Explicit Determination of the Picard Group of Moduli Spaces of Semistable G-Bundles on Curves

Arzu Boysal and Shrawan Kumar

Introduction

Let G be a connected, simply-connected, simple affine algebraic group and \mathcal{C}_{g} be a smooth irreducible projective curve of any genus $g \geq 1$ over \mathbb{C}. Denote by $\mathfrak{M}_{\mathcal{C}_{g}}(G)$ the moduli space of semistable principal G-bundles on \mathcal{C}_{g}. Let $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$ be the Picard group of $\mathfrak{M}_{\mathcal{C}_{g}}(G)$ and let X be the infinite Grassmannian of the affine Kac-Moody group associated to G. It is known that $\operatorname{Pic}(X) \simeq \mathbb{Z}$ and is generated by a homogenous line bundle $\mathfrak{L}_{\chi_{0}}$. Also, as proved by Kumar-Narasimhan [KN], there exists a canonical injective group homomorphism

$$
\beta: \operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right) \hookrightarrow \operatorname{Pic}(X),
$$

which takes $\Theta_{V}\left(\mathcal{C}_{g}, G\right) \mapsto \mathfrak{L}_{\chi_{0}}^{m_{V}}$ for any finite dimensional representation V of G, where $\Theta_{V}\left(\mathcal{C}_{g}, G\right)$ is the theta bundle associated to the G-module V and m_{V} is its Dynkin index (cf. Theorem 2.2). As an immediate corollary, they obtained that

$$
\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right) \simeq \mathbb{Z},
$$

generalizing the corresponding result for $G=S L(n)$ proved by DrezetNarasimhan [DN]. However, the precise image of β was not known for nonclassical G excluding G_{2}. (For classical G and G_{2}, see [KN], [LS], [BLS].) The main aim of this paper is to determine the image of β for an arbitrary G. It is shown that the image of β is generated by $\mathfrak{L}_{\chi_{0}}^{m_{G}}$, where m_{G} is the least common multiple of the coefficients of the coroot θ^{\vee} written in terms of the simple coroots, θ being the highest root of G (cf. Theorem 2.4, see also Proposition 2.3 where m_{G} is explicitly given for each G). As a consequence, we obtain that the theta bundles $\Theta_{V}\left(\mathcal{C}_{g}, G\right)$, where V runs over all the finite dimensional representations of G, generate $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$ (cf. Theorem 1.3). In fact, it is shown that there is a fundamental weight ω_{d} such that the theta bundle $\Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{g}, G\right)$ corresponding to the irreducible highest
weight G-module $V\left(\omega_{d}\right)$ with highest weight ω_{d} generates $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$ (cf. Theorem 2.4). All these fundamental weights ω_{d} are explicitly determined in Proposition 2.3.

It may be mentioned that Picard group of the moduli stack of G-bundles is studied in [LS], [BLS], [T_{2}].

We now briefly outline the idea of the proofs. Recall that, by a celebrated result of Narasimhan-Seshadri, the underlying real analytic space $M_{g}(G)$ of $\mathfrak{M}_{\mathcal{C}_{g}}(G)$ admits a description as the space of representations of the fundamental group $\pi_{1}\left(\mathcal{C}_{g}\right)$ into a fixed compact form of G up to conjugation. In particular, $M_{g}(G)$ depends only upon g and G (and not on the specific choice of the projective curve \mathcal{C}_{g}). Moreover, this description gives rise to a standard embedding $i_{g}: M_{g}(G) \hookrightarrow M_{g+1}(G)$.

Let V be any finite dimensional representation of G. We first show that the first Chern class of the theta bundle $\Theta_{V}\left(\mathcal{C}_{g}, G\right)$ does not depend upon the choice of the smooth projective curve \mathcal{C}_{g}, as long as g is fixed (cf. Proposition (1.6).

We next show that the first Chern class of $\Theta_{V}\left(\mathcal{C}_{g+1}, G\right)$ restricts to the first Chern class of $\Theta_{V}\left(\mathcal{C}_{g}, G\right)$ under the embedding i_{g} (cf. Proposition (1.8). This result is proved by first reducing the case of general G to $S L(n)$ and then reducing the case of $S L(n)$ to $S L(2)$. The corresponding result for $S L(2)$ is obtained by showing that the inclusion $M_{g}(S L(2)) \hookrightarrow$ $M_{g+1}(S L(2))$ induces isomorpism in cohomology $H^{2}\left(M_{g+1}(S L(2)), \mathbb{Z}\right) \simeq$ $H^{2}\left(M_{g}(S L(2)), \mathbb{Z}\right)$ (cf. Proposition 1.7). The last result for H^{2} with rational coefficients is fairly well known (and follows easily by observing that the symplectic form on $M_{g+1}(G)$ restricts to the symplectic form on $M_{g}(G)$) but the result with integral coefficients is more delicate and is proved in Section 4. The proof involves the calculation of the determinant bundle of the Poincaré bundle on $\mathcal{C}_{g} \times \mathcal{J}_{\mathcal{C}}, \mathcal{J}_{\mathcal{C}_{g}}$ being the Jacobian of \mathcal{C}_{g} which consists of the isomorphism classes of degree 0 line bundles on \mathcal{C}_{g}.

By virtue of the above mentioned two propositions (Propositions 1.6 and (1.8), to prove our main result determining $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$ stated in the first paragraph for any $g \geq 1$, it suffices to consider the case of genus $g=1$.

In the genus $g=1$ case, $\mathfrak{M}_{\mathcal{C}_{1}}(G)$ admits a description as the weighted projective space $\mathbb{P}\left(1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)$, where a_{i}^{\vee} are the coefficients of the coroot θ^{\vee} written in terms of the simple coroots and k is the rank of G (cf. Theorems 3.1 and 3.3). The ample generator of the Picard group of $\mathbb{P}\left(1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)$ is known to be $\mathcal{O}_{\mathbb{P}\left(1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)}\left(m_{G}\right)$ (cf. Theorem 3.4). In section 3 , we show that $\Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{1}, G\right)$ is, in fact, $\mathcal{O}_{\mathbb{P}\left(1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)}\left(m_{G}\right)$, and hence it is the ample generator of $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{1}}(G)\right)$. The proof makes use of the Verlinde formula determining the dimension of the space of global
sections $H^{0}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G), \mathfrak{L}\right)$ (cf. Theorem 3.5).
We thank P. Belkale, L. Jeffrey and M.S. Narasimhan for some helpful correspondences/conversations. We are grateful to the referee for some very helpful comments; in particular, for pointing out Theorem 3.3, which simplified our original proof of Proposition 1.9. The second author was partially supported by the NSF.

1 Statement of the Main Theorem and its Proof

For a topological space $X, H^{i}(X)$ denotes the singular cohomology of X with integral coefficients, unless otherwise explicitly stated.

Let G be a connected, simply-connected, simple affine algebraic group over \mathbb{C}. This will be our tacit assumption on G throughout the paper. Let \mathcal{C}_{g} be a smooth irreducible projective curve (over \mathbb{C}) of genus g, which we assume to be ≥ 1. Let $\mathfrak{M}_{\mathcal{C}_{g}}=\mathfrak{M}_{\mathcal{C}_{g}}(G)$ be the moduli space of semistable principal G-bundles on \mathcal{C}_{g}.

We begin by recalling the following result due to Kumar-Narasimhan [KN, Theorem 2.4]. (In loc. cit. the genus g is assumed to be ≥ 2. For the genus $g=1$ case, the result follows from Theorems 3.1, 3.3 and 3.4.)
1.1 Theorem. With the notation as above,

$$
\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}\right) \simeq \mathbb{Z}
$$

where $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}\right)$ is the group of isomorphism classes of algebraic line bundles on $\mathfrak{M}_{\mathcal{C}_{g}}$.

In particular, any nontrivial line bundle on $\mathfrak{M}_{\mathcal{C}_{g}}$ is ample or its inverse is ample.
1.2 Definition. Let \mathcal{F} be a family of vector bundles on \mathcal{C}_{g} parametrized by a variety X, i.e., \mathcal{F} is a vector bundle over $\mathcal{C}_{g} \times X$. Then, the 'determinant of the cohomology' gives rise to the determinant $\operatorname{bundle} \operatorname{Det}(\mathcal{F})$ of the family \mathcal{F}, which is a line bundle over the base X. By definition, the fiber of $\operatorname{Det}(\mathcal{F})$ over any $x \in X$ is given by the expression:

$$
\left.\operatorname{Det}(\mathcal{F})\right|_{x}=\wedge^{t o p}\left(H^{0}\left(\mathcal{C}_{g}, \mathcal{F}_{x}\right)\right)^{*} \otimes \wedge^{t o p}\left(H^{1}\left(\mathcal{C}_{g}, \mathcal{F}_{x}\right)\right),
$$

where \mathcal{F}_{x} is the restriction of \mathcal{F} to $\mathcal{C}_{g} \times x$ (cf., e.g., [L, Chap. 6, $\left.\S 1\right],[\mathrm{KM}]$).
Let $\mathcal{R}(G)$ denote the set of isomorphism classes of all the finite dimensional algebraic representations of G. For any V in $\mathcal{R}(G)$, we have the
Θ-bundle $\Theta_{V}\left(\mathcal{C}_{g}\right)=\Theta_{V}\left(\mathcal{C}_{g}, G\right)$ on $\mathfrak{M}_{\mathcal{C}_{g}}$, which is an algebraic line bundle whose fibre at any principal G-bundle $E \in \mathfrak{M}_{\mathcal{C}_{g}}$ is given by the expression

$$
\left.\Theta_{V}\left(\mathcal{C}_{g}\right)\right|_{E}=\wedge^{\text {top }}\left(H^{0}\left(\mathcal{C}_{g}, E_{V}\right)\right)^{*} \otimes \wedge^{\text {top }}\left(H^{1}\left(\mathcal{C}_{g}, E_{V}\right)\right),
$$

where E_{V} is the associated vector bundle $E \times_{G} V$ on \mathcal{C}_{g}. Observe that the moduli space $\mathfrak{M}_{\mathcal{C}_{g}}$ does not parametrize a universal family of G-bundles, however, the theta bundle $\Theta_{V}\left(\mathcal{C}_{g}\right)$ (which is essentially the determinant bundle if there were a universal family parametrized by $\mathfrak{M}_{\mathcal{C}_{g}}$) still exists (cf. $\left[\mathrm{K}_{1}, \S 3.7\right]$).

Now, we can state the main result of this paper.

1.3 Theorem.

$$
\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}\right)=<\Theta_{V}\left(\mathcal{C}_{g}\right), V \in \mathcal{R}(G)>,
$$

where the notation $<>$ denotes the group generated by the elements in the bracket.

1.4 Lemma.

$$
c: \operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}\right) \simeq H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathbb{Z}\right),
$$

where c maps any line bundle \mathfrak{L} to its first Chern class $c_{1}(\mathfrak{L})$.
In particular,

$$
H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathbb{Z}\right) \simeq \mathbb{Z}
$$

The first Chern class of the ample generator of $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}\right)$ is called the positive generator of $H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathbb{Z}\right)$.

Proof. Consider the following exact sequence of abelian groups:

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{f} \mathbb{C}^{*} \rightarrow 0,
$$

where $f(x)=e^{2 \pi i x}$. This gives rise to the following exact sequence of sheaves on $\mathfrak{M}_{\mathcal{C}_{g}}$ endowed with the analytic topology:

$$
0 \rightarrow \overline{\mathbb{Z}} \rightarrow \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}} \rightarrow \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*} \rightarrow 0,
$$

where $\overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}$ is the sheaf of holomorphic functions on $\mathfrak{M}_{\mathcal{C}_{g}}, \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}$ is the sheaf of invertible elements of $\overline{\mathcal{O}}_{\mathfrak{M}_{\mathfrak{C}_{g}}}$ and $\overline{\mathbb{Z}}$ is the constant sheaf corresponding to the abelian group \mathbb{Z}.

The above sequence, of course, induces the following long exact sequence in cohomology:

$$
\cdots \rightarrow H^{1}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}\right) \rightarrow H^{1}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}\right) \xrightarrow{\bar{c}} H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathbb{Z}\right) \rightarrow H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}\right) \rightarrow \cdots
$$

First of all,

$$
\begin{equation*}
\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}\right) \simeq H^{1}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}\right) \tag{1}
\end{equation*}
$$

where $\mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}$ is the sheaf of algebraic functions on $\mathfrak{M}_{\mathcal{C}_{g}}$ and $\mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}$ is the subsheaf of invertible elements of $\mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}$.

Moreover, by GAGA, $\mathfrak{M}_{\mathcal{C}_{g}}$ being a projective variety,

$$
\begin{equation*}
H^{1}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}\right) \simeq H^{1}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}\right) \tag{2}
\end{equation*}
$$

and also, for any $p \geq 0$,

$$
\begin{equation*}
H^{p}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}\right) \simeq H^{p}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \overline{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}\right) \tag{3}
\end{equation*}
$$

By Kumar-Narasimhan [KN, Theorem 2.8], $H^{i}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}\right)=0$ for $i>$ 0 . Hence, under the identification (1), by (2)-(3) and the above long exact cohomology sequence,

$$
\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}\right) \xrightarrow{\sim c} H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}, \mathbb{Z}\right)
$$

where c is the map \bar{c} under the above identifications. Moreover, as is well known, c is the first Chern class map.

Let us fix a maximal compact subgroup K of G. Denote the Riemann surface with g handles, considered only as a topological manifold, by C_{g}. Thus, the underlying topological manifold of \mathcal{C}_{g} is C_{g}. Define $M_{g}(G):=\varphi^{-1}(1) / \operatorname{Ad} K$, where $\varphi: K^{2 g} \rightarrow K$ is the commutator map $\varphi\left(k_{1}, k_{2}, \ldots, k_{2 g}\right)=\left[k_{1}, k_{2}\right]\left[k_{3}, k_{4}\right] \cdots\left[k_{2 g-1}, k_{2 g}\right]$ and $\varphi^{-1}(1) / \operatorname{Ad} K$ refers to the quotient of $\varphi^{-1}(1)$ by K under the diagonal adjoint action of K on $K^{2 g}$.

Now, we recall the following fundamental result due to NarasimhanSeshadri [NS] for vector bundles and extended for an arbitrary G by Ramanathan $\left[\mathrm{R}_{1}, \mathrm{R}_{2}\right]$.

Consider the standard generators $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{g}, b_{g}$ of $\pi_{1}\left(\mathcal{C}_{g}\right)$ (cf. [$\mathrm{N}, \S 14]$). Then, we have the presentation:

$$
\pi_{1}\left(\mathcal{C}_{g}\right)=F\left[a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}\right] /<\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]>
$$

where $F\left[a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}\right]$ denotes the free group generated by a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} and $<\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]>$ denotes the normal subgroup generated by the single element $\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]$.
1.5 Theorem. Having chosen the standard generators $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{g}, b_{g}$ of $\pi_{1}\left(\mathcal{C}_{g}\right)$, there exists a canonical isomorphism of real analytic spaces:

$$
\theta_{\mathcal{C}_{g}}(G): M_{g}(G) \simeq \mathfrak{M}_{\mathcal{C}_{g}}(G) .
$$

In the sequel, we will often make this identification.
1.6 Proposition. For any $V \in \mathcal{R}(G), c\left(\Theta_{V}\left(\mathcal{C}_{g}, G\right)\right)$, under the above identification $\theta_{\mathcal{C}_{g}}(G)$, does not depend on the choice of the projective variety structure \mathcal{C}_{g} on the Riemann surface C_{g} for any fixed g.

Proof. Let $\rho: G \rightarrow S L(V)$ be the given representation. By taking a $K-$ invariant Hermitian form on V we get $\rho(K) \subset S U(n)$, where $n=\operatorname{dim} V$. For any principal G-bundle E on \mathcal{C}_{g}, let $E_{S L(V)}$ be the principal $S L(V)$-bundle over \mathcal{C}_{g} obtained by the extension of the structure group via ρ. Then, if E is semistable, so is $E_{S L(V)}$, giving rise to a variety morphism $\hat{\rho}: \mathfrak{M}_{\mathcal{C}_{g}}(G) \rightarrow$ $\mathfrak{M}_{\mathcal{C}_{g}}(S L(V))$ (cf. [RR, Theorem 3.18]). Hence, we get the commutative diagram:
$\left(\mathrm{D}_{1}\right)$

$$
\begin{gathered}
\mathfrak{M}_{\mathcal{C}_{g}}(G) \xrightarrow{\hat{\rho}} \mathfrak{M}_{\mathcal{C}_{g}}(S L(V)) \\
\uparrow \\
\uparrow \\
M_{g}(G) \xrightarrow{\bar{\rho}} M_{g}(S L(V)),
\end{gathered}
$$

where $\bar{\rho}$ is induced from the commutative diagram:

The diagram $\left(\mathrm{D}_{1}\right)$ induces the following commutative diagram in cohomology:
$\left(\mathrm{D}_{2}\right)$

By the construction of the Θ-bundle, $\hat{\rho}^{*}\left(\Theta_{V}\left(\mathcal{C}_{g}, S L(V)\right)\right)=\Theta_{V}\left(\mathcal{C}_{g}, G\right)$, where $\hat{\rho}^{*}$ also denotes the pullback of line bundles and V is thought of as the standard representation of $S L(V)$.

Thus, using the functoriality of the Chern class, we get

$$
\begin{equation*}
\hat{\rho}^{*}\left(c\left(\Theta_{V}\left(\mathcal{C}_{g}, S L(V)\right)\right)\right)=c\left(\Theta_{V}\left(\mathcal{C}_{g}, G\right)\right) \tag{1}
\end{equation*}
$$

By Drezet-Narasimhan [DN], $c\left(\Theta_{V}\left(\mathcal{C}_{g}, S L(V)\right)\right)$ is the unique positive generator of $H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}(S L(V)), \mathbb{Z}\right)$ and thus is independent of the choice of \mathcal{C}_{g} under the identification $\theta_{\mathcal{C}_{g}}(S L(V))^{*}$. Consequently, by (1) and the above commutative diagram $\left(\mathrm{D}_{2}\right), c\left(\Theta_{V}\left(\mathcal{C}_{g}, G\right)\right)$ is independent of the choice of \mathcal{C}_{g}.

From now on we will denote the cohomology class $c\left(\Theta_{V}\left(\mathcal{C}_{g}, G\right)\right)$ in $H^{2}\left(M_{g}(G), \mathbb{Z}\right)$, under the identification $\theta_{\mathcal{C}_{g}}(G)^{*}$, by $c\left(\Theta_{V}(g, G)\right)$.

Consider the embedding

$$
i_{g}=i_{g}(G): M_{g}(G) \hookrightarrow M_{g+1}(G)
$$

induced by the inclusion of $K^{2 g} \rightarrow K^{2 g+2}$ via $\left(k_{1}, \ldots, k_{2 g}\right) \mapsto\left(k_{1}, \ldots, k_{2 g}, 1,1\right)$.
By virtue of the map i_{g}, we will identify $M_{g}(G)$ as a subspace of $M_{g+1}(G)$. In particular, we get the following induced sequence of maps in the second cohomology.

$$
H^{2}\left(M_{1}(G), \mathbb{Z}\right) \stackrel{i_{1}^{*}}{\leftarrow} H^{2}\left(M_{2}(G), \mathbb{Z}\right) \stackrel{i_{2}^{*}}{\leftarrow} H^{2}\left(M_{3}(G), \mathbb{Z}\right) \stackrel{i_{3}^{*}}{\leftarrow} \cdots
$$

1.7 Proposition. For $G=S L(2)$, the maps $i_{g}^{*}: H^{2}\left(M_{g+1}(G), \mathbb{Z}\right) \rightarrow$ $H^{2}\left(M_{g}(G), \mathbb{Z}\right)$ are isomorphisms for any $g \geq 1$.

In particular, i_{g}^{*} takes the positive generator of $H^{2}\left(M_{g+1}(S L(2)), \mathbb{Z}\right)$ to the positive generator of $H^{2}\left(M_{g}(S L(2)), \mathbb{Z}\right)$.

We shall prove this proposition in Section 4.
1.8 Proposition. For any $V \in \mathcal{R}(G)$ and any $g \geq 1, i_{g}^{*}\left(c\left(\Theta_{V}(g+1, G)\right)\right)=$ $c\left(\Theta_{V}(g, G)\right)$.

Proof. We first claim that it suffices to prove the above proposition for $G=S L(n)$ and the standard n-dimensional representation V of $S L(n)$.

Let $\rho: G \rightarrow S L(V)$ be the given representation. Consider the following commutative diagram:

$$
\begin{array}{lc}
M_{g}(G) & \stackrel{i_{g}}{\hookrightarrow} M_{g+1}(G) \\
\bar{\rho} \downarrow & \downarrow \bar{\rho} \\
M_{g}(S L(V)) & \stackrel{i_{g}}{\hookrightarrow} M_{g+1}(S L(V)),
\end{array}
$$

where $\bar{\rho}$ is the map defined in the proof of Proposition 1.6. It induces the commutative diagram:

$$
\begin{gathered}
H^{2}\left(M_{g}(G), \mathbb{Z}\right) \stackrel{i_{g}^{*}}{\leftarrow} H^{2}\left(M_{g+1}(G), \mathbb{Z}\right) \\
\bar{\rho}^{*} \uparrow
\end{gathered} \bar{\rho}^{*} \uparrow \quad\left[\begin{array}{c}
H^{2}\left(M_{g}(S L(V)), \mathbb{Z}\right) \stackrel{i_{g}^{*}}{\leftarrow} H^{2}\left(M_{g+1}(S L(V)), \mathbb{Z}\right)
\end{array}\right.
$$

Therefore, using the commutativity of the above diagram and equation (1) of Proposition 1.6, supposing that $i_{g}^{*}\left(c\left(\Theta_{V}(g+1, S L(V))\right)\right)=c\left(\Theta_{V}(g, S L(V))\right)$, we get $i_{g}^{*}\left(c\left(\Theta_{V}(g+1, G)\right)\right)=c\left(\Theta_{V}(g, G)\right)$. Hence, Proposition 1.8 is established for any G provided we assume its validity for $G=S L(V)$ and its standard representation in V.

We further reduce the proposition from $S L(n)$ to $S L(2)$. As in the proof of Proposition 1.6, consider the mappings

$$
\begin{gathered}
\bar{\rho}: M_{g}(S L(2)) \rightarrow M_{g}(S L(n)), \text { and } \\
\hat{\rho}: \mathfrak{M}_{\mathcal{C}_{g}}(S L(2)) \rightarrow \mathfrak{M}_{\mathcal{C}_{g}}(S L(n))
\end{gathered}
$$

induced by the inclusions

$$
S U(2) \rightarrow S U(n) \text { and } S L(2) \rightarrow S L(n)
$$

given by $m \mapsto \operatorname{diag}(m, 1, \ldots, 1)$.
The maps $\bar{\rho}$ and $\hat{\rho}$ induce the commutative diagram:

$$
\begin{gathered}
H^{2}\left(M_{g}(S L(n)), \mathbb{Z}\right) \xrightarrow{\substack{\bar{\rho}^{*}}} H^{2}\left(M_{g}(S L(2)), \mathbb{Z}\right) \\
\uparrow \\
H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}(S L(n)), \mathbb{Z}\right) \xrightarrow{\hat{\rho}^{*}} H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}(S L(2)), \mathbb{Z}\right)
\end{gathered}
$$

By the construction of the Θ-bundle, $\hat{\rho}^{*}\left(\Theta_{V}\left(\mathcal{C}_{g}, S L(n)\right)\right)=\Theta_{V_{2}}\left(\mathcal{C}_{g}, S L(2)\right)$, where V_{2} is the standard 2-dimensional representation of $S L(2)$.

Thus, using the functoriality of the Chern class, we get

$$
\begin{equation*}
\hat{\rho}^{*}\left(c\left(\Theta_{V}\left(\mathcal{C}_{g}, S L(n)\right)\right)\right)=c\left(\Theta_{V_{2}}\left(\mathcal{C}_{g}, S L(2)\right)\right) \tag{1}
\end{equation*}
$$

Using one more time the result of Drezet-Narasimhan that $c\left(\Theta_{V}\left(\mathcal{C}_{g}, S L(n)\right)\right)$ is the unique positive generator of $H^{2}\left(\mathfrak{M}_{\mathcal{C}_{g}}(S L(n))\right.$) for any n (cf. Proof of Proposition (1.6), we see that $\hat{\rho}^{*}$ is surjective and hence an isomorphism by Lemma 1.4 .

Consider the following commutative diagram:

$$
\begin{array}{cc}
H^{2}\left(M_{g}(S L(n)), \mathbb{Z}\right) \stackrel{i_{g}^{*}}{\leftarrow} H^{2}\left(M_{g+1}(S L(n)), \mathbb{Z}\right) \\
\bar{\rho}^{*} \downarrow & \bar{\rho}^{*} \downarrow \\
H^{2}\left(M_{g}(S L(2)), \mathbb{Z}\right) \stackrel{i_{g}^{*}}{\leftarrow} H^{2}\left(M_{g+1}(S L(2)), \mathbb{Z}\right) .
\end{array}
$$

Suppose that the proposition is true for $G=S L(2)$ and the standard representation V_{2}, i.e.,

$$
\begin{equation*}
i_{g}^{*}\left(c\left(\Theta_{V_{2}}(g+1, S L(2))\right)\right)=c\left(\Theta_{V_{2}}(g, S L(2))\right) \tag{2}
\end{equation*}
$$

Then, using the commutativity of the above diagram and (1) together with the fact that $\bar{\rho}^{*}$ is an isomorphism, we get that $i_{g}^{*}\left(c\left(\Theta_{V}(g+1, S L(n))\right)\right)=$ $c\left(\Theta_{V}(g, S L(n))\right)$. Finally, (2) follows from the result of Drezet-Narasimhan cited above and Proposition 1.7. Hence the proposition is established for any G (once we prove Proposition 1.7).
1.9 Proposition. For $g=1$, Theorem 1.3 is true.

The proof of this proposition will be given in Section 3.
Proof of Theorem 1.3. Denote the subgroup $<\Theta_{V}\left(\mathcal{C}_{g}, G\right), V \in \mathcal{R}(G)>$ of $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$ by $\operatorname{Pic}^{\Theta}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$.

Set $H_{\Theta}^{2}\left(M_{g}(G)\right):=c\left(\operatorname{Pic}^{\Theta}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)\right)$. By virtue of Proposition 1.6, this is well defined, i.e., $H_{\Theta}^{2}\left(M_{g}(G)\right)$ does not depend upon the choice of the projective variety structure \mathcal{C}_{g} on C_{g}. Moreover, by Proposition 1.8, $i_{g}^{*}\left(H_{\Theta}^{2}\left(M_{g+1}(G)\right)\right)=H_{\Theta}^{2}\left(M_{g}(G)\right)$.

Thus, we get the following commutative diagram, where the upward arrows are inclusions and the maps in the bottom horizontal sequence are induced from the maps i_{g}^{*}.

By Proposition 1.9 and Lemma 1.4, $H^{2}\left(M_{1}(G)\right)=H_{\Theta}^{2}\left(M_{1}(G)\right)$. Then, i_{1}^{*} is surjective and hence an isomorphism (by using Lemma 1.4 again). Thus, by the commutativity of the above diagram, the inclusion $H_{\Theta}^{2}\left(M_{2}(G)\right) \hookrightarrow$ $H^{2}\left(M_{2}(G)\right)$ is an isomorphism. Arguing the same way, we get that $H^{2}\left(M_{g}(G)\right)$ $=H_{\Theta}^{2}\left(M_{g}(G)\right)$ for all g. This completes the proof of the theorem by virtue of the isomorphism c of Lemma 1.4.

2 Comparison of the Picard Groups of $\mathfrak{M}_{\mathcal{C}_{g}}$ and the Infinite Grassmannian

As earlier, let G be a connected, simply-connected, simple affine algebraic group over \mathbb{C}. We fix a Borel subgroup B of G and a maximal torus $T \subset B$. Let \mathfrak{h} (resp. \mathfrak{b}) be the Lie algebra of T (resp. B). Let $\Delta^{+} \subset \mathfrak{h}^{*}$ be the set of positive roots (i.e., the roots of \mathfrak{b} with respect to \mathfrak{h}) and let $\left\{\omega_{i}\right\}_{1 \leq i \leq k} \subset \mathfrak{h}^{*}$ be the set of fundamental weights, where k is the rank of G. As earlier, $\mathcal{R}(G)$ denotes the set of isomorphism classes of all the finite dimensional algebraic representations of G. This is a semigroup under the direct sum of two representations. Let $R(G)$ denote the associated Grothendieck group. Then, $R(G)$ is a ring, where the product is induced from the tensor product of two representations. Then, the fundamental representations $\left\{V\left(\omega_{i}\right)\right\}_{1 \leq i \leq k}$ generate the representation ring $R(G)$ as a ring $[\mathrm{A}]$.

Let X be the infinite Grassmannian associated to the affine Kac-Moody group \mathcal{G} corresponding to G, i.e., $X:=\mathcal{G} / \mathcal{P}$, where \mathcal{P} is the standard maximal parabolic subgroup of \mathcal{G} (cf. [$\left.\mathrm{K}_{2}, \S 13.2 .12\right]$; in loc. cit., X is denoted by $\left.\mathcal{Y}=\mathcal{X}^{Y}\right)$. It is known that $\operatorname{Pic}(X)$ is isomorphic to \mathbb{Z} and is generated by the homogenous line bundle $\mathfrak{L}_{\chi_{0}}$ (cf. [K_{2}, Proposition 13.2.19]).

We recall the following definition from [D,§2].
2.1 Definition. Let \mathfrak{g}_{1} and \mathfrak{g}_{2} be two (finite dimensional) complex simple Lie algebras and $\varphi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ be a Lie algebra homomorphism. There exists a unique number $m_{\varphi} \in \mathbb{C}$, called the Dynkin index of the homomorphism φ, satisfying

$$
\langle\varphi(x), \varphi(y)\rangle=m_{\varphi}\langle x, y\rangle, \text { for all } x, y \in \mathfrak{g}_{1},
$$

where \langle,$\rangle is the Killing form on \mathfrak{g}_{1}$ (and \mathfrak{g}_{2}) normalized so that $\langle\theta, \theta\rangle=2$ for the highest root θ.

For a Lie algebra \mathfrak{g}_{1} as above and a finite dimensional representation V of \mathfrak{g}_{1}, by the Dynkin index m_{V} of V, we mean the Dynkin index of the Lie algebra homomorphism $\rho: \mathfrak{g}_{1} \rightarrow s l(V)$, where $s l(V)$ is the Lie algebra of trace 0 endomorphisms of V.

Then, for any two finite dimensional representations V and W of \mathfrak{g}_{1}, we have, by [D, Chap. 1, §2] or [KN, Lemma 4.5],

$$
\begin{equation*}
m_{V \otimes W}=m_{V} \operatorname{dim} W+m_{W} \operatorname{dim} V . \tag{1}
\end{equation*}
$$

We recall the following main result of Kumar-Narasimhan [KN, Theorem 2.4].
2.2 Theorem. There exists a 'natural' injective group homomorphism

$$
\beta: \operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right) \hookrightarrow \operatorname{Pic}(X) .
$$

Moreover, by [KNR, Theorem 5.4] (see also [Fa]), for any $V \in \mathcal{R}(G)$,

$$
\begin{equation*}
\beta\left(\Theta_{V}\left(\mathcal{C}_{g}, G\right)\right)=\mathfrak{L}_{\chi_{0}}^{\otimes m_{V}}, \tag{1}
\end{equation*}
$$

where V is thought of as a module for \mathfrak{g} under differentiation and m_{V} is its Dynkin index.

We also recall the following result from [D, Table 5], [KN, Proposition 4.7], or [LS, §2].
2.3 Proposition. For any simple Lie algebra \mathfrak{g}, there exists a (not unique in general) fundamental weight ω_{d} such that $m_{V\left(\omega_{d}\right)}$ divides each of $\left\{m_{V\left(\omega_{i}\right)}\right\}_{1 \leq i \leq k}$. Thus, by (1) of Definition 2.1, $m_{V\left(\omega_{d}\right)}$ divides m_{V} for any $V \in \mathcal{R}(G)$.

The following table gives the list of all such ω_{d} 's and the corresponding Dynkin index $m_{V\left(\omega_{d}\right)}$.

Type of G	ω_{d}	$m_{V\left(\omega_{d}\right)}$
$A_{k}(k \geq 1)$	ω_{1}, ω_{k}	1
$C_{k}(k \geq 2)$	ω_{1}	1
$B_{k}(k \geq 3)$	ω_{1}	2
$D_{k}(k \geq 4)$	ω_{1}	2
G_{2}	ω_{1}	2
F_{4}	ω_{4}	6
E_{6}	ω_{1}, ω_{6}	6
E_{7}	ω_{7}	12
E_{8}	ω_{8}	60.

For B_{3}, ω_{3} also satisfies $m_{V\left(\omega_{3}\right)}=2$; for D_{4}, ω_{3} and ω_{4} both have $m_{V\left(\omega_{3}\right)}=$ $m_{V\left(\omega_{4}\right)}=2$.

Let θ be the highest root of G. Observe that, for any $G, m_{V\left(\omega_{d}\right)}$ is the least common multiple of the coefficients of the coroot θ^{\vee} written in terms of the simple coroots. We shall denote $m_{V\left(\omega_{d}\right)}$ by m_{G}.

Combining the above result with Theorem [1.3, we get the following.
2.4 Theorem. For any \mathcal{C}_{g} with $g \geq 1$ and G as in Section 1, the Picard group $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$ is freely generated by the Θ-bundle $\Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{g}, G\right)$, where ω_{d} is any fundamental weight as in the above proposition.

In particular,

$$
\begin{equation*}
\operatorname{Im}(\beta) \text { is freely generated by } \mathfrak{L}_{\chi_{0}}^{\otimes m_{G}} \text {. } \tag{1}
\end{equation*}
$$

Proof. By Theorem 1.3 ,

$$
\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)=<\Theta_{V}\left(\mathcal{C}_{g}, G\right), V \in \mathcal{R}(G)>
$$

Thus, by Theorem 2.2 and Proposition 2.3,

$$
\operatorname{Im}(\beta)=<\mathfrak{L}_{\chi_{0}}^{\otimes m_{V}}, V \in \mathcal{R}(G)>=<\mathfrak{L}_{\chi_{0}}^{\otimes m_{G}}>
$$

This proves (1).
Since β is injective, by the above description of $\operatorname{Im}(\beta), \Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{g}, G\right)$ freely generates $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$, proving the theorem.

Following the same argument as in [So, §4], using Theorem 2.4 and Proposition 2.3, we get the following corollary for genus $g \geq 2$. For genus $g=1$, use Theorems 3.1 and 3.3 together with [BR, Theorem 7.1.d]. This corollary is due to [BLS], [So].
2.5 Corollary. Let G be any group and \mathcal{C}_{g} be any curve as in Section 1. Then, the moduli space $\mathfrak{M}_{\mathcal{C}_{g}}(G)$ is locally factorial if and only if G is of type $A_{k}(k \geq 1)$ or $C_{k}(k \geq 2)$.

3 Proof of Proposition 1.9

Let G be as in the beginning of Section 1. In this section, we identify $\mathfrak{M}_{\mathcal{C}_{1}}(G)$ with a weighted projective space and show that the generator of $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{1}}(G)\right)$ is $\Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{1}, G\right)$ as claimed.

We recall the following theorem due independently to Laszlo [La, Theorem 4.16] and Friedman-Morgan-Witten [FMW, §2].
3.1 Theorem. Let \mathcal{C}_{1} be a smooth, irreducible projective curve of genus 1. Then, there is a natural variety isomorphim between the moduli space $\mathfrak{M}_{\mathcal{C}_{1}}(G)$ and $\left(\mathcal{C}_{1} \otimes_{\mathbb{Z}} Q^{\vee}\right) / W$, where Q^{\vee} is the coroot lattice of G and W is its Weyl group acting canonically on Q^{\vee} (and acting trivially on \mathcal{C}_{1}).
3.2 Definition. Let $N=\left(n_{0}, \ldots, n_{k}\right)$ be a $k+1$-tuple of positive integers. Consider the polynomial ring $\mathbb{C}\left[z_{0}, \ldots, z_{k}\right]$ graded by $\operatorname{deg} z_{i}=n_{i}$. The scheme $\operatorname{Proj}\left(\mathbb{C}\left[z_{0}, \ldots, z_{k}\right]\right)$ is said to be the weighted projective space of type N and we denote it by $\mathbb{P}(N)$.

Consider the standard (nonweighted) projective space $\mathbb{P}^{k}:=\operatorname{Proj}\left(\mathbb{C}\left[w_{0}, \ldots, w_{k}\right]\right)$, where each $\operatorname{deg} w_{i}=1$. Then, the graded algebra homomorphism $\mathbb{C}\left[z_{0}, \ldots, z_{k}\right] \rightarrow$ $\mathbb{C}\left[w_{0}, \ldots, w_{k}\right], z_{i} \mapsto w_{i}^{n_{i}}$, induces a morphism $\delta: \mathbb{P}^{k} \rightarrow \mathbb{P}(N)$.

The following theorem is due to Looijenga [Lo]. His proof had a gap; a complete proof of a more general result is outlined by Bernshtein-Shvartsman [BSh].
3.3 Theorem. Let \mathcal{C}_{1} be an elliptic curve. Then, the variety $\left(\mathcal{C}_{1} \otimes_{\mathbb{Z}} Q^{\vee}\right) / W$ is the weighted projective space of type $\left(1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)$, where a_{i}^{\vee} are the coefficients of the coroot θ^{\vee} written in terms of the simple coroots $\left\{\alpha_{i}^{\vee}\right\}$ (and, as earlier, k is the rank of G).

The following table lists the weighted projective space isomorphic to $\mathfrak{M}_{\mathcal{C}_{1}}(G)$ corresponding to any G. In this table the entries beyond 1 are precisely the numbers $\left(a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)$ following the convention as in Bourbaki [B, Planche I-IX].

Type of $G \quad$ Type of the weighted projective space

$$
\begin{array}{cc}
A_{k}(k \geq 1), C_{k}(k \geq 2) & (1,1,1, \ldots, 1) \\
B_{k}(k \geq 3) & (1,1,2, \ldots, 2,1) \\
D_{k}(k \geq 4) & (1,1,2, \ldots, 2,1,1) \\
G_{2} & (1,1,2) \\
F_{4} & (1,2,3,2,1) \\
E_{6} & (1,1,2,2,3,2,1) \\
E_{7} & (1,2,2,3,4,3,2,1) \\
E_{8} & (1,2,3,4,6,5,4,3,2)
\end{array}
$$

We recall the following result from the theory of weighted projective spaces (see, e.g., Beltrametti-Robbiano [BR, Lemma 3B.2.c and Theorem 7.1.c]).
3.4 Theorem. Let $N=\left(n_{0}, \ldots, n_{k}\right)$ and assume $\operatorname{gcd}\left\{n_{0}, \ldots, n_{k}\right\}=1$. Then, we have the following.
(a) $\operatorname{Pic}(\mathbb{P}(N)) \simeq \mathbb{Z}$. In fact, the morphism δ of Definition 3.2 induces an injective map $\delta^{*}: \operatorname{Pic}(\mathbb{P}(N)) \rightarrow \operatorname{Pic}\left(\mathbb{P}^{k}\right)$.

Moreover, the ample generator of $\operatorname{Pic}(\mathbb{P}(N))$ maps to $\mathcal{O}_{\mathbb{P}^{k}}(s)$ under δ^{*}, where s is the least common multiple of $\left\{n_{0}, \ldots, n_{k}\right\}$. We denote this ample generator by $\mathcal{O}_{\mathbb{P}(N)}(s)$.
(b) For any $d \geq 0$,

$$
H^{0}\left(\mathbb{P}(N), \mathcal{O}_{\mathbb{P}(N)}(s)^{\otimes d}\right)=\mathbb{C}\left[z_{0}, \ldots, z_{k}\right]_{d s}
$$

where $\mathbb{C}\left[z_{0}, \ldots, z_{k}\right]_{d s}$ denotes the subspace of $\mathbb{C}\left[z_{0}, \ldots, z_{k}\right]$ consisting of homogeneous elements of degree $d s$.

Using Theorems 3.1, 3.3 and 3.4 and the fact that the least common multiple of the numbers $\left\{1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right\}$ for each G is the Dynkin index $m_{G}=m_{V\left(\omega_{d}\right)}$, we have

$$
\begin{equation*}
\Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{1}, G\right)=\mathcal{O}_{\mathbb{P}\left(1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)}\left(m_{G}\right)^{\otimes p} \tag{*}
\end{equation*}
$$

for some positive integer p. The value of m_{G} is given in Proposition 2.3 for any G.

We recall the following basic result, the first part of which is due independently to Beauville-Laszlo [BL], Faltings [Fa] and Kumar-NarasimhanRamanathan $[\mathrm{KNR}]$. The second part of the theorem as in (1) is the celebrated Verlinde formula for the dimension of the space of conformal blocks essentially due to Tsuchiya-Ueno-Yamada [TUY] (together with works [Fa, Appendix] and $\left[\mathrm{T}_{1}\right]$).
3.5 Theorem. For any ample line bundle $\mathfrak{L} \in \operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G)\right)$ and $\ell \geq 0$, there is an isomorphism (canonical up to scalar multiples):

$$
H^{0}\left(\mathfrak{M}_{\mathcal{C}_{g}}(G), \mathfrak{L}^{\otimes \ell}\right) \simeq L\left(\mathcal{C}_{g}, \ell m_{\mathfrak{L}}\right)
$$

where $L\left(\mathcal{C}_{g}, \ell\right)$ is the space of conformal blocks corresponding to the one marked point on \mathcal{C}_{g} and trivial representation attached to it with central charge ℓ (cf., e.g., [TUY] for the definition of conformal blocks) and $m_{\mathfrak{L}}$ is the positive integer such that $\beta(\mathfrak{L})=\mathfrak{L}_{\chi_{0}}^{\otimes m_{\mathfrak{L}}}, \beta$ being the map as in Theorem 2.2.

Moreover, the dimension $F_{g}(\ell)$ of the space $L\left(\mathcal{C}_{g}, \ell\right)$ is given by the following Verlinde formula:

$$
\begin{equation*}
F_{g}(\ell)=t_{\ell}^{g-1} \sum_{\mu \in P_{\ell}} \prod_{\alpha \in \Delta_{+}}\left|2 \sin \left(\frac{\pi}{\ell+h}<\alpha, \mu+\rho>\right)\right|^{2-2 g} \tag{1}
\end{equation*}
$$

where
$<,>:=$ Killing form on \mathfrak{h}^{*} normalized so that $<\theta, \theta>=2$ for the highest root θ
$\Delta_{+}:=$the set of positive roots,
$P_{\ell}:=\{$ dominant integral weights $\mu \mid<\mu, \theta>\leq \ell\}$,
$\rho:=$ half sum of positive roots,
$h:=<\rho, \theta>+1$, the dual Coxeter number,
$t_{\ell}:=(\ell+h)^{r a n k G}\left(\# P / Q_{l g}\right)$,
and P is the weight lattice and $Q_{l g}$ is the sublatttice of the root lattice Q generated by the long roots.

In fact, we only need to use the above theorem for the case of genus $g=1$. For $g=1$, the Verlinde formula (1) clearly reduces to the identity:

$$
F_{1}(\ell)=\# P_{\ell} .
$$

Of course,

$$
P_{\ell}=\left\{\left(n_{1}, \ldots, n_{k}\right) \in\left(\mathbb{Z}_{+}\right)^{k}: \sum_{i=1}^{k} n_{i} a_{i}^{\vee} \leq \ell\right\} .
$$

Proof of Proposition 1.9. Using the specialization of Theorem 3.5 to $g=1$, we see that

$$
\operatorname{dim} H^{0}\left(\mathfrak{M}_{\mathcal{C}_{1}}(G), \Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{1}, G\right)\right)=\# P_{m_{G}} .
$$

On the other hand, by Theorems 3.1, 3.3 and $3.4(\mathrm{~b})$,
$\operatorname{dim} H^{0}\left(\mathfrak{M}_{\mathcal{C}_{1}}(G), \mathcal{O}_{\mathbb{P}\left(1, a_{1}^{\vee}, a_{2}^{\vee}, \ldots, a_{k}^{\vee}\right)}\left(m_{G}\right)^{\otimes p}\right)=\operatorname{dim}\left(\mathbb{C}\left[z_{0}, \ldots, z_{k}\right]_{p m_{G}}\right)=\# P_{p m_{G}}$.
Hence, in the equation $(*)$ following Theorem 3.4, $p=1$ and $\Theta_{V\left(\omega_{d}\right)}\left(\mathcal{C}_{1}, G\right)$ is the (ample) generator of $\operatorname{Pic}\left(\mathfrak{M}_{\mathcal{C}_{1}}(G)\right)$. This proves Proposition 1.9.

$4 \quad$ Proof of Proposition 1.7

In this section, we take $G=S L(2)$ and abbreviate $\mathfrak{M}_{\mathcal{C}_{g}}(S L(2))$ by $\mathfrak{M}_{\mathcal{C}_{g}}$ etc. Let $\mathfrak{M}_{\mathcal{C}_{g}}^{\text {red }}$ be the closed subvariety of the moduli space $\mathfrak{M}_{\mathcal{C}_{g}}$ consisting of decomposable bundles on \mathcal{C}_{g} (which are semistable of rank- 2 with trivial determinant). Let $\mathfrak{J}_{\mathcal{C}_{g}}$ be the Jacobian of \mathcal{C}_{g}. Recall that the underlying set of the variety $\mathfrak{J}_{\mathcal{C}_{g}}$ consists of all the isomorphism classes of line bundles on \mathcal{C}_{g} with trivial first Chern class. Then, there is a surjective morphism $\xi=\xi_{\mathcal{C}_{g}}: \mathfrak{J}_{\mathcal{C}_{g}} \rightarrow \mathfrak{M}_{\mathcal{C}_{g}}^{\text {red }} \subset \mathfrak{M}_{\mathcal{C}_{g}}$, taking $\mathfrak{L} \mapsto \mathfrak{L} \oplus \mathfrak{L}^{-1}$. Moreover, $\xi^{-1}(\xi(\mathfrak{L}))=$ $\left\{\mathfrak{L}, \mathfrak{L}^{-1}\right\}$. The Jacobian $\mathfrak{J}_{\mathcal{C}_{g}}$ admits the involution τ taking $\mathfrak{L} \mapsto \mathfrak{L}^{-1}$.

Let T be a maximal torus of the maximal compact subgroup $S U(2)$ of $S L(2)$, which we take to be the diagonal subgroup of $S U(2)$. Similar to the identification $\theta_{\mathcal{C}_{g}}$ as in Theorem 1.5, setting $J_{g}:=T^{2 g}$, there is an isomorphism of real analytic spaces $\bar{\theta}_{\mathcal{C}_{g}}: J_{g} \rightarrow \mathfrak{J}_{\mathcal{C}_{g}}$ making the following diagram commutative:

$$
\begin{gather*}
J_{g} \xrightarrow{\bar{\theta}_{\mathcal{C}_{g}}} \mathfrak{J}_{\mathcal{C}_{g}} \\
f_{g} \downarrow \quad \downarrow \xi_{\mathcal{C}_{g}} \tag{E}\\
M_{g} \xrightarrow{\theta_{\mathcal{C}_{g}}} \mathfrak{M}_{\mathcal{C}_{g}},
\end{gather*}
$$

where $f_{g}: J_{g} \rightarrow M_{g}$ is induced from the standard inclusion $T^{2 g} \subset S U(2)^{2 g}$. We will explicitly describe the isomorphism $\bar{\theta}_{\mathcal{C}_{g}}$ in the proof of the following lemma.

Recall the definition of the map $i_{g}: M_{g} \rightarrow M_{g+1}$ from Section 1 and let $r_{g}: J_{g} \rightarrow J_{g+1}$ be the map $\left(t_{1}, \ldots, t_{2 g}\right) \mapsto\left(t_{1}, \ldots, t_{2 g}, 1,1\right)$. Then, we have the following commutative diagram:

$$
\begin{array}{cc}
J_{g} \xrightarrow{f_{g}} & M_{g} \\
r_{g} \downarrow & \downarrow i_{g} \tag{F}\\
J_{g+1} & \xrightarrow{f_{g+1}}
\end{array} M_{g+1} .
$$

Let x_{g+1} denote the positive generator of $H^{2}\left(M_{g+1}, \mathbb{Z}\right)$. Then, by Lemma 1.4 and Theorem 1.5,

$$
i_{g}^{*}\left(x_{g+1}\right)=d_{g} x_{g},
$$

for some integer d_{g}. We will prove that $d_{g}=1$, which will of course prove Proposition 1.7. Set $y_{g}:=f_{g}^{*}\left(x_{g}\right) ; f_{g}^{*}: H^{2}\left(M_{g}, \mathbb{Z}\right) \rightarrow H^{2}\left(J_{g}, \mathbb{Z}\right)$ being the map in cohomology induced from f_{g}.
4.1 Lemma. $y_{g} \neq 0$ and $r_{g}^{*}\left(y_{g+1}\right)=y_{g}$ as elements of $H^{2}\left(J_{g}, \mathbb{Z}\right)$.

Proof. There exists a unique universal line bundle \mathcal{P}, called the Poincaré bundle on $\mathcal{C}_{g} \times \mathfrak{J}_{C_{g}}$ such that, for each $\mathfrak{L} \in \mathfrak{J}_{\mathcal{C}_{g}}, \mathcal{P}$ restricts to the line bundle \mathfrak{L} on $\mathcal{C}_{g} \times \mathfrak{L}$, and \mathcal{P} restricted to $x_{o} \times \mathfrak{J}_{\mathcal{C}_{g}}$ is trivial for a fixed base point $x_{o} \in \mathcal{C}_{g}$ (cf. [ACGH, Chap. IV, §2]).

Let \mathcal{F} be the rank- 2 vector bundle $\mathcal{P} \oplus \hat{\tau}^{*}(\mathcal{P})$ over the base space $\mathcal{C}_{g} \times \mathfrak{J}_{\mathcal{C}_{g}}$, and think of \mathcal{F} as a family of rank- 2 bundles on \mathcal{C}_{g} parametrized by $\mathfrak{J}_{\mathcal{C}_{g}}$, where $\hat{\tau}: \mathcal{C}_{g} \times \mathfrak{J}_{\mathcal{C}_{g}} \rightarrow \mathcal{C}_{g} \times \mathfrak{J}_{\mathcal{C}_{g}}$ is the involution $I \times \tau$.

By Drezet-Narasimhan [DN], we have $x_{g}=c_{1}\left(\Theta_{V_{2}}\left(\mathcal{C}_{g}, S L(2)\right)\right)$ for the standard representation V_{2} of $S L(2)$. Using the functoriality of Chern class,

$$
\begin{equation*}
\xi_{\mathcal{G}_{g}}^{*}\left(x_{g}\right)=c_{1}(\operatorname{Det} \mathcal{F}), \tag{1}
\end{equation*}
$$

where $\operatorname{Det} \mathcal{F}$ denotes the determinant line bundle over $\mathfrak{J}_{\mathcal{C}_{g}}$ associated to the family \mathcal{F} (cf. Definition 1.2). Recall that the fiber of $\operatorname{Det} \mathcal{F}$ at any $\mathfrak{L} \in \mathfrak{J}_{\mathcal{C}_{g}}$ is given by the expression

$$
\begin{align*}
\operatorname{Det} \mathcal{F}_{\mid \mathfrak{L}} & =\wedge^{\text {top }}\left(H^{0}\left(\mathcal{C}_{g}, \mathfrak{L} \oplus \mathfrak{L}^{-1}\right)^{*}\right) \otimes \wedge^{\text {top }}\left(H^{1}\left(\mathcal{C}_{g}, \mathfrak{L} \oplus \mathfrak{L}^{-1}\right)\right) \tag{2}\\
& =\wedge^{\text {top }}\left(H^{0}\left(\mathcal{C}_{g}, \mathfrak{L}\right)^{*} \oplus H^{0}\left(\mathcal{C}_{g}, \mathfrak{L}^{-1}\right)^{*}\right) \otimes \wedge^{\text {top }}\left(H^{1}\left(\mathcal{C}_{g}, \mathfrak{L}\right) \oplus H^{1}\left(\mathcal{C}_{g}, \mathfrak{L}^{-1}\right)\right) \\
& =\wedge^{\text {top }}\left(H^{0}\left(\mathcal{C}_{g}, \mathfrak{L}\right)^{*}\right) \otimes \wedge^{\text {top }}\left(H^{0}\left(\mathcal{C}_{g}, \mathfrak{L}^{-1}\right)^{*}\right) \otimes \wedge^{\text {top }}\left(H^{1}\left(\mathcal{C}_{g}, \mathfrak{L}\right)\right) \otimes \wedge^{\text {top }}\left(H^{1}\left(\mathcal{C}_{g}, \mathfrak{L}^{-1}\right)\right) \\
& =(\operatorname{Det} \mathcal{P})_{\mid \mathfrak{L}} \otimes\left(\tau^{*}(\operatorname{Det} \mathcal{P})\right)_{\mid \mathfrak{L}} .
\end{align*}
$$

Applying the Grothendieck-Riemann-Roch theorem (cf. [F, Example 15.2.8]) for the projection $\mathcal{C}_{g} \times \mathfrak{J}_{\mathcal{C}_{g}} \xrightarrow{\pi} \mathfrak{J}_{\mathcal{C}_{g}}$ gives

$$
\begin{equation*}
\operatorname{ch}\left(R \pi_{*} \mathcal{P}\right)=\pi_{*}\left(\operatorname{ch} \mathcal{P} \cdot \operatorname{Td} T_{\pi}\right) \tag{3}
\end{equation*}
$$

where ch is the Chern character and $\operatorname{Td} T_{\pi}$ denotes the Todd genus of the relative tangent bundle of $\mathcal{C}_{g} \times \mathfrak{J}_{\mathcal{C}_{g}}$ along the fibers of π. By the definition of $\operatorname{Det} \mathcal{P}$ and $R \pi_{*} \mathcal{P}$,

$$
\begin{equation*}
c_{1}(\operatorname{Det} \mathcal{P})=-\operatorname{ch}\left(R \pi_{*} \mathcal{P}\right)_{[2]}, \tag{4}
\end{equation*}
$$

where, for a cohomology class $y, y_{[n]}$ denotes the component of y in H^{n}. Since \mathcal{P} restricted to $x_{o} \times \mathfrak{J}_{\mathcal{C}_{g}}$ is trivial and for any $\mathfrak{L} \in \mathfrak{J}_{\mathcal{C}_{g}}, \mathcal{P}$ restricts to the line bundle \mathfrak{L} on $\mathcal{C}_{g} \times \mathfrak{L}$ (with the trivial Chern class), we get

$$
\begin{equation*}
c_{1}(\mathcal{P}) \in H^{1}\left(\mathcal{C}_{g}\right) \otimes H^{1}\left(\mathfrak{J}_{\mathcal{C}_{g}}\right) \tag{5}
\end{equation*}
$$

Thus, using (3)-(4),

$$
\begin{align*}
-c_{1}(\operatorname{Det} \mathcal{P}) & =\pi_{*}\left(\left(\operatorname{ch} \mathcal{P} \cdot \operatorname{Td} T_{\pi}\right)_{[4]}\right) \\
& =\pi_{*}\left(\frac{c_{1}(\mathcal{P})^{2}}{2}+\frac{c_{1}(\mathcal{P}) \cdot c_{1}\left(T_{\pi}\right)}{2}\right) \tag{6}\\
& =\pi_{*}\left(c_{1}(\mathcal{P})^{2}\right) / 2 .
\end{align*}
$$

The last equality follows from (5), since the cup product $c_{1}(\mathcal{P}) \cdot c_{1}\left(T_{\pi}\right)$ vanishes, $c_{1}\left(T_{\pi}\right)$ being in $H^{2}\left(\mathcal{C}_{g}\right) \otimes H^{0}\left(\mathfrak{J}_{\mathcal{C}_{g}}\right)$.

Recall the presentation of $\pi_{1}\left(\mathcal{C}_{g}\right)$ given just above Theorem 1.5. Then, $H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)=\oplus_{i=1}^{g} \mathbb{Z} a_{i} \oplus \oplus_{i=1}^{g} \mathbb{Z} b_{i}$. Moreover, the \mathbb{Z}-module dual basis $\left\{a_{i}^{*}, b_{i}^{*}\right\}_{i=1}^{g}$ of $H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)=\operatorname{Hom}_{\mathbb{Z}}\left(H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right), \mathbb{Z}\right)$ satisfies $a_{i}^{*} \cdot a_{j}^{*}=0=b_{i}^{*} \cdot b_{j}^{*}, a_{i}^{*} \cdot b_{j}^{*}=$ $\delta_{i j}\left[\mathcal{C}_{g}\right]$, where $\left[\mathcal{C}_{g}\right]$ denotes the positive generator of $H^{2}\left(\mathcal{C}_{g}, \mathbb{Z}\right)$.

Having fixed a base point x_{o} in \mathcal{C}_{g}, define the algebraic map

$$
\psi: \mathcal{C}_{g} \rightarrow \mathfrak{J}_{\mathcal{C}_{g}}, x \mapsto \mathcal{O}\left(x-x_{o}\right)
$$

Of course, $\mathfrak{J}_{\mathcal{C}_{g}}$ is canonically identified as $H^{1}\left(\mathcal{C}_{g}, \mathcal{O}_{\mathcal{C}_{g}}\right) / H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)$. Thus, as a real analytic space, we can identify

$$
\begin{equation*}
\mathfrak{J}_{\mathcal{C}_{g}} \simeq H^{1}\left(\mathcal{C}_{g}, \mathbb{R}\right) / H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \simeq H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \otimes_{\mathbb{Z}}(\mathbb{R} / \mathbb{Z}) \simeq \operatorname{Hom}_{\mathbb{Z}}\left(H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right), \mathbb{R} / \mathbb{Z}\right)=J_{g} \tag{7}
\end{equation*}
$$

obtained from the \mathbb{R}-vector space isomorphism

$$
H^{1}\left(\mathcal{C}_{g}, \mathbb{R}\right) \simeq H^{1}\left(\mathcal{C}_{g}, \mathcal{O}_{\mathcal{C}_{g}}\right)
$$

induced from the inclusion $\mathbb{R} \subset \mathcal{O}_{\mathcal{C}_{g}}$, where the last equality in (7) follows by using the basis $\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right\}$ of $H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)$. The induced map, under the identification (7),

$$
\psi_{*}: H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \rightarrow H_{1}\left(\mathfrak{J}_{\mathcal{C}_{g}}, \mathbb{Z}\right) \simeq H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)
$$

is the Poincaré duality isomorphism. To see this, identify

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{Z}}\left(H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right), \mathbb{R} / \mathbb{Z}\right) \simeq \operatorname{Hom}_{\mathbb{Z}}\left(H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right), \mathbb{R} / \mathbb{Z}\right) \tag{8}
\end{equation*}
$$

using the Poincaré duality isomorphim: $H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \simeq H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)$. Then, under the identifications (7)-(8), the map

$$
\psi: \mathcal{C}_{g} \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right), \mathbb{R} / \mathbb{Z}\right)
$$

can be described as

$$
\psi(x)([\omega])=e^{2 \pi i \int_{x_{o}}^{x} \omega}
$$

for any closed 1-form ω on \mathcal{C}_{g} representing the cohomology class $[\omega] \in$ $H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)\left(\right.$ cf. $\left[\mathrm{M}\right.$, Theorem 2.5]), where $\int_{x_{o}}^{x} \omega$ denotes the integral of ω along any path in \mathcal{C}_{g} from x_{o} to x.

Since

$$
\psi_{*}: H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \rightarrow H_{1}\left(\mathfrak{J}_{\mathcal{C}_{g}}, \mathbb{Z}\right) \simeq H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)
$$

is the Poincare duality isomorphism, it is easy to see that the induced cohomology map

$$
\psi^{*}: H^{1}\left(\mathfrak{J}_{\mathcal{C}_{g}}, \mathbb{Z}\right) \simeq H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \rightarrow H^{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right)
$$

is given by

$$
\begin{equation*}
\psi^{*}\left(a_{i}\right)=-b_{i}^{*}, \psi^{*}\left(b_{i}\right)=a_{i}^{*} \text { for all } 1 \leq i \leq g \tag{9}
\end{equation*}
$$

In particular, ψ^{*} is an isomorphism. Moreover, the isomorphism does not depend on the choice of x_{o}.

Consider the map

$$
\mathcal{C}_{g} \times \mathcal{C}_{g} \xrightarrow{I \times \psi} \mathcal{C}_{g} \times \mathfrak{J}_{\mathcal{C}_{g}} .
$$

Let $\mathcal{P}^{\prime}:=(I \times \psi)^{*}(\mathcal{P})$. Then, \mathcal{P}^{\prime} is the unique line bundle over $\mathcal{C}_{g} \times \mathcal{C}_{g}$ satisfying the following properties:

$$
\left.\mathcal{P}^{\prime}\right|_{\mathcal{C}_{g} \times x}=\mathcal{O}\left(x-x_{o}\right) \text { and }\left.\mathcal{P}^{\prime}\right|_{x_{o} \times \mathcal{C}_{g}} \text { is trivial. }
$$

Consider the following line bundle over $\mathcal{C}_{g} \times \mathcal{C}_{g}$:

$$
\mathcal{O}_{\mathcal{C}_{g} \times \mathcal{C}_{g}}(\triangle) \otimes\left(\mathcal{O}\left(-x_{o}\right) \boxtimes 1\right) \otimes\left(1 \boxtimes \mathcal{O}\left(-x_{o}\right)\right),
$$

where Δ denotes the diagonal in $\mathcal{C}_{g} \times \mathcal{C}_{g}$. One sees that this bundle also satisfies the restriction properties mentioned above and hence it must be isomorphic with \mathcal{P}^{\prime}. Consequently,

$$
c_{1}\left(\mathcal{P}^{\prime}\right)=c_{1}\left(\mathcal{O}_{\mathcal{C}_{g} \times \mathcal{C}_{g}}(\triangle)\right)+c_{1}\left(\mathcal{O}\left(-x_{o}\right) \boxtimes 1\right)+c_{1}\left(1 \boxtimes \mathcal{O}\left(-x_{o}\right)\right) .
$$

Using the definition of \mathcal{P}^{\prime} and the functoriality of the Chern classes,

$$
\begin{equation*}
c_{1}\left(\mathcal{P}^{\prime}\right)=c_{1}\left((I \times \psi)^{*}(\mathcal{P})\right)=(I \times \psi)^{*} c_{1}(\mathcal{P}) . \tag{10}
\end{equation*}
$$

$\operatorname{By}(5), c_{1}(\mathcal{P}) \in H^{1}\left(\mathcal{C}_{g}\right) \otimes H^{1}\left(\mathfrak{J}_{\mathcal{C}_{g}}\right)$, and hence $c_{1}\left(\mathcal{P}^{\prime}\right) \in H^{1}\left(\mathcal{C}_{g}\right) \otimes H^{1}\left(\mathcal{C}_{g}\right)$. Moreover,

$$
c_{1}\left(\mathcal{O}\left(-x_{o}\right) \boxtimes 1\right)+c_{1}\left(1 \boxtimes \mathcal{O}\left(-x_{o}\right)\right) \in H^{2}\left(\mathcal{C}_{g}\right) \otimes H^{0}\left(\mathcal{C}_{g}\right) \oplus H^{0}\left(\mathcal{C}_{g}\right) \otimes H^{2}\left(\mathcal{C}_{g}\right)
$$

Thus, $c_{1}\left(\mathcal{P}^{\prime}\right)$ is the component of $c_{1}\left(\mathcal{O}_{\mathcal{C}_{g} \times \mathcal{C}_{g}}(\triangle)\right)$ in $H^{1}\left(\mathcal{C}_{g}\right) \otimes H^{1}\left(\mathcal{C}_{g}\right)$. Hence, by Milnor-Stasheff [MS, Theorem 11.11],

$$
c_{1}\left(\mathcal{P}^{\prime}\right)=-\sum_{i=1}^{g} a_{i}^{*} \otimes b_{i}^{*}+\sum_{i=1}^{g} b_{i}^{*} \otimes a_{i}^{*} .
$$

Therefore, by (10),

$$
c_{1}(\mathcal{P})=-\sum_{i=1}^{g} a_{i}^{*} \otimes \psi^{*-1}\left(b_{i}^{*}\right)+\sum_{i=1}^{g} b_{i}^{*} \otimes \psi^{*-1}\left(a_{i}^{*}\right),
$$

and thus, by (6),

$$
\begin{aligned}
c_{1}(\text { Det } \mathcal{P}) & =-\frac{1}{2} \pi_{*}\left(c_{1}(\mathcal{P})^{2}\right) \\
& =-\frac{1}{2} \pi_{*}\left(\left(-\sum_{i=1}^{g} a_{i}^{*} \otimes \psi^{*-1}\left(b_{i}^{*}\right)+\sum_{i=1}^{g} b_{i}^{*} \otimes \psi^{*-1}\left(a_{i}^{*}\right)\right)^{2}\right) \\
& =-\frac{1}{2} \pi_{*}\left(\sum_{i=1}^{g} a_{i}^{*} \cdot b_{i}^{*} \otimes \psi^{*-1}\left(b_{i}^{*}\right) \cdot \psi^{*-1}\left(a_{i}^{*}\right)+\sum_{i=1}^{g} b_{i}^{*} \cdot a_{i}^{*} \otimes \psi^{*-1}\left(a_{i}^{*}\right) \cdot \psi^{*-1}\left(b_{i}^{*}\right)\right) \\
& =-\sum_{i=1}^{g} \psi^{*-1}\left(b_{i}^{*}\right) \cdot \psi^{*-1}\left(a_{i}^{*}\right) \quad \in H^{2}\left(\mathfrak{J}_{\mathcal{C}_{g}}, \mathbb{Z}\right) .
\end{aligned}
$$

Now, the involution τ of $\mathfrak{J}_{\mathcal{C}_{g}}$ induces the map $-I$ on $H^{1}\left(\mathfrak{J}_{\mathcal{C}_{g}}, \mathbb{Z}\right)$ (since, under the identification $\bar{\theta}_{\mathcal{C}_{g}}: J_{g} \rightarrow \mathfrak{J}_{\mathcal{C}_{g}}, \tau$ corresponds to the map $x \mapsto x^{-1}$ for $\left.x \in J_{g}\right)$. Therefore,

$$
\tau^{*}\left(c_{1}(\operatorname{Det} \mathcal{P})\right)=c_{1}(\operatorname{Det} \mathcal{P})
$$

Hence, by the identities (1)-(2),

$$
\begin{align*}
\xi_{\mathcal{C}_{g}}^{*}\left(x_{g}\right) & =c_{1}(\operatorname{Det} \mathcal{F}) \\
& =2 c_{1}(\operatorname{Det} \mathcal{P}) \\
& =2 \sum_{i=1}^{g} \psi^{*-1}\left(a_{i}^{*}\right) \cdot \psi^{*-1}\left(b_{i}^{*}\right), \tag{11}
\end{align*}
$$

which is clearly a nonvanishing class in $H^{2}\left(\mathfrak{J}_{\mathcal{C}_{g}}, \mathbb{Z}\right)$. Moreover, for any $g \geq 2$, under the identification (7), the map $r_{g-1}: J_{g-1} \rightarrow J_{g}$ corresponds to the map $H_{1}\left(\mathcal{C}_{g}, \mathbb{Z}\right) \rightarrow H_{1}\left(\mathcal{C}_{g-1}, \mathbb{Z}\right), a_{i} \mapsto a_{i}, b_{i} \mapsto b_{i}$ for $1 \leq i \leq g-1, a_{g} \mapsto$ $0, b_{g} \mapsto 0$. Thus, by (9) and (11), $\xi_{\mathcal{C}_{g}}^{*}\left(x_{g}\right)$ restricts, via r_{g-1}^{*}, to the class $\xi_{\mathcal{C}_{g-1}}^{*}\left(x_{g-1}\right)$ for any $g \geq 2$. But, by the commutative diagram (E), $\xi_{\mathcal{C}_{g}}^{*}\left(x_{g}\right)=$ y_{g}. This proves Lemma 4.1,

Proof of Proposition 1.7. By the above Lemma 4.1 and the commutative diagram (F), we see that

$$
f_{g}^{*}\left(d_{g} x_{g}\right)=f_{g}^{*} i_{g}^{*}\left(x_{g+1}\right)=r_{g}^{*}\left(f_{g+1}^{*}\left(x_{g+1}\right)\right), \text { i.e., } d_{g} y_{g}=y_{g} .
$$

Since the cohomology of J_{g} is torsion free and y_{g} is a nonvanishing class, we get $d_{g}=1$. This concludes the proof of Proposition 1.7.

References

[A] Adams, F., Lectures on Lie Groups, W.A. Benjamin, Inc., 1969.
[ACGH] Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves, Springer-Verlag, 1985.
[B] Bourbaki, N., Groupes et Algèbres de Lie, Chap. 4-6, Masson, Paris, 1981.
[BL] Beauville, A. and Laszlo, Y., Conformal blocks and generalized theta functions, Commun. Math. Phys. 164, 385-419, (1994).
[BLS] Beauville, A., Laszlo, Y. and Sorger, C., The Picard group of the moduli of G-bundles on a curve, Compositio Math. 112, 183-216, (1998).
[BR] Beltrametti, M. and Robbiano, L., Introduction to the theory of weighted projective spaces, Expo. Math. 4, 111-162, (1986).
[BSh] Bernshtein, I.N. and Shvartsman, O.V., Chevalley's Theorem for complex crystallographic Coxeter groups, Funct. Anal. Appl. 12, 308-310, (1978).
[DN] Drezet, J.-M. and Narasimhan, M.S., Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97, 53-94, (1989).
[D] Dynkin, E.B., Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Transl. (Ser. II) 6, 111-244, (1957).
[Fa] Faltings, G., A proof for the Verlinde formula, J. Alg. Geom. 3, 347-374, (1994).
[F] Fulton, W., Intersection Theory, Springer, 1998.
[FMW] Friedman, R., Morgan, J.W. and Witten, E., Principal G-bundles over elliptic curves, Mathematical Research Letters 5, 97-118, (1998).
[KM] Knudsen, F. and Mumford, D., The projectivity of the moduli space of stable curves I: preliminaries on "det" and "div", Math. Scand. 39, 19-55, (1976).
[K_{1}] Kumar, S., Infinite Grassmannians and moduli spaces of G-bundles, in: Vector Bundles on Curves - New Directions, Lecture Notes in Mathematics 1649, Springer-Verlag, 1-49, (1997).
[K_{2}] Kumar, S., Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics vol. 204, Birkhauser, 2002.
[KN] Kumar, S. and Narasimhan, M.S., Picard group of the moduli spaces of G-bundles, Math. Annalen 308, 155-173, (1997).
[KNR] Kumar, S., Narasimhan, M.S., and Ramanathan, A., Infinite Grassmannians and moduli spaces of G-bundles, Math. Annalen 300, 41-75, (1994).
[L] Lang, S., Introduction to Arakelov Theory, Springer, 1988.
[La] Laszlo, Y., About G-bundles over elliptic curves, Ann. Inst. Fourier, Grenoble 48, 413-424, (1998).
[Lo] Looijenga, E., Root systems and elliptic curves, Invent. Math. 38, 17-32, (1976).
[LS] Laszlo, Y. and Sorger, C., The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Scient. Éc. Norm. Sup. 30, 499-525, (1997).
[M] Milne, J.S., Chap. VII - Jacobian varieties, in: Arithmetic Geometry (Cornell, G., et al., eds.), Springer-Verlag, 167-212, (1986).
[MS] Milnor, J.W. and Stasheff, J.D., Characteristic Classes, Annals of Mathematics Studies vol. 76, Princeton University Press, 1974.
[N] Narasimhan, R., Compact Riemann Surfaces, Birkhauser Verlag, 1992.
[NS] Narasimhan, M.S. and Seshadri, C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82, 540-567, (1965).
[RR] Ramanan, S. and Ramanathan, A., Some remarks on the instability flag, Tôhoku Math. J. 36, 269-291, (1984).
[$\left.\mathrm{R}_{1}\right]$ Ramanathan, A., Stable principal bundles on a compact Riemann surfaceConstruction of moduli space, Thesis, University of Bombay, 1976.
[R_{2}] Ramanathan, A., Stable principal bundles on a compact Riemann surface, Math. Annalen 213, 129-152, (1975).
[So] Sorger, C., On moduli of G-bundles on a curve for exceptional G, Ann. Scient. Éc. Norm. Sup. 32, 127-133, (1999).
[S] Szenes, A., The combinatorics of the Verlinde formula, in: Vector Bundles in Algebraic Geometry (Hitchin, N.J., et al., eds.), CUP 241, (1995).
[$\left.\mathrm{T}_{1}\right]$ Teleman, C., Lie algebra cohomology and the fusion rules, Commun. Math. Phys. 173, 265-311, (1995).
[T_{2}] Teleman, C., Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve, Invent. Math. 134, 1-57, (1998).
[TUY] Tsuchiya, A., Ueno, K. and Yamada, Y., Conformal field theory on universal family of stable curves with gauge symmetries, Adv. Stud. Pure Math. 19, 459-565, (1989).

Address (of both the Authors): Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA
shrawan@email.unc.edu
boysal@email.unc.edu

