−1.

Thus,
limt→0 t

xig−1b(t) exists in Gmin.

Consider the Gm-invariant section (via txi)

σ̂(t) = (txig−1, 1) mod B

=
(
txig−1b(t), µ(b(t))

)
mod B.

Now,

µ(b(t)) = µ(bv′t−xi(v′)−1b−1)

= µ(t−v′xi).

This gives
µLB(µ)(1 · B, δ(t)) = −µ(v′(xi)).

This proves the (b)-part and hence the lemma is proved. �

3.5. Definition. For a quasi-compact scheme Y , an OY -module S is called
coherent if it is finitely presented as an OY -module and any OY -submodule
of finite type admits a finite presentation.

An OX̄ -module S is called coherent if S|V S is a coherent OV S -module for

any finite ideal S ⊂W (where a subset S ⊂W is called an ideal if for x ∈ S
and y ≤ x ⇒ y ∈ S), where V S is the quasi-compact open subset of X̄
defined by

V S =
⋃

w∈S

wU−B/B.

Let K0(X̄) denote the Grothendieck group of coherent OX̄ -modules S.
Similarly, define K0(X) := limn→∞K0(Xn), where {Xn}n≥1 is the filtra-

tion of X giving the ind-projective variety structure (i.e., Xn =
⋃

ℓ(w)≤nCw)

and K0(Xn) is the Grothendieck group of coherent sheaves on the projective
variety Xn.

We also define
Ktop(X) := Invltn→∞Ktop(Xn),

where Ktop(Xn) is the topological K-group of the projective variety Xn.
Let ∗ : Ktop(Xn) → Ktop(Xn) be the involution induced from the oper-

ation which takes a vector bundle to its dual. This, of course, induces the
involution ∗ on Ktop(X).

For any w ∈W ,
[OXw ] ∈ K0(X).

3.6. Lemma.
{
[OXw ]

}
w∈W

forms a basis of K0(X) as a Z-module.
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Proof. By [CG, §5.2.14 and Theorem 5.4.17], the result follows. �

For u ∈W , by [KS, §2], OXu is a coherent OX̄ -module. In particular, OX̄

is a coherent OX̄ -module.
Define a pairing

〈 , 〉 : K0(X̄)⊗K0(X) → Z, 〈[S], [F ]〉 =
∑

i

(−1)iχ
(
Xn,T or

OX̄

i (S,F)
)
,

if S is a coherent sheaf on X̄ and F is a coherent sheaf on X supported in
Xn (for some n), where χ denotes the Euler-Poincaré characteristic. Then,
as in [K4, Lemma 3.4], the above pairing is well defined.

By [KS, Proof of Proposition 3.4], for any u ∈W ,

ExtkOX̄
(OXu ,OX̄) = 0 ∀k 6= ℓ(u). (7)

Define the sheaf

ωXu := Ext
ℓ(u)
OX̄

(
OXu ,OX̄

)
⊗ L(−2ρ),

which, by the analogy with the Cohen-Macaulay (for short CM) schemes of
finite type, will be called the dualizing sheaf of Xu.

Now, set the sheaf on X̄

ξu := L(ρ)ωXu

= L(−ρ)Ext
ℓ(u)
OX̄

(OXu ,OX̄).

Then, as proved in [K4, Proposition 3.5], for any u,w ∈W ,

〈[ξu], [OXw ]〉 = δu,w. (8)

With these preliminaries, we are ready to prove the following result.

3.7. Proposition. With the notation as in the proof of Theorem 3.3, Z =
(X−)s, if εv occurs in εu1 · · · εus with nonzero coefficient.

Proof. We give the proof in the case s = 2. The proof for general s is similar.
For u, v ∈W , express

εuεv =
∑

w
ℓ(w)=ℓ(u)+ℓ(v)

nwu,vε
w.

Express the product in topological K-theory Ktop(X) of X = Gmin/B:

ψu
oψ

v
o =

∑

ℓ(w)≥ℓ(u)+ℓ(v)

mw
u,vψ

w
o ,

where ψw := ∗τw
−1

(τw being the Kostant-Kumar ‘basis’ of Ktop
H (X) as in

[KK, Remark 3.14]) and {ψw
o }w∈W is the corresponding ‘basis’ of Ktop(X) ≃

Z⊗R(H) K
top
H (X), cf. [KK, Proposition 3.25]).

Then, by [KK, Proposition 2.30],

nwu,v = mw
u,v, if ℓ(w) = ℓ(u) + ℓ(v). (9)
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Let ∆ : X → X ×X be the diagonal map. Then, by [K4, Proposition 4.1]
and the identity (8), for any u, v, w ∈W , g1, g2 ∈ Gmin,

mw
u,v = 〈[ξu ⊠ ξv], [∆∗OXw ]〉

= 〈[ξu ⊠ ξv], [(g−1
1 , g−1

2 ) · (∆∗OXw)]〉,

since [(g−1
1 , g−1

2 ) ·∆∗OXw ] = [∆∗OXw ] as elements of K0(X ×X). Thus,

mw
u,v = 〈[ξu ⊠ ξv], [(g−1

1 , g−1
2 ) · (∆∗OXw)]〉 (10)

:=
∑

i

(−1)iχ(X̄ × X̄,T or
OX̄×X̄

i

(
ξu ⊠ ξv, (g−1

1 , g−1
2 ) · (∆∗OXw)

)
.

Now, by definition, the support of ξu is contained in Xu and hence the
support of the sheaf

Si := T or
OX̄×X̄

i

(
ξu ⊠ ξv, (g−1

1 , g−1
2 ) ·∆∗OXw

)

is contained in
Xu ×Xv ∩

(
(g−1

1 , g−1
2 ) ·∆(Xw)

)
, (11)

which is empty if
(g1X

u) ∩ (g2X
v) ∩Xw = ∅. (12)

Thus, if the equation (12) is true, then the Tor sheaf Si = 0 ∀i ≥ 0. Thus,
if the equation (12) is satisfied,

mw
u,v = 0.

Now, assume that ℓ(w) = ℓ(u) + ℓ(v). Then, by the equation (9),

nwu,v = 0, if the equation (12) is satisfied.

But, since by assumption, nwu,v 6= 0, we see that

(g1X
u) ∩ (g2X

v) ∩Xw 6= ∅, for any g1, g2 ∈ Gmin.

But since Gmin/(Gmin ∩B−)
∼

−→ X−, we get the proposition. �

4. Tensor Product Decomposition for Affine Kac-Moody Lie

Algebras

4.1. The Virasoro Algebra. We recall the definition of the Virasoro alge-
bra and its basic representation theory, which we need. The Virasoro algebra
Vir has a basis {C, Ln : n ∈ Z} over C and the Lie bracket is given by

[Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m)δm,−nC and [Vir,C] = 0.

Let Vir0 := CL0⊕CC. Then, a Vir module V is said to be a highest weight
representation if there exists a Vir0-eigenvector vo ∈ V such that Lnvo = 0
for n ∈ Z>0 and U(

⊕
n<0 CLn)vo = V . Such a V is said to have highest

weight λ ∈ Vir∗0 if Xvo = λ(X)vo, for all X ∈ Vir0. (It is easy to see that
such a vo is unique up to a scalar multiple and hence λ is unique.) The
irreducible highest weight representations of Vir are in 1-1 correspondence
with elements of Vir∗0 given by the highest weight. Denote the basis of Vir∗0



SATURATED TENSOR CONE FOR SYMMETRIZABLE KAC-MOODY ALGEBRAS 11

dual to the basis {L0, C} of Vir0 as {h, z}. For any µ ∈ Vir∗0, denote the
µ-th weight space of V by Vµ, i.e.,

Vµ := {v ∈ V : X · v = µ(X)v ∀X ∈ Vir0}.

Define a Vir module V to be unitarizable if there exists a positive definite
Hermitian form (· , ·) on V so that (Lnv , w) = (v , L−nw) for all n ∈ Z
and (Cv , w) = (v , Cw). It is easy to see that if M is a Vir-submodule of
V , then M⊥ is also a submodule. Hence, any unitarizable representation
of Vir is completely reducible. Note that for a unitarizable highest weight
Vir-representation V with highest weight λ, if vo is a highest weight vector,
then

0 ≤ (L−nvo , L−nvo) = (LnL−nvo , vo) = (2nλ(L0)+
1

12
(n3−n)λ(C))(vo , vo)

(13)
for all n > 0. Therefore, both λ(L0) and λ(C) must be nonnegative real
numbers.

Lemma 4.1. Let V be a unitarizable, highest weight (irreducible) represen-
tation of V ir with highest weight λ.

(a) If λ(L0) 6= 0, then Vλ+nh 6= 0, for any n ∈ Z+.
(b) If λ(L0) = 0 and λ(C) 6= 0, then Vλ+nh 6= 0, for any n ∈ Z>1 and

Vλ+h = 0.
(c) If λ(L0) = λ(C) = 0, then V is one dimensional.

Proof. If λ(L0) 6= 0, then by the equation (13) (since both of λ(L0) and
λ(C) ∈ R+), L−nvo 6= 0, for any n ∈ Z+.

If λ(L0) = 0 and λ(C) 6= 0, then again by the equation (13), L−nvo 6= 0,
for any n ∈ Z>1. Also, L−1vo = 0.

If λ(L0) = λ(C) = 0, then (by the equation (13) again), L−nvo = 0, for
any n ∈ Z≥1. This shows that V is one dimensional. �

4.2. Tensor product decomposition: A general method. Let g be the
untwisted affine Kac-Moody Lie algebra associated to a finite dimensional

simple Lie algebra
◦
g, i.e.,

g =
(◦
g⊗ C[t, t−1]

)
⊕ Cc⊕ Cd.

Let
◦
h be a Cartan subalgebra of

◦
g. Then,

h :=
◦
h⊗ 1⊕ Cc⊕ Cd

is the standard Cartan subalgebra of g. Let δ ∈ h∗ be the smallest positive
imaginary root of g (so that the positive imaginary roots of g are precisely
{nδ, n ∈ Z≥1}). Then, δ is given by δ

|
◦

h⊕Cc
≡ 0 and δ(d) = 1. For any

Λ ∈ P+, let P (Λ) be the set of weights of L(Λ) and let P o(Λ) be the set of
δ-maximal weights of L(Λ), i.e.,

P o(Λ) = {λ ∈ h∗ : λ ∈ P (Λ) but λ+ nδ /∈ P (Λ) for any n > 0} .
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For any λ ∈ X(H), define the δ-character of L(Λ) through λ by

cΛ,λ =
∑

n∈Z

dimL(Λ)λ+nδ e
nδ.

Since δ is W -invariant,

cΛ,λ = cΛ,wλ, for anyw ∈W. (14)

Moreover, P o(Λ) is W -stable. It is obvious that

chL(Λ) =
∑

λ∈P o(Λ)

cΛ,λe
λ. (15)

By [K3, Exercise 13.1.E.8], for any λ ∈ P (Λ′) and Λ′′ ∈ P+, Λ′′+λ+ρ belongs
to the Tits cone. Hence, there exists v ∈W such that v−1(Λ′′+λ+ρ) ∈ P+.
Moreover, if Λ′′ + λ + ρ has nontrivial W -isotropy, then its isotropy group
must contain a reflection (cf. [K3, Proposition 1.4.2(a)]). Thus, for such a
λ ∈ P (Λ′), i.e., if Λ′′ + λ+ ρ has nontrivial W -isotropy,

∑

w∈W

ε(w)ew(Λ′′+λ+ρ) = 0. (16)

Define

P̄+ := {Λ ∈ P+ : Λ(d) = 0}.

For any m ∈ Z+, let

P
(m)
+ := {Λ ∈ P+ : Λ(c) = m},

and let

P̄
(m)
+ := P̄+ ∩ P

(m)
+ .

Then, P̄
(m)
+ provides a set of representatives in P

(m)
+ mod (P+ ∩Cδ).

For any Λ,Λ′,Λ′′ ∈ P+, define

TΛ′,Λ′′

Λ = {λ ∈ P o(Λ′) : ∃vΛ,Λ′′,λ ∈W andSΛ,Λ′′,λ ∈ Z with

λ+ Λ′′ + ρ = vΛ,Λ′′,λ(Λ + ρ) + SΛ,Λ′′,λδ}.

Observe that since Λ + ρ + nδ ∈ P++ for any n ∈ Z, such a vΛ,Λ′′,λ and
SΛ,Λ′′,λ are unique by [K3, Proposition 1.4.2 (a), (b)] (if they exist). Also,
observe that

TΛ′,Λ′′

Λ = ∅, unlessΛ(c) = Λ′(c) + Λ′′(c) and Λ′ + Λ′′ − Λ ∈ Q, (17)

where Q is the root lattice of g.

Proposition 4.2. For any Λ′ and Λ′′ ∈ P+,

ch
(
L(Λ′)⊗ L(Λ′′)

)
=

∑

Λ∈P̄
(m)
+

chL(Λ)
( ∑

λ∈TΛ′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λe
SΛ,Λ′′ ,λδ

)
,

where m := Λ′(c) + Λ′′(c).
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Moreover,
∑

λ∈TΛ′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λe
SΛ,Λ′′ ,λδ is the character of a unitary

representation (though, in general, not irreducible) of the Virasoro algebra
Vir with central charge

dim
◦
g ·
( m′

m′ + g
+

m′′

m′′ + g
−

m

m+ g

)
,

where m′ := Λ′(c),m′′ := Λ′′(c) and g is the dual Coxeter number of
◦
g.

Proof. By the Weyl-Kac character formula (cf. [K3, Theorem 2.2.1]) and the
identity (15), for any Λ′,Λ′′ ∈ P+,
(∑

w∈W

ε(w)ewρ

)
· chL(Λ′) · chL(Λ′′)

=


 ∑

λ∈P o(Λ′)

cΛ′,λe
λ


 ·

(∑

w∈W

ε(w)ew(Λ′′+ρ)

)

=
∑

λ∈P o(Λ′)

cΛ′,λ

∑

w∈W

ε(w)ew(Λ′′+λ+ρ), by (14)

=
∑

Λ∈P̄
(m)
+

∑

λ∈TΛ′,Λ′′

Λ

cΛ′,λ

∑

w∈W

ε(w)ew(vΛ,Λ′′ ,λ(Λ+ρ))+SΛ,Λ′′ ,λδ, by (16)

=
∑

Λ∈P̄
(m)
+

∑

λ∈TΛ′,Λ′′

Λ

cΛ′,λ

∑

w∈W

ε(w)ε(vΛ,Λ′′,λ)e
w(Λ+ρ)eSΛ,Λ′′ ,λδ

=
∑

Λ∈P̄
(m)
+

∑

w∈W

ε(w)ew(Λ+ρ)
∑

λ∈TΛ′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λe
SΛ,Λ′′ ,λδ.

Thus,

ch
(
L(Λ′)⊗ L(Λ′′)

)
=

∑

Λ∈P̄
(m)
+

chL(Λ)
( ∑

λ∈TΛ′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λe
SΛ,Λ′′ ,λδ

)
.

To prove the second part of the proposition, use [KR, Proposition 10.3]. This
proves the proposition. �

4.3. Remark. For an affine Kac-Moody Lie algebra g, if we consider the
tensor product decomposition of L(Λ′)⊗ L(Λ′′) with respect to the derived
subalgebra g′ (i.e., without the d-action), then the components L(Λ) are

precisely of the form Λ ∈ Λ′ + Λ′′ +
◦
Q, where

◦
Q is the root lattice of

◦
g (cf.

[KW]). Thus, the determination of the eigen semigroup and the saturated
eigen semigroup is fairly easy for g′.

Let θ =
∑ℓ

i=1 hiαi be the highest root of
◦
g (with respect to a choice

of the positive roots), written as a linear combination of the simple roots
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{α1, . . . , αℓ} of
◦
g. Let

S := {
ℓ∑

i=0

niαi : ni ≥ 0 for any i and 0 ≤ ni < hi for some 0 ≤ i ≤ ℓ},

where h0 := 1.

Proposition 4.4. Let g be an untwisted affine Kac-Moody Lie algebra as
above. Then, for any Λ ∈ P+ with Λ(c) > 0,

P o(Λ)+ = S(Λ) ∩ P+,

where P o(Λ)+ := P o(Λ) ∩ P+ and S(Λ) = {Λ− β : β ∈ S}.

Proof. Take λ ∈ S(Λ). Then, for any n ≥ 1,

Λ− (λ+ nδ) =
( ℓ∑

i=0

niαi

)
− nδ = (n0 − n)α0 +

ℓ∑

i=1

(ni − nhi)αi,

since α0 := δ − θ. Now, the coefficient of some αi in the above sum is
negative, for any positive n, since λ ∈ S(Λ). Thus, λ + nδ could not be a
weight of L(Λ) for any positive n. Therefore, if λ ∈ P (Λ) ∩ S(Λ), then it is
δ-maximal.

By [Kac, Proposition 12.5(a)], if Λ(c) 6= 0, then S(Λ) ∩ P+ ⊂ P (Λ).
Therefore, S(Λ) ∩ P+ ⊂ P o(Λ)+.

Conversely, take λ ∈ P o(Λ)+. Then, λ ∈ P (Λ) ∩ P+ and λ + δ /∈ P (Λ).

Express λ = Λ− n0α0 −
∑ℓ

i=1 niαi, for some ni ∈ Z+. Then,

λ+ δ = Λ− (n0 − 1)α0 −
ℓ∑

i=1

(ni − hi)αi.

Again applying [Kac, Proposition 12.5(a)], λ + δ /∈ P (Λ) if and only if
λ + δ 6≤ Λ, i.e., for some 0 ≤ i ≤ ℓ, ni < hi. Thus, λ ∈ S(Λ). This proves
the proposition. �

5. A
(1)
1 Case

In this section, we consider g = ŝl2 =
(⊕

n∈Z Ct
n ⊗ sl2

)
⊕Cc⊕Cd. In this

case h∗ = Cα⊕Cδ⊕CΛ0, where α is the simple root of sl2 and Λ0
|
◦

h⊕Cd
≡ 0

and Λ0(c) = 1. Then, Λ0 is a zeroeth fundamental weight. The simple roots

of ŝl2 are α0 := δ − α and α1 := α. The simple coroots are α∨
0 := c − α∨

and α∨
1 := α∨. It is easy to see that an element of h∗ of the form mΛ0 +

j
2α

belongs to P+ if and only if m, j ∈ Z+ and m ≥ j.

Specializing Proposition 4.4 to the case of g = ŝl2, we get the following.

5.1. Corollary. For g = ŝl2 and Λ = mΛ0 +
j
2α ∈ P+,

P o(Λ)+ =

{
Λ− kα, Λ− l(δ − α) : k, l ∈ Z+ and k ≤

j

2
, l ≤

m− j

2

}
.

(18)
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Proof. The corollary follows from Proposition 4.4 since m1Λ0 +
m2
2 α+m3δ

belongs to P+ if and only if m1,m2 ∈ Z+ and m1 ≥ m2. �

Let π be the projection h∗ = CΛ0 ⊕ Cα⊕ Cδ → CΛ0 ⊕Cα.

5.2. Lemma. Let g = ŝl2. For Λ = mΛ0 +
j
2α ∈ P+ (i.e., m, j ∈ Z+ and

m ≥ j) such that m > 0,

π(P o(Λ)) = {Λ+ kα : k ∈ Z}. (19)

Moreover, for any k ∈ Z, let nk be the unique integer such that Λ+kα+nkδ ∈
P o(Λ). Then, writing k = qm+ r, 0 ≤ r < m, we have:

nk = nr − q(k + r + j). (20)

Proof. The assertion (19) follows from the identity (18) together with the

action of the affine Weyl group W ≃
◦
W × (Zα∨) on h∗, where

◦
W is the Weyl

group of sl2 and Zα∨ acts on h∗ via:

Tnα∨(µ) = µ+ nµ(c)α− [nµ(α∨) + n2µ(c)]δ, forn ∈ Z, µ ∈ h∗. (21)

Since P o(Λ) is W -stable, the identity (20) can be established from the action
of the affine Weyl group element T−qα∨ on Λ+ kα+ nkδ. �

The value of nr for 0 ≤ r < m can be determined from the identity (18)
by applying Tα∨ , Tα∨ · s1 to Λ− kα and applying 1, Tα∨ · s1 to Λ− l(δ − α),

where s1 is the nontrivial element of
◦
W . We record the result in the following

lemma.

5.3. Lemma. With the notation as in the above lemma, the value of nr for
any integer 0 ≤ r < m is given by

nr =

{
−r , for 0 ≤ r ≤ m− j

m− j − 2r for m− j ≤ r < m.

5.4. Lemma. Take the following elements in P+:

Λ = mΛ0 +
j

2
α, Λ′ = m′Λ0 +

j′

2
α, Λ′′ = m′′Λ0 +

j′′

2
α,

where m := m′ +m′′ and we assume that m′ > 0. Then,

π
(
TΛ′,Λ′′

Λ

)
= {Λ′ + kα : k ∈ Z, k ≡

1

2

(
j − j′ − j′′

)

or k ≡ −
1

2

(
j + j′ + j′′

)
− 1modM},

where M := m+ 2. In particular, by the equation (17), TΛ′,Λ′′

Λ is nonempty

if and only if j−j′−j′′

2 ∈ Z.

Moreover, for λ = Λ′ + kα+ nkδ ∈ T
Λ′,Λ′′

Λ ,

vΛ,Λ′′, λ =




T k− 1

2 (j−j′−j′′)
M

α∨
, if k ≡ 1

2 (j − j′ − j′′) mod M

s1T
−

k+1
2 (j+j′+j′′)+1

M
α∨
, if k ≡ −1

2 (j + j′ + j′′)− 1modM,
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where Tnα∨ is defined by the equation (21). Further,

SΛ,Λ′′,λ = nk +

(
k − 1

2 (j − j′ − j′′)
) (
k + 1

2 (j + j′ + j′′) + 1
)

M
.

Proof. Follows from the fact that W =
◦
W ⋊Zα∨ and that ρ = 2Λ0+

1
2α. �

We have the following very crucial result.

Proposition 5.5. Fix Λ,Λ′ and Λ′′ as in Lemma 5.4 and asume that j−j′−j′′

2 ∈

Z and both of m′,m′′ > 0. Then, the maximum of
{
SΛ,Λ′′,λ : λ ∈ TΛ′,Λ′′

Λ and ε(vΛ,Λ′′,λ) = 1
}

is achieved precisely when π(λ) = Λ′ + 1
2 (j − j′ − j′′)α.

Proof. By Lemma 5.4 and the explicit description of the length function of
Tnα∨ (cf. [K3, Exercise 13.1.E.3]),

π{λ ∈ TΛ′,Λ′′

Λ : ε(vΛ,Λ′′,λ) = 1} = {Λ′ + klα : l ∈ Z},

where M := m+ 2 and kl :=
j−j′−j′′

2 + lM . Take λ = Λ′ + klα ∈ π(TΛ′,Λ′′

Λ )
for l ∈ Z. Write kl = qlm

′+rl for ql ∈ Z and 0 ≤ rl < m′. Then, by Lemmas

5.2, 5.3 and 5.4, for λ = Λ′ + klα (setting J := j−j′−j′′

2 ),

SΛ,Λ′′,λ = nrl −
(J + j′ + lM + rl)(J + lM − rl)

m′
+ l(lM + 1 + j)

= l2M(1−
M

m′
) + l(1 + j −

M(j − j′′)

m′
)−

(j − j′′)2 − j′2

4m′
+
r2l
m′

+
rlj

′

m′
+ nrl

= l2M(1−
M

m′
) + l(1 + j −

M

m′
(j − j′′))−

(j − j′′)2 − j′2

4m′
+ p(kl),

where

p(kl) :=
r2l
m′

+
rl
m′
j′ + nkl.

Let P = Pm′,j′ : R → R be the following function:

P (s) :=





(s−m′

2
k)2

m′ − (j′)2

4m′ , if
∣∣∣s− m′

2 k
∣∣∣ ≤ j′

2 for some k ∈ 2Z

(s−m′

2
k)2

m′ − (m′−j′)2

4m′ , if
∣∣∣s− m′

2 k
∣∣∣ ≤ m′−j′

2 for some k ∈ 2Z+ 1.

Let ks ∈ Z be such a k. (Of course, ks depends upon m′ and j′.)

Claim 5.6. P (s) = p(s− j′

2 ) for s ∈ j′

2 + Z.

Proof. Clearly, both of P and p are periodic with period m′. So, it is enough

to show that P (s) = p(s− j′

2 ), for s− j′

2 equal to any of the integral points
of the interval [−j′,m′ − j′]. By Lemma 5.3 and the identity (20), for any
integer −j′ ≤ r ≤ 0,

p(r) =
1

m′
r(r + j′),
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and for any integer 0 ≤ r ≤ m′ − j′,

p(r) =
r(r + j′)

m′
− r.

From this, the claim follows immediately. �

Fix m′ > 0. Let

I := {(t, j′,m′′, j′′, j) ∈ R5 : 0 ≤ j′ ≤ m′, 1 ≤ m′′,

0 ≤ j′′ ≤ m′′, 0 ≤ j ≤ m′ +m′′}.

Define F : I → R by

F : (t, j′,m′′, j′′, j) 7→ t2M(1−
M

m′
) + t

(
j(1 −

M

m′
) + 1 +

M

m′
j′′
)

+
(j′)2 − (j − j′′)2

4m′
+ P (

1

2

(
j − j′′

)
+ tM).

Thus, F is a continuous, piecewise smooth function with failure of differen-
tiability along the set

{(t, j′,m′′, j′′, j) ∈ I :
1

2
(j ± j′ − j′′) + tM ∈ m′Z}.

Claim 5.7. Let ∆(t) = ∆(t, j′,m′′, j′′, j) := F (t+1, j′,m′′, j′′, j)−F (t, j′,m′′, j′′, j).
Then, on I,

(1) ∆ is a nonincreasing function of t
(2) ∆ is increasing with respect to j′′

(3) ∆ is nonincreasing in j
(4) ∆(0) is decreasing in m′′

(5) ∆(−1) is nondecreasing in m′′.

Proof. We compute and give bounds for the partial derivatives of ∆, where
they exist.

∆(t) = 2tM(1 −
M

m′
) +

(
(j +M)(1−

M

m′
) + 1 +

M

m′
j′′
)

+P (tM +M +
1

2
(j − j′′))− P (tM +

1

2
(j − j′′)).

Hence,

∂t∆(t) = 2M(1−
M

m′
) +M

(
P ′(tM +M +

1

2
(j − j′′))− P ′(tM +

1

2
(j − j′′))

)

= 2M(1−
M

m′
) + 2

M

m′
(M −

m′

2
k1 +

m′

2
k0)

= 2M(1−
k1 − k0

2
),

where k1 := k(t+1)M+ 1
2
(j−j′′) and k0 := ktM+ 1

2
(j−j′′). Since 2 ≤ k1 − k0, we

see that ∂t∆ ≤ 0, wherever ∂t∆ exists. Since ∆ is continuous everywhere
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and differentiable on all but a discrete set, ∆ is nonincreasing in t.

∂j′′∆(t) =
M

m′
−

1

2

(
P ′(tM +M +

1

2
(j − j′′))− P ′(tM +

1

2
(j − j′′))

)
.

Now, |P ′| ≤ 1, so M
m′ + 1 ≥ ∂j′′∆ ≥ M

m′ − 1 = m′′+2
m′ > 0.

For (3):

∂j∆(t) = 1−
M

m′
+

1

2

(
P ′(tM +M +

1

2
(j − j′′))− P ′(tM +

1

2
(j − j′′))

)

= 1−
M

m′
+

1

m′

(
M −

m′

2
k1 +

m′

2
k0

)

= 1−
k1 − k0

2
≤ 0.

(4) and (5) follow from the following calculation:

∂m′′∆ =2t(1− 2
M

m′
) + (1− 2

M

m′
+

1

m′
(j′′ − j))

+ (t+ 1)P ′(tM +M +
1

2
(j − j′′))− tP ′(tM +

1

2
(j − j′′)).

Hence,

∂m′′∆(0) = 1− 2
M

m′
+

1

m′
(j′′ − j) + P ′(M +

1

2
(j − j′′))

≤ 1− 2
M

m′
+
m′′

m′
+ 1

=
−m′′ − 4

m′
< 0,

and

∂m′′∆(−1) = −2(1 − 2
M

m′
) + (1− 2

M

m′
+

1

m′
(j′′ − j)) + P ′(−M +

1

2
(j − j′′))

= −1 + 2
M

m′
+

1

m′
(j′′ − j) + P ′(−M +

1

2
(j − j′′))

= −1 + 2
M

m′
+

1

m′
(j′′ − j)− 2

M

m′
+

1

m′
(j − j′′)− k0

= −1− k0.

Note that k0 ≤ −1 since − (j−j′′)
2 −M < −m′

2 . Thus, ∂m′′∆(−1) ≥ 0. �

Claim 5.8. The maximum of F = F (−, j′,m′′, j′′, j) : Z → R occurs at 0.

Proof. We show that ∆(−1) > 0 > ∆(0). Since ∆ is nonincreasing in t, it
would follow that F (0) > F (t) for all t ∈ Z 6=0.

Let us begin with ∆(−1). By the previous claim 5.7, ∆(−1) is as small
as possible when m′′ = 1, j′′ = 0, and j = m′ + 1. So, let us compute with
these values:
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∆(−1) ≥
6

m′
+ 1 + P (

1

2
m′ +

1

2
)− P (−2−

1

2
m′ −

1

2
)

=
6

m′
+ 1 +

(12m
′ + 1

2 −
1
2m

′k1)
2

m′
−

(2 + 1
2m

′ + 1
2 +

1
2m

′k0)
2

m′

+





m′

4 − j′

2 if k0 odd, k1 even

0 if k1 − k0 even
j′

2 − m′

4 if k1 odd, k0 even.

Note that for m′ ≥ 5, the possible values of (k1, k0) are (1,−1); (1,−2); or
(2,−2). So, the result, that ∆(−1) > 0, is established by considering such
pairs directly and by cases for smaller m′.

For ∆(0), we take m′′ = 1, j′′ = 1, and j = 0.

∆(0) =
(−3(3 +m′)

m′
+ 1 +

3 +m′

m′

)
+ P (

1

2
+ 2 +m′)− P (−

1

2
)

= 1−
2(3 +m′)

m′
+ P (

1

2
+ 2 +m′)− P (−

1

2
)

= 1−
2(3 +m′)

m′
+

(12 + 2 +m′ − 1
2m

′k1)
2

m′
−

(12 + 1
2m

′k0)
2

m′

+





m′

4 − j′

2 if k0 odd, k1 even

0 if k1 − k0 even
j′

2 − m′

4 if k1 odd, k0 even.

For m′ ≥ 5, the possible values of (k1, k0) are (3,−1); (3, 0); or (2, 0). So,
again the result, that ∆(0) < 0, is established by considering such pairs
directly and by cases for smaller m′. �

This completes the proof of the proposition. �

Remark 5.9. We have shown that F (l, j′,m′′, j′′, j) = SΛ,Λ′′,λ for integral
values of l. If l is not an integer, then λl := Λ′ + (lM + J)α may not be

in π(TΛ′,Λ′′

Λ ), in which case SΛ,Λ′′,λl
is not defined. On the other hand, if

λl ∈ π(TΛ′,Λ′′

Λ ), we note that the equality F (l, j′,m′′, j′′, j) = SΛ,Λ′′,λl
holds,

as can be seen by letting kl = lM − 1
2(j + j′ + j′′)− 1 in the above proof.

Now, let us apply the same analysis to the case that ε(vΛ,Λ′′,λ) = −1.

By Lemma 5.4, this corresponds to kl = −1
2 (j + j′ + j′′) − 1 + lM . For

λ = Λ′+klα, let us denote the function SΛ,Λ′′,λ byGZ(l) = GZ(l, j
′,m′′, j′′, j).

Thus, GZ : Z → Z.

5.10. Lemma. Define the function G = G(−, j′,m′′, j′′, j) : R → R by

G(t, j′,m′′, j′′, j) = F (t−
j + 1

M
, j′,m′′, j′′, j).

Then, G|Z = GZ.
Hence, SΛ,Λ′′,λ has a maximum when l = 0 or l = 1.
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Proof. By the proof of Proposition 5.5 and Remark 5.9, SΛ,Λ′′,λ+(j+1)α =

F (l), for λ = Λ′ + klα. Since λ = Λ′ + (−1
2 (j + j′ + j′′) − 1 + lM)α, by

Proposition 5.5, SΛ,Λ′′,λ = F (l − j+1
M

). This proves the lemma. �

From Lmma 5.10 and the definition of F , it is easy to see that

G(1−t,m′−j′,m′′,m′′−j′′,m′+m′′−j)+
1

2
(j′+j′′−j) = G(t, j′,m′′, j′′, j),

(22)
for any t ∈ R. Hence, if the maximum of GZ occurs at 1, it is equal to

G(0,m′ − j′,m′′,m′′ − j′′,m′ +m′′ − j) +
1

2
(j′ + j′′ − j). (23)

We also record the following identity, which is easy to prove from the defini-
tion of F .

F (0,m′ − j′,m′′,m′′ − j′′,m′ +m′′ − j) +
1

2
(j′ + j′′ − j) = F (0, j′,m′′, j′′, j).

(24)
As a corollary of Proposition 5.5 and Lemma 5.10, we get the following

‘Non-Cancellation Lemma’.

5.11. Corollary. Let Λ,Λ′,Λ′′ be as in Proposition 5.5 and let

µΛ
′,Λ′′

Λ := max
{
SΛ,Λ′′,λ : λ ∈ TΛ′,Λ′′

Λ and ε(vΛ,Λ′′,λ) = 1
}
,

µ̄Λ
′,Λ′′

Λ := max
{
SΛ,Λ′′,λ : λ ∈ TΛ′,Λ′′

Λ and ε(vΛ,Λ′′,λ) = −1
}
.

Assume that µΛ
′,Λ′′

Λ = µ̄Λ
′,Λ′′

Λ . Then,

µΛ
′′,Λ′

Λ 6= µ̄Λ
′′,Λ′

Λ .

Proof. We proceed in two cases:

Case I. Suppose the maximum µ̄Λ
′,Λ′′

Λ occurs when π(λ) = Λ′−(12 (j + j′ + j′′)+
1)α (cf. Lemma 5.10). This means that the δ-maximal weights of L(Λ′)
through Λ′ − (12 (j + j′ + j′′) + 1)α and through Λ′ + 1

2 (j − j′ − j′′)α have
the same δ coordinate (cf. Proposition 5.5). By (next) Lemma 5.12, we
know that this occurs if and only if one of the following two conditions are
satisfied:

(1)
∣∣1
2 (j − j′′)

∣∣ ≤ j′

2 and 1
2 (j + j′′) + 1 ≤ j′

2 , or

(2) 1
2 (j + j′′) + 1 = 1

2 (j − j′′).
The latter is clearly impossible, while the former condition is fulfilled

precisely when 1
2 (j + j′′) + 1 ≤ j′

2 .

So, for the equality µΛ
′,Λ′′

Λ = µ̄Λ
′,Λ′′

Λ in this case, the neccesary and suffi-
cient condition is:

1

2

(
j + j′′

)
+ 1 ≤

j′

2
. (25)
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Case II. Suppose the maximum µ̄Λ
′,Λ′′

Λ occurs when π(λ) = Λ′−(12 (j + j′ + j′′)+
1−M)α. Then, by the identities (23) and (24), we get

G(0,m′−j′,m′′,m′′−j′′,m′+m′′−j) = F (0,m′−j′,m′′,m′′−j′′,m′+m′′−j).
(26)

So, from the case I, we get in this case II, µΛ
′,Λ′′

Λ = µ̄Λ
′,Λ′′

Λ if and only if

1

2

(
(m′ +m′′ − j) + (m′′ − j′′)

)
+ 1 ≤

1

2
(m′ − j′). (27)

So, if either of the inequalities (25) or (27) is satisfied, then none of them
can be satisfied for the triple (Λ,Λ′,Λ′′) replaced by (Λ,Λ′′,Λ′). This proves
the corollary. �

Lemma 5.12. Suppose Λ′−(12 (j + j′ + j′′)+1)α+n1δ and Λ′+1
2 (j − j′ − j′′)α+

n2δ are δ-maximal weights of L(Λ′). Then n1 = n2 if and only if∣∣∣∣
1

2

(
j − j′′

)∣∣∣∣ ≤
j′

2
and

1

2

(
j + j′′

)
+ 1 ≤

j′

2
,

or 1
2 (j + j′′) + 1 = 1

2 (j − j′′).

Proof. Fix an integer n and consider the set Pn = {ν ∈ P (Λ′) : Λ′ − ν =
kα + nδ, k ∈ Z}. We give a description of Pn ∩ P o(Λ′). Clearly, Pn =
{λ, λ − α, . . . , λ − 〈λ, α∨〉α} for some λ = λn and that this λ is uniquely
determined by n (cf. [K3, Exercise 2.3.E.2]). Suppose that some µ ∈ Pn is
not δ-maximal, then none of {µ, . . . , µ − 〈µ, α∨〉α} are δ-maximal, since if
µ+kδ ∈ P (Λ′), then the whole string {µ+kδ, . . . , µ+kδ−〈µ, α∨〉α} ⊂ P (Λ′).
In particular, if λ − α is δ-maximal, then so is λ. Hence, gδ−αL(Λ

′)λ = 0
and gαL(Λ

′)λ = 0. Therefore, λ is the highest weight Λ′. Thus, Pn ∩P
o(Λ′)

is either empty, or λ = Λ′ (in the case that n = 0), or the set {λ, s1λ}. From
this and Corollary 5.1 the lemma follows easily. �

6. Saturation factor for the A
(1)
1 Case

We assume that g = ŝl2 in this section.

Definition 6.1. Let Λ′ ∈ P
(m′)
+ ,Λ′′ ∈ P

(m′′)
+ and Λ ∈ P

(m′+m′′)
+ . Then,

we call L(Λ + nδ) the δ-maximal component of L(Λ′) ⊗ L(Λ′′) through Λ if
L(Λ+nδ) is a submodule of L(Λ′)⊗L(Λ′′) but L(Λ+mδ) is not a component
for any m > n.

Theorem 6.2. Let Λ′,Λ′′,Λ be as in Proposition 5.5 . Then, L(Λ+nδ) is a
δ-maximal component of L(Λ′)⊗L(Λ′′) if n = min(n1, n2), where n1 is such
that Λ− Λ′′ + n1δ ∈ P o(Λ′) and n2 is such that Λ− Λ′ + n2δ ∈ P o(Λ′′).

Proof. This follows immediately by combining Propositions 4.2, 5.5 and
Lemma 5.4. �

Lemma 6.3. Fix a positive integer N . Let Λ ∈ P̄+ and let λ ∈ Λ + Q,

where Q is the root lattice Zα⊕ Zδ of ŝl2. Then, Nλ ∈ P o(NΛ) if and only
if λ ∈ P o(Λ).
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Proof. The validity of the lemma is clear for λ ∈ P o(Λ)+ from Corollary 5.1.
But since P o(Λ) = W · (P o(Λ)+), and the action of W on h∗ is linear, the
lemma follows for any λ ∈ P o(Λ). �

Corollary 6.4. Let do ∈ Z>1. Let Λ, Λ′, Λ′′ ∈ P+ be such that Λ−Λ′−Λ′′ ∈
Q and L(NΛ) is a submodule of L(NΛ′) ⊗ L(NΛ′′), for some N ∈ Z>0.
Then, L(doΛ) is a submodule of L(doΛ

′)⊗ L(doΛ
′′).

Such a do is called a saturation factor.

Proof. If Λ′(c) = 0 or Λ′′(c) = 0, then

L(NΛ′)⊗ L(NΛ′′) ≃ L(N(Λ′ +Λ′′)),

for any N ≥ 1. Thus, the corollary is clearly true in this case. So, let us
assume that both of Λ′(c) > 0 and Λ′′(c) > 0. Let L(NΛ + nδ) be the δ-
maximal component of L(NΛ′)⊗ L(NΛ′′) through L(NΛ), for some n ≥ 0.
For any Ψ ∈ P+, let Ψ̄ ∈ P̄+ be the projection π(Ψ) defined just before
Lemma 5.2. Applying Theorem 6.2 to Λ̄′, Λ̄′′, Λ̄, and observing that

L(Ψ̄ + kδ) ≃ L(Ψ̄)⊗ L(kδ) (28)

and L(kδ) is one dimensional, we get that there is a δ-maximal component
L(Λ + ñδ) of L(Λ′)⊗ L(Λ′′) through L(Λ), for some (unique) ñ ∈ Z.

Again applying Theorem 6.2 to N Λ̄′, N Λ̄′′, N Λ̄, and observing (using
Corollary 5.1) that

P o(NΨ̄) ⊃ NP o(Ψ̄), (29)

we get that L(NΛ+Nñδ) is the δ-maximal component of L(NΛ′)⊗L(NΛ′′)
through L(NΛ). Thus, n = Nñ. In particular,

ñ ≥ 0. (30)

Let ∑

λ∈TΛ′,Λ′′

Λ̄

ε(vΛ̄,Λ′′,λ)cΛ′,λe
SΛ̄,Λ′′,λδ =

∑

k∈Z+

cke
(Λ(d)+ñ−k)δ, (31)

for some ck ∈ Z+ with c0 nonzero. By Proposition 4.2, this is the character
of a unitarizable Virasoro representation with each irreducible component
having the same nonzero central charge. Thus, by Lemma 4.1, for any k > 1,
we get ck 6= 0.

By the above argument, L(doΛ + doñδ) is the δ-maximal component of
L(doΛ

′)⊗ L(doΛ
′′) through L(doΛ). If ñ = 0, we get that

L(doΛ) ⊂ L(doΛ
′)⊗ L(doΛ

′′).

If ñ > 0, then doñ being > 1, by the analogue of (31) for doΛ
′, doΛ

′′ and
doΛ, L(doΛ) ⊂ L(doΛ

′)⊗L(doΛ
′′). (Here we have used that L0 = −d+ p on

any g-isotypical component of L(Λ′)⊗L(Λ′′) with highest weight in Λ+Zδ,
for a number p depending only upon Λ̄,Λ′ and Λ′′, cf. [KR, Identity 10.25
on page 116].) This proves the corollary. �
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Remark 6.5. We note that L(2Λ0−δ) is not a component of L(Λ0)⊗L(Λ0) (cf.
[Kac, Exercise 12.16]). But, of course, L(2Λ0) is a δ-maximal component.
By the identity (31), we know that L(2doΛ0 − doδ) must be a component
of L(doΛ0) ⊗ L(doΛ0), for any do > 1. So do can not be taken to be 1 in
Corollary 6.4.

7. A Conjecture

In this section, G is any symmetrizable Kac-Moody group. We recall the
following definition of the deformed product due to Belkale-Kumar [BK].
(Even though they gave the definition in the finite case, the same definition
works in the symmetrizable Kac-Moody case, though with only one param-
eter.)

7.1. Definition. Let P be any standard parabolic subgroup of G. Re-
call from Section 2 that {ǫwP }w∈WP is a basis of the singular cohomology
H∗(XP ,Z). Write the standard cup product in H∗(XP ,Z) in this basis as
follows:

ǫuP · ǫvP =
∑

w∈WP

nwu,vǫ
w
P , for some (unique)nwu,v ∈ Z. (32)

Introduce the indeterminate τ and define a deformed cup product ⊙ as fol-
lows:

ǫuP ⊙ ǫvP =
∑

w∈WP

τ (u
−1ρ+v−1ρ−w−1ρ−ρ)(xP )nwu,vǫ

w
P , (33)

where xP :=
∑

αi∈∆\∆(P ) xi, ∆(P ) is the set of simple roots of the Levi L

of P and, as in Section 2, ∆ is the set of simple roots of G.
The following lemma is a generalization of the corresponding result in the

finite case (cf. [BK, Proposition 17]).

7.2. Proposition. (a) The product ⊙ is associative and clearly commutative.
(b) Whenever nwu,v is nonzero, the exponent of τ in the above is a nonneg-

ative integer.

Proof. The proof of the associativity of ⊙ is identical to the proof given in
[BK, Proof of Proposition 17 (b)].

(b) The proof of this part follows the proof of [BK, Theorem 43]. Consider
the decreasing filtration A = {Am}m≥0 of H∗(XP ,C) defined as follows:

Am :=
⊕

w∈WP :(ρ−w−1ρ)(xP )≥m

CǫwP .

A priori {Am}m≥0 may not be a multiplicative filtration.
We next introduce another filtration {F̄m}m≥0 of H∗(XP ,C) in terms

of the Lie algebra cohomology. Recall that H∗(XP ,C) can be identified
canonically with the Lie algebra cohomology H∗(g, l), where l is the Lie
algebra of the Levi subgroup L of P (cf. [K2, Theorem 1.6]). The underlying
cochain complex C• = C•(g, l) for H∗(g, l) can be written as

C• := [∧•(g/l)∗]l = Homl

(
∧•(uP )⊗ ∧•(u−P ),C

)
,



SATURATED TENSOR CONE FOR SYMMETRIZABLE KAC-MOODY ALGEBRAS 24

where uP (resp. u−P ) is the nil-radical of the Lie algebra of P (resp. the op-
posite parabolic subgroup P−). Define a decreasing multiplicative filtration
F = {Fm}m≥0 of the cochain complex C• by subcomplexes:

Fm := Homl

(
∧•(uP )⊗ ∧•(u−P )⊕

s+t≤m−1 ∧
•
(s)(uP )⊗ ∧•

(t)(u
−
P )
,C

)
,

where ∧•
(s)(uP ) (resp. ∧•

(s)(u
−
P )) denotes the subspace of ∧•(uP ) (resp. ∧•(u−P ))

spanned by the h-weight vectors of weight β with P -relative height

htP (β) :=| β(xP ) |= s.

Now, define the filtration F̄ = {F̄m}m≥0 of H∗(g, l) ≃ H∗(XP ,C) by

F̄m := Image of H∗(Fm) → H∗(C•).

The filtration F of C• gives rise to the cohomology spectral sequence {Er}r≥1

converging to H∗(C•) = H∗(XP ,C). By [K3, Proof of Proposition 3.2.11],
for any m ≥ 0,

Em
1 =

⊕

s+t=m

[H•
(s)(uP )⊗H•

(t)(u
−
P )]

l,

where H•
(s)(uP ) denotes the cohomology of the subcomplex (∧•

(s)(uP ))
∗ of the

standard cochain complex ∧•(uP )
∗ associated to the Lie algebra uP and sim-

ilarly for H•
(t)(u

−
P ). Moreover, by loc. cit., the spectral sequence degenerates

at the E1 term, i.e.,
Em

1 = Em
∞. (34)

Further, by the definition of P -relative height,

[H•
(s)(uP )⊗H•

(t)(u
−
P )]

l 6= 0 ⇒ s = t.

Thus,

Em
1 = 0, unless m is even and

E2m
1 = [H•

(m)(uP )⊗H•
(m)(u

−
P )]

l.

In particular, from (34) and the general properties of spectral sequences (cf.
[K3, Theorem E.9]), we have a canonical algebra isomorphism:

gr(F̄) ≃
⊕

m≥0

[
H•

(m)(uP )⊗H•
(m)(u

−
P )
]l
, (35)

where
[
H•

(m)(uP )⊗H
•
(m)(u

−
P )
]l

sits inside gr(F̄) precisely as the homogeneous

part of degree 2m; homogeneous parts of gr(F̄) of odd degree being zero.
Finally, we claim that, for any m ≥ 0,

Am = F̄2m : (36)

Following Kumar [K1], take the d-∂ harmonic representative ŝw in C• for
the cohomology class ǫwP . An explicit expression is given in [K1, Proposition
3.17]. From this explicit expression, we easily see that

Am ⊂ F̄2m, for all m ≥ 0. (37)
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Moreover, from the definition of A, for any m ≥ 0,

dim
Am

Am+1
= #

{
w ∈WP : (ρ− w−1ρ)(xP ) = m

}
.

Also, by the isomorphism (35) and [K3, Theorem 3.2.7],

dim
F̄2m

F̄2m+1
= #

{
w ∈WP : (ρ− w−1ρ)(xP ) = m

}
.

Thus,

dim
Am

Am+1
= dim

F̄2m

F̄2m+1
. (38)

Of course,

A0 = F̄0. (39)

Thus, combining the equations (37), (38) and (39), we get (36). It is easy to
see that the filtration {F̄2m}m≥0 is multiplicative and hence so is {Am}m≥0.
This proves the (b) part of the proposition. �

The cohomology of XP obtained by setting τ = 0 in (H∗(XP ,Z)⊗Z[τ ],⊙)
is denoted by (H∗(XP ,Z),⊙0). Thus, as a Z-module, it is the same as the
singular cohomology H∗(XP ,Z) and under the product ⊙0 it is associative
(and commutative).

The following conjecture is a generalization of the corresponding result in
the finite case due to Belkale-Kumar [BK, Theorem 22].

7.3. Conjecture. Let G be any indecomposable symmetrizable Kac-Moody
group (i.e., its generalized Cartan matrix is indecomposable, cf. [K3, § 1.1])
and let (λ1, . . . , λs, µ) ∈ P s+1

+ . Assume further that none of λj is W -
invariant and µ −

∑s
j=1 λj ∈ Q, where Q is the root lattice of G. Then,

the following are equivalent:
(a) (λ1, . . . , λs, µ) ∈ Γs.
(b) For every standard maximal parabolic subgroup P in G and every

choice of s + 1-tuples (w1, . . . , ws, v) ∈ (WP )s+1 such that ǫvP occurs with
coefficient 1 in the deformed product

ǫw1
P ⊙0 · · · ⊙0 ǫ

ws

P ∈
(
H∗(XP ,Z),⊙0

)
,

the following inequality holds:

( s∑

j=1

λj(wjxP )
)
− µ(vxP ) ≥ 0, (IP(w1,...,ws,v)

)

where αiP is the (unique) simple root in ∆ \∆(P ) and xP := xiP .

7.4. Remark. (a) By Theorem 3.3, the above inequalities IP(w1,...,ws,v)
are

indeed satisfied for any (λ1, . . . , λs, µ) ∈ Γs.
(b) If G is an affine Kac-Moody group, then the condition that λ ∈ P+ is

W -invariant is equivalent to the condition that λ(c) = 0.
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7.5. Theorem. Let g = ŝl2. Let λ, µ, ν ∈ P+ be such that λ+µ− ν ∈ Q and
both of λ(c) and µ(c) are nonzero. Then, the following are equivalent:

(a) (λ, µ, ν) ∈ Γ2.
(b) The following set of inequalities is satisfied for all w ∈W and i = 0, 1.

λ(xi) + µ(wxi)− ν(wxi) ≥ 0, and

λ(wxi) + µ(xi)− ν(wxi) ≥ 0.

In particular, Conjecture 7.3 is true for g = ŝl2 and s = 2.

Proof. By Lemma 5.2, there exist (unique) n1, n2 ∈ Z such that

ν − µ+ n1δ ∈ P o(λ), and ν − λ+ n2δ ∈ P o(µ).

Let n := min (n1, n2). By our description of the δ-maximal components
as in Theorem 6.2 applied to λ̄, µ̄, ν̄ and using the identity (28), we see
that L(ν + nδ) is a δ-maximal component of L(λ) ⊗ L(µ). Thus, by the
equation (29), for any N ≥ 1, L(Nν + Nnδ) is a δ-maximal component of
L(Nλ)⊗ L(Nµ). In particular, by Proposition 4.2 and Lemma 4.1,

L(Nν) ⊂ L(Nλ)⊗ L(Nµ) for some N > 1 if and only if n ≥ 0. (40)

By [Kac, Proposition 12.5 (a)], if a weight γ+ kδ ∈ P (λ) (for some k ∈ Z+),
then γ ∈ P (λ). Thus,

n ≥ 0 if and only if ν ∈
(
P (λ) + µ

)
∩
(
P (µ) + λ

)
. (41)

We next show that

P (λ) = (λ+Q) ∩ Cλ, (42)

where Cλ := {γ ∈ h∗ : λ(xi) − γ(wxi) ≥ 0 for all w ∈ W and all xi}.
Clearly,

P (λ) ⊂ (λ+Q) ∩ Cλ.

Since λ+ Q and Cλ are W -stable, and λ +Q is contained in the Tits cone
(by [K3, Exercise 13.1.E.8(a)]), (λ+Q) ∩ Cλ =W ·

(
(λ+Q) ∩ Cλ ∩ P+

)
.

Conversely, take γ ∈ (λ + Q) ∩ Cλ ∩ P+. Then, (λ − γ)(xi) ≥ 0 and
(λ − γ)(c) = 0 and hence λ − γ ∈ ⊕i Z+αi, i.e., λ ≥ γ. Thus, by [Kac,
Proposition 12.5(a)], γ ∈ P (λ). This proves (42). Now, combining (40), (41)
and (42), we get L(Nν) ⊂ L(Nλ)⊗L(Nµ) for some N > 1 if and only if for
all w ∈W and i = 0, 1,

λ(xi)− (ν − µ)(wxi) ≥ 0, and µ(xi)− (ν − λ)(wxi) ≥ 0.

This proves the equivalence of (a) and (b) in the theorem.
To prove the ‘In particular’ statement of the theorem, let P0 (resp. P1)

be the maximal parabolic subgroup of G = ŜL2 with ∆(P0) = {α1} (resp.
∆(P1) = {α0}). For any n ≥ 0, let

wn := . . . s0s1s0 (n-factors) and vn := . . . s1s0s1 (n-factors).
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Then, by [K3, Exercise 11.3.E.4], H∗(G/P0) has a Z-basis {ǫnP0
}n≥0, where

ǫnP0
:= ǫwn

P0
. Moreover,

ǫnP0
· ǫmP0

=

(
n+m

n

)
ǫn+m
P0

.

In particular, ǫn+m
P0

appears with coefficient one in ǫnP0
· ǫmP0

if and only if at
least one of n or m is 0.

By using the diagram automorphism of ŜL2, one similarly gets thatH∗(G/P1)
has a Z-basis {ǫnP1

}n≥0, where ǫnP1
:= ǫvnP1

, with the product given by

ǫnP1
· ǫmP1

=

(
n+m

n

)
ǫn+m
P1

.

Moreover, from the definition of the deformed product ⊙0, clearly

ǫ0P0
⊙0 ǫ

m
P0

= ǫ0P0
· ǫmP0

,

and similarly for P1. From this the ‘In particular’ statement of the theorem
follows. �

7.6. Remark. (1) It is easy to see that if λ = mδ for some m ∈ Z, then the
equivalence of (a) and (b) in the above theorem breaks down.

(2) Though we have proved Conjecture 7.3 for ŜL2 only for s = 2, it is

quite likely that a similar proof will prove it for any s (for ŜL2).

8. The A
(2)
2 case

By a method similar to that of A
(1)
1 , we handle the A

(2)
2 case, with minor

modifications where necessary. Write h = Cc ⊕ Cα∨ ⊕ Cd and h∗ = Cω0 ⊕
Cα⊕ Cδ, where α(α∨) = 2, δ(d) = 1, ω0(c) = 1, and all other values are 0.
Then (h, {α0 := δ−2α,α1 := α}, {α∨

0 := c− 1
2α

∨, α∨
1 := α∨}) is a realization

of the GCM (
2 −1
−4 2

)

of A
(2)
2 . The fundamental weights are ω0 and ω1 = 1

2ω0 +
1
2α. This eas-

ily allows one to compute the dominant δ-maximal weights. Analogous to
Corollary 5.1, we have the following:

8.1. Lemma. Let λ be a dominant integral weight. Then, the dominant
δ-maximal weights of L(λ) are the dominant weights of the form

P+ ∩ {λ− jα, λ+ k(2α − δ), λ+ α− δ + l(2α − δ) : j, k, l ∈ Z≥0} .

Moreover, P o(λ) is the W -orbit of the above.

Again, to determine the saturated tensor cone, it is enough to describe
the δ-maximal components. Thus, to determine the δ-maximal components,
by virtue of proposition 4.2, we must find the highest δ-degree term in∑

λ∈TΛ′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λe
SΛ,Λ′′,λδ. This computation is done in a somewhat
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similar manner as in the A
(1)
1 case, but there are some important modifi-

cations. First, we need to use two different piecewise smooth functions to
describe the δ-maximal weights of L(λ). An upper function A+ interpolates
the δ-maximal weights which are in the W -orbit of the dominant weights of
the form

{λ− jα, λ+ k(2α − δ) : j, k ∈ Z≥0} ,

while another function A− interpolates the δ-maximal weights in theW -orbit
of the dominant weights of the form

{λ− jα, λ+ α− δ + l(2α− δ) : j, l ∈ Z≥0} .

Now, all of the arguments made in the ŝl2 case must be made for two
extensions of SΛ,Λ′′,λ to non-integral values, using A+ and A− respectively.
Let Λ := m0ω0 +m1ω1, Λ

′ := m′
0ω0 +m′

1ω1, and Λ′′ := m′′
0ω0 +m′′

1ω1. The
following result is an analogue of Proposition 5.5 and Lemma 5.10 for the

A
(2)
2 case.

Proposition 8.2. Let Λ,Λ′,Λ′′ be as above. Assume that both of Λ′(c) and
Λ′′(c) > 0 and Λ − Λ′ − Λ′′ ∈ Q, where Q = Zα + Zδ is the root lattice of

A
(2)
2 . Then, the maximum µΛ

′,Λ′′

Λ of the set
{
SΛ,Λ′′,λ : λ ∈ TΛ′,Λ′′

Λ , ε(vΛ,Λ′′,λ) = 1
}

occurs when λ ≡ Λ′ + 1
2 (m1 −m′

1 −m′′
1)α mod Cδ. The maximum µ̄Λ

′,Λ′′

Λ
of the set {

SΛ,Λ′′,λ : λ ∈ TΛ′,Λ′′

Λ , ε(vΛ,Λ′′,λ) = −1
}

occurs when λ ≡ Λ′ −
(
1
2(m

′
1 + m′′

1 + m1) + 1
)
α mod Cδ or when λ ≡

Λ′ −
(
1
2(m

′
1 +m′′

1 +m1)− 2(Λ′(c) + Λ′′(c) + 1)
)
α mod Cδ.

8.3. Corollary. Let Λ,Λ′,Λ′′ be as in Proposition 8.2. Assume further that

Λ′(c) ≥ 2, Λ′′(c) ≥ 2, m′
1,m

′′
1 6= 1. Then, if µΛ

′,Λ′′

Λ = µ̄Λ
′,Λ′′

Λ , we have

µΛ
′′,Λ′

Λ 6= µ̄Λ
′′,Λ′

Λ .

The proof of Corollary 8.3 requires a description of the situations in which

µΛ
′,Λ′′

Λ = µ̄Λ
′,Λ′′

Λ . We reduce these situations to certain cases, and show that
in most of these cases, if the roles of Λ′ and Λ′′ are interchanged, then (as in

the ŝl2 case) the equality does not occur. In the remaining cases, we show
that Λ′(c) < 2, Λ′′(c) < 2, m′

1 = 1, or m′′
1 = 1.

Theorem 8.4. Let Λ,Λ′,Λ′′ be as in Proposition 8.2. Then, L(Λ+nδ) is a
δ-maximal component of L(Λ′)⊗L(Λ′′) if n = min(n1, n2), where n1 is such
that Λ− Λ′′ + n1δ ∈ P o(Λ′) and n2 is such that Λ− Λ′ + n2δ ∈ P o(Λ′′).

Lemma 8.5. Fix a positive integer N . Let Λ ∈ P̄+ and let λ ∈ Λ + Q.
Then, Nλ ∈ P o(NΛ) if and only if λ ∈ P o(Λ).
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Combining the above results, we get a description of Γ2, which is identical

to that of ŝl2 (cf. Theorem 7.5).

8.6. Theorem. Let g = A
(2)
2 . Let λ, µ, ν ∈ P+ be such that λ + µ − ν ∈ Q

and both of λ(c) and µ(c) are nonzero. Then, the following are equivalent:
(a) (λ, µ, ν) ∈ Γ2.
(b) The following set of inequalities is satisfied for all w ∈W and i = 0, 1.

λ(xi) + µ(wxi)− ν(wxi) ≥ 0, and

λ(wxi) + µ(xi)− ν(wxi) ≥ 0.

In particular, Conjecture 7.3 is true for this case as well for s = 2.

The ‘In particular’ statement of the above theorem follows by using the
description of the cup product in the cohomology of the full flag variety of

A
(2)
2 given by Kitchloo [Ki].
It is clear that if the level of L(Λ′) or L(Λ′′) is zero, then the tensor

product has a single component. Thus, it is already saturated. Assume now
that the levels of both of L(Λ′) and L(Λ′′) are > 0. Then, since there are
representations of level 1

2 , the conditions of Corollary 8.3 are satisfied for any
NΛ, NΛ′, NΛ′′ with Λ− Λ′ − Λ′′ ∈ Q, provided N ≥ 4. Hence:

Corollary 8.7. For A
(2)
2 , 4 is a saturation factor.

8.8. Remark. When the Kac-Moody Lie algebra g is infinite dimensional,
then the saturated tensor semigroup Γs is not finitely generated, for any
s ≥ 2. Thus, it is not clear a priori that there exists a saturation factor for
such a g.
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