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1. Introduction. The variational inequality we consider here is

0 ∈ L(x)− w +NS(u)(x), (1)

where L is an affine map from Rn to Rn defined by L(x) = Mx+ b with an n×n matrix M and a vector
b ∈ Rn, w also belongs to Rn, and NS(u)(x) is the normal cone at x to the polyhedral convex set

S(u) = {x ∈ Rn | Ax ≤ u}, (2)

with u ∈ Rm and A being a linear transformation from Rn to Rm.

The mapping S defined in (2) is an example of a multifunction, or a set-valued mapping . A multifunc-
tionG from a topological space P to a topological space T assigns to each p ∈ P a setG(p) ⊂ T . We denote
the effective domain of G by domG := {p ∈ P | G(p) 6= ∅} and its graph by gphG := {(p, t) | t ∈ G(p)}.
If P and T are both subsets of Euclidean spaces, then we say that G is a graph-convex polyhedral mul-
tifunction if gphG is a polyhedral convex set, and that G is a polyhedral multifunction if gphG is the
union of finitely many polyhedral convex sets.

Except where we explicitly state otherwise, we use ‖ · ‖ to denote the Euclidean norm and ‖ · ‖∞ to
denote the l∞ norm, and all projectors and balls will be Euclidean. We denote by B(x, r) the closed ball
centered at x with radius r and by B the closed unit ball for which x = 0 and r = 1, and by int B(x, r)
and int B the corresponding open balls. We use the Pompeiu-Hausdorff distance to measure the distance
between sets; as in Rockafellar and Wets [21] the Pompeiu-Hausdorff distance between two closed and
nonempty subsets U and V of Rn is given by

ρ[U, V ] = inf{η ≥ 0 | U ⊂ V + η B, V ⊂ U + η B}.

Note that ρ[U, V ] may take the value +∞; if it is finite then the infimum in the definition is a minimum.
It is known that a graph-convex polyhedral multifunction G is Lipschitz continuous in the Pompeiu-
Hausdorff metric on its effective domain with some constant λ, namely

ρ[G(u1), G(u2)] ≤ λ‖u1 − u2‖

for each u1, u2 ∈ domG; see, e.g., Rockafellar and Wets [21, Definition 9.26, Example 9.35].

This paper studies the properties of solutions of (1) as w and u vary. If we fix u and let just w vary,
then we are in the setting of Robinson [16], which proved a homeomorphism theorem for the equivalent
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normal map formulation of (1). Its proof was subsequently shortened and improved by Ralph [11, 12] and
by Scholtes [23]. This result says that the normal map associated with (1) satisfies a coherent orientation
condition if and only if it is a global homeomorphism; it is not very hard to see that the latter holds
if and only if (1) has a unique, Lipschitzian solution as w ranges over the entire space Rn. A corollary
proved in Robinson [16] shows that the normal map is a local homeomorphism if and only if a modified
coherent orientation condition holds for the normal manifold of the critical cone of the problem under
study. Dontchev and Rockafellar [3] showed that (1) has a locally unique, Lipschitzian solution as w
varies around some base point if and only if a critical face condition holds. As the solution maps of
a nonlinear variational inequality and its linearized approximation are closely related, these conditions
have been applied to the parametric analysis of nonlinear variational inequalities over polyhedral convex
sets; see Robinson [14, 15, 17] and Dontchev and Rockafellar [3].

If we make special choices of the matrix M defining the map L in (1), we obtain familiar problems
studied in the literature. For example, if we assume M to be symmetric positive definite and add the
constraint x ∈ Rn+ to the definition of S(u), the variational inequality (1) is then equivalent to a convex
quadratic programming problem considered in Cottle et al. [2, Exercise 7.6.10], which asked for a proof
that the solution x of this problem is Lipschitzian on the set of pairs (w, u) for which it exists. If we
assume further that M is the identity matrix in Rn×n, then the solution of (1) is just the Euclidean
projection of the point w − b on the set S(u). Yen [24] showed that this projection is a Lipschitzian
function of u on domS, and he used this to show the existence, uniqueness and Lipschitz continuity of
solutions of nonlinear variational inequalities over perturbed polyhedral convex sets under the assumption
that the nonlinear function is strongly monotone. Finally, if we set M to be the zero matrix, then (1)
is equivalent to a linear programming problem. Mangasarian and Shiau [10, Theorem 2.4] showed the
Lipschitz continuity of the solution sets of linear programming problems as multifunctions of the right-
hand side of the constraints. Earlier, Böhm [1, Theorem 2] had established that these sets were lower
semicontinuous with closed graphs.

If we replace the term L(x) − w in (1) by a nonlinear function of the form f(x,w), and replace the
linear inequalities defining S(u) in (2) by nonlinear smooth constraints, we obtain a parametric variational
condition over a (possibly perturbed) set. Various analyses of this problem exist in the literature, and
Robinson [18, Section 3.3] categorized those into three major approaches: the interiority approach, the
Lagrange multiplier approach and the constraint-nondegeneracy approach. Recently Klatte and Kummer
[7] characterized a kind of singularity property of the solution mapping of this problem through application
of the strict graphical derivative based on the Lagrange multiplier forms.

Our analysis of the problem (1) takes a geometric point of view. Specifically, we investigate the
structure of the polyhedral convex set S(u) and its normal manifold as the constant vector u varies
locally, and relate them to the structure of the unperturbed polyhedral convex set and its normal manifold.
Based on this investigation we extend results from Robinson [16] to the present, more general, case and
we characterize the case in which (1) has a locally unique, piecewise affine solution in terms of a coherent
orientation condition. Following that, we consider parametric nonlinear variational inequalities over
perturbed polyhedral convex sets.

Of special relevance to the result in this paper is previous work on parametric nonlinear variational
inequalities under the Constant Rank Constraint Qualification (CRCQ), summarized in Section 4.2 of
Luo, Pang and Ralph [9] and Section 5.4 of Facchinei and Pang [4]. In symbolic representations com-
parable to those in the present paper, the variational inequality considered in those references is of
the form 0 ∈ f(x, u) + NS(u)(x) where f is a C1 function from Rn+m to Rn, the set S(u) is given
by {x ∈ Rn | g(x, u) ≤ 0}, with g being a C2 function from Rn+m to Rk for some integer k, and
each component function gi(x, u) being convex in x. [9, Theorem 4.2.16] and [4, Theorem 5.4.12] say
that if a point x0 solves this variational inequality for some parameter u0, and satisfies the CRCQ,
the Mangasarian-Fromovitz constraint qualification (MFCQ), and a condition called the strong coherent
orientation condition (SCOC), then this variational inequality has a locally unique, piecewise smooth
solution. The CRCQ, defined in [9, p. 48], is a condition concerning how the constraints gi(x, u) be-
have around (x0, u0), and it especially holds true when g is linear. Accordingly, an application of those
theorems to the problem (1) will provide local existence, uniqueness and piecewise smooth properties of
solutions of (1) under the MFCQ and SCOC assumptions. By contrast, Theorem 3.1 in the present paper
considers a convex subset U0 of domS containing u0, and shows similar solution properties for (1) as
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the parameter u varies in U0, under a coherent orientation condition with respect to U0. A comparison
following Theorem 3.1 will show that our coherent orientation condition is equivalent to the SCOC when
U0 is a neighborhood of u0 in domS. The question here thus reduces to how essential the role of the
MFCQ is in establishing [9, Theorem 4.2.16] or [4, Theorem 5.4.12] along the line of analysis in those
references, given that g is linear. Note that, when g is linear, the MFCQ is equivalent to the requirement
that S(u0) has nonempty interior, which then implies that u0 is in the interior of domS. Proofs of [9,
Theorem 4.2.16] or [4, Theorem 5.4.12] started by showing the piecewise smooth property of the normal
map, and then applied certain implicit function theorems for piecewise smooth functions, which required
in particular that the normal map be defined on a full neighborhood of the base point u0 of the parame-
ter u. It is not apparent how to adapt those implicit function theorems to handle the case in which the
normal map is not defined on a full neighborhood of u0. As the present paper focuses on the special case
in which the constraints are linear, we can use properties of polyhedral multifunctions and thereby avoid
the MFCQ. Other approaches, such as the employment of degree theory along with suitable assumptions
to assure that the perturbed normal maps stay close to the unperturbed map, might also be effective for
problems of this type. Some efforts in this direction, for a different class of problems, appear in [19].

The rest of this paper is organized as follows. Section 2 reviews some properties of faces of polyhedral
convex sets that will be important for the work we do here, and it investigates the behavior of these
faces when the constant vectors in the right-hand sides of the inequalities defining the sets are slightly
perturbed. In particular it notes, and develops some properties of, a branching phenomenon that may
occur when a face splits into several new faces as the constant vector changes. Next, Section 3 uses this
branching phenomenon to examine the structure of the normal manifolds of these perturbed sets, and to
approximate cells in those manifolds by parts of cells in the original normal manifold. It shows how one
may obtain a neighborhood of the base point of this analysis such that only cells of a certain category
meet this neighborhood, and demonstrates that a generalized coherent orientation condition on cells of
that category suffices for the variational inequality (1) to have a locally unique, Lipschitzian solution.
Following that, Section 4 proves that the sufficient condition in Section 3 is also necessary, and it extends
this result to cases where S is an arbitrary graph-convex polyhedral multifunction. Finally, Section 5
applies this result to obtain existence, uniqueness, and Lipschitz continuity properties of solutions of
nonlinear variational inequalities posed over perturbed polyhedral convex sets.

2. Active sets and perturbed linear inequalities. Our analysis of the problem (1) as w and u
vary will require an understanding of the behavior of S(u), and particularly of its faces, as u varies near
a base point u0. We will show that although the local geometry of S(u) near a point x0 belonging to
S(u0) may change considerably, there are hierarchical relationships between the faces of S(u) and those
of S(u0), and the faces between which those relationships hold obey certain quantitative bounds that we
describe in Proposition 2.1 below.

In developing these relationships we will need to consider different index sets describing the activity or
inactivity of the linear inequalities defining S(u). Accordingly, for the rest of this paper we fix the linear
operator A and represent it by a matrix whose rows are a1, · · · , am.

A face of a convex set P in Rn is defined to be a convex subset F of P such that if x1 and x2 belong
to P and λx1 + (1− λ)x2 ∈ F for some λ ∈ (0, 1), then x1 and x2 actually belong to F . There is a well
known special relationship between faces of the polyhedral convex set S(u) and subsets of {1, . . . ,m}. As
we shall use that relationship extensively, we summarize it here.

First, we can associate with any subset I of {1, . . . ,m} the set

F (I, u) = {x ∈ Rn | 〈ai, x〉 = ui, i ∈ I, 〈aj , x〉 ≤ uj , j ∈ cI}, (3)

where for a subset I of {1, . . . ,m} we write cI for the complement {1, . . . ,m} \ I of I in {1, . . . ,m}. For
future reference we observe that F (I, ·) is a graph-convex polyhedral multifunction.

It follows from the definition of face that F (I, u) is a face of S(u) (possibly the empty face). For two
subsets I and J of {1, . . . ,m} we can write I ∼ J if F (I, u) = F (J, u), and this defines an equivalence
relation on 2{1,...,m}. Each equivalence class is associated with a distinct face of S(u). Moreover, let
F be any nonempty face of S(u). There is a unique subset IF of {1, . . . ,m} such that for each i ∈ IF
and for every point x of F , 〈ai, x〉 = ui, and for each j ∈ cIF there exists some point xj ∈ F such that
〈aj , xj〉 < uj . The definition (3) of F (I, u) makes it clear that F ⊂ F (IF , u). If cIF is nonempty, define
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a point xF by

xF =
1
|cIF |

∑
j∈cIF

xj

where |cIF | denotes the cardinality of cIF ; otherwise let xF be an arbitrary point in F . Then xF belongs
to F and satisfies

〈ai, xF 〉 = ui, i ∈ IF , 〈aj , xF 〉 < uj , j ∈ cIF . (4)

Now let f be any point of F (IF , u). For sufficiently small positive µ the point fµ := xF − µ(f − xF )
belongs to S(u), so that xF is a convex combination of f and fµ with positive coefficients. But xF belongs
to F , which is a face of S(u), so f ∈ F and therefore F (IF , u) ⊂ F . Accordingly, F = F (IF , u). This
shows that the faces associated with the set of equivalence classes we have defined above comprise all of
the nonempty faces of S(u). As the relative interiors of the nonempty faces of any nonempty convex set
partition that set (Rockafellar [20, Theorem 18.2]), every point of S(u) belongs to the relative interior of
one of the faces we have identified. The empty face may or may not be associated with an equivalence
class; examples of S(u) in R for which these two cases hold are a nontrivial bounded interval and a
halfline.

As {1, . . . ,m} is a finite set we could in principle produce the equivalence class associated with each
nonempty face F of S(u) by applying (3) for any each I ∈ {1, . . . ,m} and comparing the resulting F (I, u)
with F . However, this would usually be inconvenient and it is in any case unnecessary. The set IF is,
as we showed above, an element of that class. It turns out to have especially desirable qualifications to
serve as a representative of the class for our purposes.

For each u ∈ domS we define the collection of index sets I(u) to consist of all those sets I ⊂ {1, · · · ,m}
for which there exists some vector x ∈ Rn with

〈ai, x〉 = ui, i ∈ I, 〈aj , x〉 < uj , j ∈ cI.

A subset of {1, . . . ,m} thus belongs to I(u) if and only if it is the active set at some point of S(u). It
is evident that for each nonempty face F of S(u), the set IF constructed above belongs to I(u). On the
other hand, if I ∈ I(u) then the set F (I, u) is a nonempty face of S(u) for which IF = I, so that in fact
the elements of I(u) are precisely the sets IF associated with nonempty faces F of S(u). As is shown in
Scholtes [22, Proposition 2.1.3(3)] and in its proof, we have

aff F = {x | 〈ai, x〉 = ui, i ∈ IF },

and
riF = {x | 〈ai, x〉 = ui, i ∈ IF , 〈ai, x〉 < ui, i ∈ cIF }.

We can illustrate I(u) with a simple example, to which we shall return periodically in what follows.

Example 2.1 Let n = 2 and m = 3, with

A =

−1 −1
−1 0
0 −1

 . (5)

If we take u0 to be the origin of R3 then S(u0) is just the nonnegative orthant R2
+ and

I(u0) = {∅, {2}, {3}, {1, 2, 3}}.

If for a positive number ε we take u1 = (ε, 0, 0)T , then

I(u1) = {∅, {2}, {3}, {2, 3}},

while if instead we take u2 = (−ε, 0, 0)T , then

I(u2) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}.

Example 2.1 reveals a certain kind of branching behavior of the elements of I(u) when u changes: specif-
ically, each of the sets in I(u1) and in I(u2) is a subset of some set in I(u0). We study this behavior in
more detail below.
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The normal cone of S(u) on the relative interior of each nonempty face F of S(u) takes a constant
value, which we call NS(u)(F ). We have

NS(u)(F ) = pos{ai, i ∈ IF }, (6)

where for a finite set {a1, . . . , ak},

pos{a1, . . . , ak} = {0} ∪ {
k∑
i=1

τiai | τi ∈ R+}.

This definition ensures that pos ∅ = {0}.

Note that I(u) is a finite set, so S(u) has only finitely many faces. Indeed, the union of I(u) for all
u ∈ Rm is still a finite set.

The content of the following lemma consists mostly of results from Scholtes [22, Proposition 2.1.3 (4),
Lemma 2.4.2], but with slight changes.

Lemma 2.1 Let I1 and I2 belong to I(u). Then I1 ∩ I2 ∈ I(u) with

pos{ai, i ∈ I1 ∩ I2} = pos{ai, i ∈ I1} ∩ pos{ai, i ∈ I2}, (7)

or equivalently
NS(u)(F (I1 ∩ I2, u)) = NS(u)(F (I1, u)) ∩NS(u)(F (I2, u)). (8)

Proof. By definition of I(u), for k = 1, 2 there exist points xk ∈ Rn such that

〈ai, xk〉 = ui, i ∈ Ik, 〈ai, xk〉 < ui, i ∈ cIk. (9)

By using the point (x1 + x2)/2, it is easy to check that I1 ∩ I2 ∈ I(u).

To establish (7), we first note that the right side evidently includes the left side. For the other inclusion,
let y ∈ pos{ai, i ∈ I1} ∩ pos{ai, i ∈ I2}; we show that y ∈ pos{ai, i ∈ I1 ∩ I2}. If either I1 or I2 is empty,
this is immediate, so we may assume each is nonempty. Since xk ∈ F (Ik, u) for k = 1, 2, we have
y ∈ NS(u)(xk) for each k. It follows that 〈y, x2 − x1〉 must be both nonnegative and nonpositive, so in
fact it is zero. On the other hand, we have

〈ai, x2 − x1〉 = 0, i ∈ I1 ∩ I2, 〈ai, x2 − x1〉 < 0, i ∈ I1 \ I2,

by (9). Recalling that y ∈ pos{ai, i ∈ I1}, we write y =
∑
i∈I1 ηiai with all ηi nonnegative. Then

0 = 〈y, x2 − x1〉 =
∑
i∈I1

ηi〈ai, x2 − x1〉,

so for each i ∈ I1 \ I2 we must have ηi = 0. Therefore y ∈ pos{ai, i ∈ I1 ∩ I2}, which establishes (7).
Finally, the equivalence of (7) and (8) follows from (6). �

The following proposition makes precise the branching behavior mentioned above. Specifically, for
points u near a point u0 ∈ domS it shows that each element I of I(u) is a subset of some element of
I(u0), that there is in fact a minimal element Φ(I) of I(u0) containing I, and that if u is close to u0 then
the faces of S(u) and of S(u0) corresponding to I and to Φ(I) respectively are close with respect to the
Pompeiu-Hausdorff metric.

Proposition 2.1 For each u0 ∈ domS there is a neighborhood U(u0) of u0 in domS having the following
properties:

(i) For each u ∈ U(u0), each I ∈ I(u) is a subset of at least one index set I ′ ∈ I(u0). The intersection
of all such I ′ containing this I is a set Φ(I) that also belongs to I(u0) and that is therefore the
smallest element of I(u0) containing I. One has

F (I, u0) = F (Φ(I), u0). (10)

(ii) There is a positive real number λ such that for each u ∈ U(u0) and each I ∈ I(u), one has

ρ[F (I, u), F (Φ(I), u0)] ≤ λ‖u− u0‖. (11)
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The significance of (10) is that although I, which is an active set for u, is not necessarily an active
set for the right-hand side u0, the face of S(u0) corresponding to it also corresponds to a genuine active
set for u0, namely Φ(I), which contains I. One can see this illustrated in Example 2.1. There the sets
{1}, {1, 2}, and {1, 3} are all active sets when the first component of u is −ε, but they fail to be active
sets when that component is zero. However, the smallest active set for the latter case that contains these
three sets is {1, 2, 3}, and the face corresponding to that active set also corresponds to the three sets
that it contains. The bound (11) shows that the descendants of the face F (Φ(I), u0) remain close to it
provided that the parameter u does not change by very much.

Proof. For u ∈ domS we always have I(u) nonempty. For each subset I of {1, . . . , ,m}, either I
occurs as an element of I(u) for points u ∈ domS arbitrarily close to u0, or it does not. Let U(u0) be a
neighborhood of u0 in domS such that if u ∈ U(u0) then I(u) contains no sets of the second type.

To prove (i), choose u ∈ U(u0) and I ∈ I(u); we show that there is an element I ′ of I(u0) with I ′ ⊃ I.
Our method of choosing I ensures that it is a set of the first type discussed above. Accordingly, there is
some sequence {uk} converging to u0 with I ∈ I(uk) for each k. Then for each k the definition of I(uk)
shows that there exists xk with

〈ai, xk〉 = uki , i ∈ I, 〈aj , xk〉 < ukj , j ∈ cI.

In particular, for each k the set F (I, uk) is nonempty, so uk ∈ domF (I, ·). But gphF (I, ·) is a polyhedral
convex set, so its projection on Rm (that is, domF (I, ·)) is also a polyhedral convex set, hence closed.
Therefore we have u0 ∈ domF (I, ·), so F (I, u0) is nonempty. Accordingly, for some x0 ∈ Rn we have

〈ai, x0〉 = (u0)i, i ∈ I, 〈aj , x0〉 ≤ (u0)j , j ∈ cI.

Adjoin to I each index j in cI for which 〈aj , x0〉 = (u0)j to create a set I ′ ∈ I(u0) containing I.

For the second statement, let Φ(I) be the intersection of all index sets in I(u0) that contain I. By
Lemma 2.1, Φ(I) belongs to I(u0), and it is therefore the smallest element of I(u0) containing I.

To prove (10), note that F (I, u0) ⊃ F (Φ(I), u0) because I ⊂ Φ(I). If the inclusion in the other
direction did not hold, then some point x would belong to F (I, u0) but not to F (Φ(I), u0). This would
imply that for some index j ∈ Φ(I) \ I, 〈aj , x〉 < (u0)j . If we partition cI into subsets Q1 and Q2

consisting of those indices q for which 〈aq, x〉 is respectively equal to or less than (u0)q, then the existence
of x shows that I ∪Q1 ∈ I(u0). As we also have Φ(I) ∈ I(u0), Lemma 2.1 shows that I(u0) contains the
set (I ∪Q1) ∩Φ(I), which is a proper subset of Φ(I) because j ∈ Φ(I) \ (I ∪Q1). This would contradict
the minimality of Φ(I). Therefore F (I, u0) ⊂ F (Φ(I), u0), which establishes (10) and completes the proof
of (i).

For (ii), observe that the structure of the multifunction F (I, ·) depends only on the set I and
the rows of the fixed matrix A. As F (I, ·) is a graph-convex polyhedral multifunction, it is Lips-
chitz continuous in the Pompeiu-Hausdorff metric on its effective domain with some constant λI . Let
λ = max{1,maxI⊂{1,...,m} λI}.

Now let u ∈ U(u0) and I ∈ I(u), so that u ∈ domF (I, ·). From part (i) of this proposition we have
Φ(I) ∈ I(u0) and F (I, u0) = F (Φ(I), u0), so that u0 ∈ domF (I, ·). Then

ρ[F (I, u), F (Φ(I), u0)] = ρ[F (I, u), F (I, u0)] ≤ λ‖u− u0‖,

as required. �

3. Normal manifolds of perturbed sets. In order to draw conclusions about the behavior of
(1) as u and w vary, we shall use the normal map obtainable from (1). It is well known that normal
maps provide an equivalent description of the solutions of variational inequalities in terms of solutions
of single-valued equations involving functions that, although globally nonsmooth, are smooth (indeed, in
our case actually affine) within the cells of a certain piecewise-linear manifold called the normal manifold .

To construct this manifold for our application, we define for each u ∈ domS and for each I ∈ I(u) a
polyhedral convex set C(I, u) by

C(I, u) = F (I, u) +NS(u)(F (I, u)) = F (I, u) + pos{ai, i ∈ I}. (12)

The sets C(I, u) satisfy the following properties:
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(i) Each C(I, u) is of dimension n; that is, it has a nonempty interior;
(ii) Any two of the sets C(I, u) intersect in a common face (perhaps empty);

(iii) ∪I∈I(u)C(I, u) = Rn.

The normal manifold associated with the polyhedral convex set S(u) is the collection

N (u) = {C(I, u) | I ∈ I(u)}.

We call each C(I, u) an n-cell of the normal manifold of S(u), since (i) holds. A by-product of (ii) is that
the interior of an n-cell is disjoint from any other n-cell. The normal manifold N (u) has only finitely
many n-cells because I(u) is a finite set. For more detailed information on normal manifolds of polyhedral
convex sets, see Robinson [16, Section 2] or Scholtes [22, Section 2.4.2].

By combining (11) with (12) we see that for for each u in the neighborhood U(u0) of u0 described in
Proposition 2.1 and for each I ∈ I(u),

ρ[C(I, u), F (Φ(I), u0) + pos{ai, i ∈ I}] ≤ λ‖u− u0‖. (13)

The inequality (13) shows that for u near u0 we can approximate the n-cell C(I, u) of the normal
manifold of S(u), which has the form F (I, u)+pos{ai, i ∈ I}, by replacing the face F (I, u) of S(u) by the
face F (Φ(I), u0) of S(u0) while retaining, in the second term of the sum, the normal cone NS(u)(F (I, u)) =
pos{ai, i ∈ I}. In so doing we make an error no greater than some multiple of ‖u−u0‖. This is important
because there are infinitely many faces F (I, u) for u near u0, and therefore infinitely many n-cells C(I, u);
by contrast, the approximating sets are finite in number because there are only finitely many faces of
S(u0) and only finitely many possible normal cones of the form NS(u)(F (I, u)) (even though u varies
in this expression). These approximating sets are therefore much more manageable than would be the
original C(I, u).

The next lemma analyzes a situation in which we project a point z0 ∈ Rn onto S(u0) to obtain a point
x0. We then want to understand, for u near u0, which n-cells C(I, u) of the normal manifold of S(u) can
be near z0 and which cannot. We denote the active constraint set for x0 by

I0 = {i ∈ {1, · · · ,m} | 〈ai, x0〉 = (u0)i}. (14)

We also write d[z′, Z] for the distance from a point z′ of Rn to a subset Z of Rn: that is,

d[z′, Z] = inf
z∈Z
‖z′ − z‖.

Finally, since the expression F (Φ(I), u0) + pos{ai, i ∈ I} will occur frequently in what follows, we denote
it by D(I, u0).

Lemma 3.1 Let u0 ∈ domS, z0 ∈ Rn, x0 = ΠS(u0)(z0), and a positive real number λ be as in Proposition
2.1. There exist a neighborhood U1 of u0 in domS and a positive real number γ such that for each u ∈ U1

and each I ∈ I(u), if z0 /∈ D(I, u0) then

d[z0, C(I, u)] > 3γ, (15)

while if z0 ∈ D(I, u0) then
d[z0, C(I, u)] ≤ λ‖u− u0‖ < γ. (16)

Further, for each u ∈ U1 there is some I ∈ I(u) such that z0 ∈ D(I, u0).

Proof. Take U(u0) as in Proposition 2.1 and write

I = ∪u∈U(u0)I(u).

For any I ∈ I, let
δ(I) = d[z0, D(I, u0)];

note that as D(I, u0) is closed, δ(I) = 0 if and only if z0 ∈ D(I, u0). Now define

µ := min{1, min
I∈I:δ(I)>0

δ(I)}.

This µ is a positive real number because I is a finite set. Now take U1 = U(u0) ∩ int B(u0, µ/(4λ)).
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For u ∈ U1 and I ∈ I(u), suppose first that z0 /∈ D(I, u0). Then δ(I) > 0, so d[z0, D(I, u0)] ≥ µ.
Applying (13), we find that

d[z0, C(I, u)] ≥ d[z0, D(I, u0)]− ρ[C(I, u), D(I, u0)]
≥ µ− λ‖u− u0‖ > µ− λ(µ/(4λ)) = 3µ/4.

(17)

Next suppose that z0 ∈ D(I, u0). Applying (13) again, we find that

d[z0, C(I, u)] ≤ ρ[C(I, u), D(I, u0)]
≤ λ‖u− u0‖ < λ(µ/(4λ)) = µ/4.

(18)

Taking γ = µ/4, we obtain (15) and (16).

For the last claim, fix u ∈ U1 and note that the union of C(I, u) for all I ∈ I(u) covers Rn, so it
certainly covers a ball of radius 3γ about z0. But (15) says that only those C(I, u) corresponding to
I ∈ I(u) with z0 ∈ D(I, u0) meet that ball, so that such I must exist. �

For each u ∈ domS, let I0(u) be the collection of index sets I ∈ I(u) such that I ⊂ I0 and z0 − x0 ∈
pos{ai, i ∈ I}, where I0 is the active set for x0 defined in (14). The following lemma shows that for
u ∈ U1, an index set I ∈ I(u) belongs to I0(u) if and only if z0 ∈ D(I, u0). It points out that for each
u ∈ U1 the collection I0(u) contains a minimum index set, which we denote by Ic(u).

Proposition 3.1 Let u0, z0, x0 and U1 be as in Lemma 3.1, I0 be the active set for x0 defined in (14),
and let u ∈ U1.

(i) For any index set I in I(u), x0 ∈ F (Φ(I), u0) if and only if I ⊂ I0, and I ∈ I0(u) if and only if
z0 ∈ D(I, u0). Moreover, the collection I0(u) is nonempty.

(ii) For any I and J in I0(u), I ∩ J ∈ I0(u). In particular, the set Ic(u) := ∩{I | I ∈ I0(u)} belongs
to I0(u), and we have Ic(u) ⊂ I0 and z0 − x0 ∈ pos{ai, i ∈ Ic(u)}.

(iii) An index set I in I(u) belongs to I0(u) if and only if Ic(u) ⊂ I ⊂ I0.

To illustrate Proposition 3.1 in the context of Example 2.1, let z0 = (−1,−1) so that x0 is the origin.
We have already seen that

I(u2) = {∅, {1}, {1, 2}, {1, 3}, {2}, {3}},
and I0 = {1, 2, 3} by definition. We have

I0(u2) = {{1}, {1, 2}, {1, 3}},

and so Ic(u2) = {1}. The sets I ∈ I(u2) satisfying Ic(u2) ⊂ I ⊂ I0 are precisely {1}, {1, 2}, and {1, 3}.

Proof. Choose I ∈ I(u). Suppose first that x0 ∈ F (Φ(I), u0); then Φ(I) ⊂ I0 by the definition
of I0. But I ⊂ Φ(I), so I ⊂ I0. Conversely, if I ⊂ I0 then Φ(I) ⊂ I0 because I0 ∈ I(u0). Then
F (Φ(I), u0) ⊃ F (I0, u0) 3 x0. This shows the first statement of (i).

For the “only if” part of the second statement in (i), suppose that I ∈ I0(u). The definition of I0(u)
implies that I ⊂ I0 and that z0 − x0 ∈ pos{ai, i ∈ I}, and it then follows from the first statement in (i)
that x0 ∈ F (Φ(I), u0). This shows that z0 ∈ D(I, u0) in view of the definition of D(I, u0).

For the “if” part, suppose that z0 ∈ D(I, u0). Let x ∈ F (Φ(I), u0) and y ∈ pos{ai, i ∈ I} satisfy
z0 = x+ y. As

NS(u0)(x) ⊃ NS(u0)(F (Φ(I), u0)) = pos{ai, i ∈ Φ(I)} ⊃ pos{ai, i ∈ I},

we have z0 − x ∈ NS(u0)(x), so that x is the Euclidean projection of z0 on S(u0). Hence x = x0, so
x0 ∈ F (Φ(I), u0) and z0 − x0 ∈ pos{ai, i ∈ I}. Apply the first statement in (i) again to conclude that
I ∈ I0(u).

For the last statement of (i), recall from Lemma 3.1 that for each u ∈ U1 there is some I ∈ I(u) such
that z0 ∈ D(I, u0). This means that I0(u) is nonempty by the second statement here.

For part (ii), assume that I and J belong to I0(u). The definition of I0(u) implies that I ⊂ I0, J ⊂ I0,
and that z0 − x0 ∈ pos{ai, i ∈ I} ∩ pos{ai, i ∈ J}. Lemma 2.1 tells us that I ∩ J ∈ I(u) and that

pos{ai, i ∈ I} ∩ pos{ai, i ∈ J} = pos{ai, i ∈ I ∩ J},
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so we have z0 − x0 ∈ pos{ai, i ∈ I ∩ J}. It follows that I ∩ J ∈ I0(u). As I0(u) is nonempty, the set
Ic(u) = ∩{I | I ∈ I0(u)} is well defined. It follows from what we have already proved that Ic(u) ∈ I0(u),
so Ic(u) ⊂ I0 and z0 − x0 ∈ pos{ai, i ∈ Ic(u)}.

For part (iii), if I ∈ I0(u), then I ⊂ I0 by the definition of I0(u), and I ⊃ Ic(u) by the definition
of Ic(u). Conversely, if Ic(u) ⊂ I ⊂ I0, then it follows from the facts z0 − x0 ∈ pos{ai, i ∈ Ic(u)} and
pos{ai, i ∈ Ic(u)} ⊂ pos{ai, i ∈ I} that z0 − x0 ∈ pos{ai, i ∈ I}, so I ∈ I0(u) by the definition of I0(u).
�

In Section 2 we discussed index sets defining faces for polyhedral convex sets defined by linear in-
equalities. In the following we apply the results there to polyhedral convex sets defined by both linear
inequalities and equations. Suppose that for an index set I we define AI to be the submatrix of A con-
sisting of those rows with indices in I, and use the same convention for the subvector uI of u. Define a
set S by

S = {x ∈ Rn | AIx = uI , AJx ≤ uJ},
where I and J are disjoint collections of indices from {1, . . . ,m}. An index set I ′ with I ⊂ I ′ ⊂ I ∪ J
then defines a nonempty face of S if and only if there exists x ∈ Rn such that

AI′x = uI′ , AJ′x < uJ′ ,

where J ′ = (I ∪ J) \ I ′.

For u belonging to the neighborhood U1 of Lemma 3.1, define a polyhedral convex set S0(u) by

S0(u) = {x ∈ Rn | 〈ai, x〉 = ui, i ∈ Ic(u), 〈ai, x〉 ≤ ui, i ∈ I0 \ Ic(u)}. (19)

Now for each subset I with Ic(u) ⊂ I ⊂ I0, let

F0(I, u) = {x ∈ S0(u) | AIx = uI} = {x ∈ Rn | AIx = uI , AI0\Ix ≤ uI0\I}. (20)

The following proposition shows that each index set in I0(u) defines a nonempty face of S0(u) and that
each nonempty face of S0(u) is defined by such an index set.

Proposition 3.2 Let u0, z0, x0, U1 and γ be as in Lemma 3.1. There exists a neighborhood U2 of u0

in domS, such that for each u ∈ U2 and each subset I of {1, . . . ,m} the following are equivalent:

(i) I ∈ I0(u).

(ii) Ic(u) ⊂ I ⊂ I0, the set F0(I, u) is a nonempty face of S0(u), and there is a point xI ∈ Rn such
that

AIxI = uI , AI0\IxI < uI0\I . (21)

Moreover, the n-cell in the normal manifold of S0(u) associated with I ∈ I0(u) is

C0(I, u) = F0(I, u) + span{ai, i ∈ Ic(u)}+ pos{ai, i ∈ I \ Ic(u)}, (22)

and it satisfies for each 0 < ν ≤ γ

C(I, u) ∩ int B(z0, ν) = C0(I, u) ∩ int B(z0, ν). (23)

Proof. We first show that (i) implies (ii) for any u ∈ U1. Fix u ∈ U1 and suppose I ∈ I0(u). Then
I ∈ I(u) also, and part (iii) of Proposition 3.1 says that Ic(u) ⊂ I ⊂ I0. The definition of face shows that
F0(I, u) is a face of S0(u). As I ∈ I(u) there is some point xI in Rn such that

AIxI = uI , AcIxI < ucI .

But as I ⊂ I0 we have cI = (I0 \ I)∪ cI0, so xI satisfies (21), which also shows that F0(I, u) is nonempty.
Therefore the statements in (ii) hold.

Next we will show that provided u ∈ U1 is sufficiently close to u0, any I satisfying the conditions in (ii)
must belong to I(u). This will prove (i), because part (iii) of Proposition 3.1 says that for each u ∈ U1,
I ∈ I(u) lies in I0(u) if and only if Ic(u) ⊂ I ⊂ I0. We will prove that I ∈ I(u) by constructing a point
x̃ such that

〈ai, x̃〉 = ui, i ∈ I, 〈ai, x̃〉 < ui, i ∈ cI. (24)
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In order to construct x̃ we define a collection {GI | I ⊂ I0} of multifunctions from Rm to Rn by

GI(u′) = {x ∈ Rn | 〈ai, x〉 = u′i, i ∈ I; 〈ai, x〉 ≤ u′i, i ∈ I0 \ I}.

Note that for each I ⊂ I0 one has x0 ∈ GI(u0), so that u0 ∈ domGI . Each of these GI has a polyhedral
convex set for its graph, so it is Lipschitz continuous on its domain with a constant θI depending on the
matrix A and the index sets I0 and I. Take θ to be the maximum of all such θI for all possible choices
of I, and define

κ = min{1, min
i∈{1,··· ,m}\I0

[(u0)i − 〈ai, x0〉]}, χ = max{1, max
i∈{1,··· ,m}\I0

‖ai‖}.

Now let
U2 = {u ∈ U1 | ‖u− u0‖ < κ/(2χθ), ‖u− u0‖∞ < κ/3}.

Choose any u ∈ U2 and suppose that I ⊂ {1, · · · ,m} satisfies the conditions in (ii). From (21) we find
that there is some xI ∈ Rn such that 〈ai, xI〉 = ui for each i ∈ I and 〈ai, xI〉 < ui for each i ∈ I0 \ I,
so that xI ∈ GI(u) and therefore u ∈ domGI . But as noted above we also have x0 ∈ GI(u0). By the
Lipschitz continuity of GI there exists x′ ∈ GI(u) such that

‖x′ − x0‖ ≤ θ‖u− u0‖ < κ/(2χ).

For τ ∈ (0, 1) define xτ = x′ + τ(xI − x′) and note that by (21) and the fact that x′ ∈ GI(u) we have

〈ai, xτ 〉 = ui, i ∈ I, 〈ai, xτ 〉 < ui, i ∈ I0 \ I. (25)

Take τ sufficiently small so that ‖xτ − x′‖ ≤ κ/(6χ), and define x̃ = xτ . Then x̃ ∈ GI(u), and

‖x̃− x0‖ ≤ ‖x̃− x′‖+ ‖x′ − x0‖ < κ/(6χ) + κ/(2χ) = 2κ/(3χ).

For each i ∈ {1, · · · ,m} \ I0 we then have

〈ai, x̃〉 = 〈ai, x0〉+ 〈ai, x̃− x0〉 ≤ (u0)i − κ+ ‖ai‖‖x̃− x0‖
≤ (u0)i − κ+ χ(2κ)/(3χ) = (u0)i − (1/3)κ < ui,

(26)

where the first, second and third inequalities come from definitions of κ, χ and U2 respectively. Combining
(25) with (26) we see that (24) holds, so I ∈ I(u) as required. This establishes (i).

It remains to show (22) and (23). The face F0(I, u) of S0(u) defined by I ∈ I0(u) is given by
{x ∈ S0(u) | 〈ai, x〉 = ui, i ∈ I}, and its relative interior is given by

riF0(I, u) = {x ∈ S0(u) | 〈ai, x〉 = ui, i ∈ I, 〈ai, x〉 < ui, i ∈ I0 \ I}.

It is easy to check that the normal cone of S0(u) on riF0(I, u) is

NS0(u)(F0(I, u)) = span{ai, i ∈ Ic(u)}+ pos{ai, i ∈ I \ Ic(u)}. (27)

Formula (22) follows immediately.

Lemma 3.1 implies that for each u ∈ U2 and each 0 < ν ≤ γ,

int B(z0, ν) =
⋃

I∈I0(u)

(C(I, u) ∩ int B(z0, ν)). (28)

For each I ∈ I0(u), it is easy to check that C(I, u) ⊂ C0(I, u) by comparing (22) and (12); hence we have

int B(z0, ν) ∩ C(I, u) ⊂ int B(z0, ν) ∩ C0(I, u).

Suppose for some I ∈ I0(u) this inclusion holds strictly; then there exists z ∈ [int B(z0, ν) ∩ C0(I, u)] \
C(I, u). Since C0(I, u) has nonempty interior, we can find z′ near z such that z′ ∈ [int B(z0, ν) ∩
intC0(I, u)] \ C(I, u). By (28) this z lies in C(I ′, u) for some I ′ ∈ I0(u) other than I, hence it lies in
C0(I ′, u). But intC0(I, u) does not meet C0(I ′, u), so we have a contradiction. This establishes (23).
�

Before proceeding to prove the main result of this section, Theorem 3.1, we explain the notion of
piecewise affine functions, as it appears in that theorem. A continuous function f from a subsetD of Rm to
Rn is piecewise affine on D if there exists a finite collection of affine functions fj : Rm → Rn, j = 1, · · · , k
such that the inclusion f(x) ∈ {f1(x), · · · , fk(x)} holds for each x ∈ D. The following lemma relates
piecewise affine functions to polyhedral multifunctions. It is similar to [4, Exercise 5.6.14], but here we
consider any arbitrary convex subset of the domain of the multifunction.
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Lemma 3.2 Let G be a polyhedral multifunction from Rm to Rn, and let C be a convex subset of domG.
If G is single-valued on C, then G is Lipschitz continuous and piecewise affine on C.

Proof. The Lipschitz continuity of G on C follows from [13, Corollary 2.2]. Proof of the piecewise
affine property is similar to that of [4, Exercise 5.6.14]. �

The proof of Theorem 3.1 uses the equivalence between a variational inequality and its normal map
formulation. For u ∈ domS and for the affine function L defined following (1), let LS(u) : Rn → Rn be
the normal map induced by L on S(u): that is,

LS(u)(z) = L(ΠS(u)(z)) + z −ΠS(u)(z). (29)

Suppose that LS(u0)(z0) = 0; as above let x0 denote the Euclidean projection of z0 on S(u0). Then x0

satisfies the variational inequality 0 ∈ L(x0) +NS(u0)(x0).

Now let u belong to the neighborhood U2 of Proposition 3.2 and take I ∈ I(u). Because of the
expression for C(I, u) given in (12), we can decompose each z ∈ C(I, u) into the sum of a component
in {x ∈ S(u) | 〈ai, x〉 = ui, i ∈ I} and a component in pos{ai, i ∈ I}, with ΠS(u)(z) given by the
first component. But the decomposition of a point in Rn into the sum of a component in the affine set
{x ∈ Rn | 〈ai, x〉 = ui, i ∈ I} and a component in the subspace span{ai, i ∈ I} is unique, so on C(I, u)
the map ΠS(u) coincides with the projection on {x ∈ Rn | 〈ai, x〉 = ui, i ∈ I} along span{ai, i ∈ I},
which is an affine map. It follows that LS(u) coincides with some affine map on C(I, u) as well. Moreover,
as shown in Robinson [16, Proposition 2.5], the affine map representing LS(u) in C(I, u) has the same
determinant as the section of the matrix M in kerAI := {x ∈ Rn | 〈ai, x〉 = 0, i ∈ I}. Here we use the
term section in the sense of Householder [6, Section 3.3]; if M is an n×n matrix, H is a subspace of Rn,
and E is a matrix of dimension n× l whose columns form an orthonormal basis for H, then the section
of M in H is the matrix ETME. In the case that H contains only the origin of Rn, the matrix E and
the section of M in H are both empty, and the determinant of the section of M in H is by convention 1.
For brevity we also speak of the determinant of an affine map of the form Gv + g from Rk to Rk when
we mean the determinant of the k × k matrix G.

If I ∈ I0(u) then the expression of C0(I, u) in (22) shows that we can decompose each z ∈ C0(I, u)
into the sum of a component in {x ∈ S0(u) | 〈ai, x〉 = ui, i ∈ I} and a component in span{ai, i ∈
Ic(u)}+pos{ai, i ∈ I \Ic(u)}, with ΠS0(u)(z) being the first of these components. By the same argument
as in the discussion above, on C0(I, u) the map ΠS0(u) also coincides with the projection on {x ∈ Rn |
〈ai, x〉 = ui, i ∈ I} along span{ai, i ∈ I}. If we recall that C(I, u) ⊂ C0(I, u) we see that on C(I, u) the
two projectors ΠS0(u) and ΠS(u) coincide and the normal map LS0(u) : Rn → Rn defined by

LS0(u)(z) = L(ΠS0(u)(z)) + z −ΠS0(u)(z) (30)

coincides with LS(u). In particular, the affine map representing LS0(u) in C0(I, u) has the same determi-
nant as the section of the matrix M in kerAI := {x ∈ Rn | 〈ai, x〉 = 0, i ∈ I}.

Theorem 3.1 Let S, L, u0, z0, x0 be as defined. Suppose there is a convex subset U0 of domS containing
u0 such that for each I ∈ ∪u∈U0I0(u) the determinant of the section of the matrix M in kerAI has the
same nonzero sign. Then there exist neighborhoods U ′ of u0 in U0, W ′ of the origin, Z ′ of z0 and X ′

of x0 in Rn, and single-valued, Lipschitz continuous, piecewise affine functions x : U ′ ×W ′ → Rn and
z : U ′ ×W ′ → Rn such that for each (u,w) ∈ U ′ ×W ′, x(u,w) is the unique solution in X ′ of (1) and
z(u,w) is the unique solution in Z ′ of

LS(u)(z) = w. (31)

The points x(u,w) and z(u,w) satisfy

z(u,w) = x(u,w)− L (x(u,w)) + w, x(u,w) = ΠS(u) (z(u,w)) . (32)

Proof. Let the neighborhood U2 of u0 and the positive real number γ be as in Proposition 3.2.
There is no loss of generality in assuming that U0 ⊂ U2.

In the following, we will construct neighborhoods U ′ of u0 in U0, W ′ of the origin, Z ′ of z0 and X ′ of
x0 in Rn, such that for each u ∈ U ′, LS(u) is a local Lipschitz homeomorphism from Z ′ onto its image,
with W ′ ⊂ LS(u)(Z ′), and that the sizes of these neighborhoods are related so that (1) is equivalent to
(31) through (32).
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We start by showing that for each u ∈ U0, LS(u) is a homeomorphism on B(z0, γ). For each such u,
Proposition 3.2 shows that each n-cell in the normal manifold of S0(u) is of the form C0(I, u) for some
I ∈ I0(u). In the discussion preceding this theorem we showed that the affine map representing the
normal map LS0(u) in C0(I, u) has the same determinant as the section of the matrix M in kerAI . We
also showed that for each I ∈ I0(u) the two normal maps LS(u) and LS0(u) agreed on C(I, u). By our
hypothesis, the determinants of the affine maps representing the normal map LS0(u) in the various n-cells
of the normal manifold of S0(u) all have the same nonzero sign, so LS0(u) is a global homeomorphism from
Rn to Rn (see Robinson [16], Ralph [12] and Scholtes [22] for proofs of this homeomorphism theorem).
But the ball B(z0, γ) is contained in the union of C(I, u) for all I ∈ I0(u), and since LS(u) and LS0(u)

agree on each such C(I, u), they agree on B(z0, γ). As LS0(u) is a global homeomorphism, it follows that
LS(u) is a local homeomorphism from B(z0, γ) onto its image.

For each u ∈ U0, both LS0(u) and its inverse are piecewise affine functions on Rn and are therefore
Lipschitz continuous (Fujisawa and Kuh, [5, Section 3.1]). Therefore there are positive constants τ1 and
τ2, depending on the matrices defining the affine maps representing LS0(u), such that for each z and z′

in Rn we have
τ1‖z − z′‖ ≤ ‖LS0(u)(z)− LS0(u)(z′)‖ ≤ τ2‖z − z′‖. (33)

The matrices on which τ1 and τ2 depend are defined by the index sets I ∈ I0(u) giving rise to the n-cells
of the normal manifold of S0(u). Because there are only finitely many of these index sets, we may choose
τ1 and τ2 so that (33) holds for each u ∈ U0.

Let η ∈ (0, γn−1/2) and write Z ′ = {z ∈ Rn | ‖z − z0‖∞ ≤ η}. It is easy to check that

B(z0, η) ⊂ Z ′ ⊂ B(z0, γ). (34)

For each u ∈ U0 we have

LS(u)(B(z0, η)) = LS0(u)(B(z0, η)) ⊃ B(LS0(u)(z0), τ1η) = B(LS(u)(z0), τ1η), (35)

where the two equations hold because LS(u) and LS0(u) agree on B(z0, η) and the inclusion comes from
(33).

For each u ∈ domS and z ∈ Rn, the Euclidean projection ΠS(u)(z) is just the unique solution of the
variational inequality 0 ∈ x − z + NS(u)(x). The normal cone NS(u)(x) is a polyhedral multifunction
of the variables (u, x); see the discussion in Robinson [13, Lemma 2.3]. Accordingly, ΠS(u)(z) is also a
polyhedral multifunction of (u, z). An application of Lemma 3.2 then shows that ΠS(u)(z) is a Lipschitz
continuous function of (u, z) on domS × Rn. It follows that LS(u)(z) is also a Lipschitz continuous
function of (u, z) on domS ×Rn with some constant β with respect to the norm ‖(u, z)‖ = ‖u‖+ ‖z‖ on
Rm × Rn.

For each u ∈ U0 ∩ B(u0, (2β)−1τ1η), we have

‖LS(u)(z0)‖ = ‖LS(u)(z0)− LS(u0)(z0)‖ ≤ β‖u− u0‖ ≤ τ1η/2,

where the equation holds because LS(u0)(z0) = 0. Applying (34) and (35), we obtain

LS(u)(Z ′) ⊃ LS(u)(B(z0, η)) ⊃ B(0, τ1η/2). (36)

If we define a multifunction G from Rm × Rn to Rn by

G(u,w) = {z ∈ Z ′ | LS(u)(z) = w},

then its graph is the projection on the (u,w, z) space of the set

{(u,w, z, x) ∈ Rm × Rn × Z ′ × Rn | x = (I +NS(u))−1(z), Lx+ z − x = w}.

Because the normal cone NS(u)(x) is a polyhedral multifunction of the variables (u, x), G is a polyhedral
multifunction of (u,w). Moreover, when (u,w) lies in the set [U0∩B(u0, (2β)−1τ1η)]×B(0, τ1η/2), G(u,w)
contains a single point: it is nonempty by (36) and it contains no more than one point because LS(u) is
a local homeomorphism on Z ′. According to Lemma 3.2, G is Lipschitz continuous and piecewise affine
on the set

[U0 ∩ B(u0, (2β)−1τ1η)]× B(0, τ1η/2).

Now let ξ and ω be positive real numbers such that ω ≤ τ1η/2 and ‖I −M‖ξ + ω ≤ η, and define
X ′ = B(x0, ξ). Define U ′ to be a neighborhood of u0 contained in U0 ∩ B(u0, (2β)−1τ1η) and W ′ to be
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a neighborhood of the origin contained in B(0, ω), with U ′ and W ′ sufficiently small so that for each
(u,w) ∈ U ′ ×W ′ the unique element z of G(u,w) satisfies ΠS(u)(z) ∈ X ′.

Define a function z from U ′ ×W ′ to Z ′ by taking z(u,w) to be the unique element of G(u,w). For
each (u,w) ∈ U ′ ×W ′ define

x(u,w) = ΠS(u) (z(u,w)) . (37)

The functions z(·, ·) and x(·, ·) as defined are Lipschitzian and piecewise affine, with z(u0, 0) = z0 and
x(u,w) ∈ X ′ for each (u,w) ∈ U ′ ×W ′. The definition of G further shows that for each such (u,w) we
have

w = LS(u) (z(u,w)) = L (x(u,w)) + z(u,w)− x(u,w), (38)

which together with (37) shows that (32) holds. Also, (38) shows that z(u,w) satisfies (31); further, the
definition of G together with the fact that G is single-valued on U ′×W ′ shows that z(u,w) is the unique
element of Z ′ satisfying (31). From (37) we deduce that

z(u,w)− x(u,w) ∈ NS(u) (x(u,w)) ,

and by combining this with (38) we find that x(u,w) satisfies (1).

It remains to show that x(u,w) is the unique point of X ′ satisfying (1). Let x′ ∈ X ′ and suppose that
w ∈ L(x′) +NS(u)(x′). Define z′ by

z′ = x′ − L(x′) + w. (39)

This definition implies that z′ − x′ ∈ NS(u)(x′), so that x′ = ΠS(u)(z′). By subtracting the equation
z0 = x0 − L(x0) + 0 from (39) and taking norms we obtain

‖z′ − z0‖ = ‖(I −M)(x′ − x0) + w‖ ≤ ‖I −M‖ξ + ω ≤ η. (40)

Recalling from (34) that B(z0, η) ⊂ Z ′, we see that z′ ∈ Z ′. It follows from (39) and x′ = ΠS(u)(z′) that
LS(u)(z′) = w, but because z′ ∈ Z ′ the uniqueness result for z(u,w) implies z′ = z(u,w) and therefore
x′ = x(u,w). Accordingly, x(u,w) is the unique solution in X ′ of (1). �

The determinantal condition of Theorem 3.1 requires checking signs in all of the index sets I0(u)
that might arise for the various u ∈ U0. Below we give some remarks on how this might be done. For
convenience we call a subset I of {1, · · · ,m} a spanning set for the triple y0 := (u0, z0, x0) if I ⊂ I0 and
z0 − x0 ∈ pos{ai, i ∈ I}. By the definition of I0(u), an index set I belongs to I0(u) if and only if it is a
spanning set for y0 belonging to I(u). Accordingly, whatever U0 is, the set ∪u∈U0I0(u) is a subset of the
collection of all spanning sets for y0. Moreover, for each spanning set I for y0, by [20, Corollary 17.1.2]
there exists a subset I ′ of I such that z0−x0 ∈ pos{ai, i ∈ I ′}, with {ai, i ∈ I ′} linearly independent. We
may further extend I ′ to a (possibly bigger) subset I ′′ of I, with {ai, i ∈ I ′′} linearly independent and the
row space of AI′′ equal to that of AI . It follows that I ′′ is a spanning set for y0 with kerAI = kerAI′′ .
Hence, whatever U0 is, it is always sufficient to check the signs of the determinants of the sections of M
in kerAI for all spanning sets I for y0 with {ai, i ∈ I} linearly independent.

If U0 is a neighborhood of u0 in domS, then the set ∪u∈U0I0(u) is precisely the collection of all
spanning sets for y0. To see this, let I be a spanning set for y0. Define a vector v ∈ Rm such that vi = 1
for i ∈ I0 \ I and vi = 0 for i ∈ I ∪ cI0, and define uλ = u0 +λv for each positive real number λ. It follows
that 〈ai, x0〉 = (uλ)i for each i ∈ I and 〈ai, x0〉 < (uλ)i for each i ∈ cI, so uλ ∈ domS and I ∈ I0(uλ).
By choosing λ to be sufficiently small, we have uλ ∈ U0 and therefore I ∈ ∪u∈U0I0(u). Hence, when U0

is a neighborhood of u0 in domS, it is sufficient and necessary to check signs for all spanning sets I for
y0 with {ai, i ∈ I} linearly independent.

We now consider the case where U0 is a polyhedral convex set in domS containing u0. If an index set
I ⊂ I0 belongs to I(u) for some u ∈ U0, then there exists x ∈ Rn such that 〈ai, x〉 = ui for each i ∈ I
and 〈ai, x〉 < ui for each i ∈ cI. Write z = x− x0 and v = u− u0; we have v ∈ TU0(u0) where TU0(u0) is
the tangent cone of U0 at u0. As 〈ai, x0〉 = (u0)i for i ∈ I0, we have

〈ai, z〉 = vi, i ∈ I, 〈aj , z〉 < vj , j ∈ I0 \ I. (41)

Conversely, suppose for some I ⊂ I0 there exist points z ∈ Rn and v ∈ TU0(u0) such that (41) holds.
For each positive real number λ define xλ = x0 + λz and uλ = u0 + λv. It is not hard to check that
for sufficiently small λ, xλ belongs to S(uλ) and its active set is the set I, so that I ∈ I(uλ). As uλ
belongs to U0 for sufficiently small λ, we find that I ∈ ∪u∈U0I0(u). This shows that a spanning set I for
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y0 belongs to ∪u∈U0I0(u) if and only if there exist z ∈ Rn and v ∈ TU0(u0) satisfying (41). As TU0(u0) is
a polyhedral convex cone, we can check the existence of such z and v by solving a linear program with a
dummy objective function. Here we cannot ignore the spanning sets I with {ai, i ∈ I} linearly dependent;
it is possible that, for some U0, ∪u∈U0I0(u) contains only index sets I with {ai, i ∈ I} linearly dependent.

Below we compare the coherent orientation condition here with the SCOC defined in [4, p. 490-491]
and [9, p. 173-174]. The SCOC requires checking signs of a family of matrices generated by the SCOC
family of active index sets, which, for the present problem, turns out to be exactly the collection of
spanning sets I with {ai, i ∈ I} linearly independent. For each such I, define a matrix

ΛI =
[
M ATI
−AI 0

]
;

the SCOC requires all these matrices ΛI to have the same nonzero determinantal sign. If we let E be a
matrix whose columns form an orthonormal basis for kerAI , and write

Q =
[
AI
ET

]
,

then Q is a nonsingular n× n matrix, and we have

sgn det
[
M ATI
−AI 0

]
= sgn det

[
Q 0
0 I

] [
M ATI
−AI 0

] [
QT 0
0 I

]
= sgn det

[
QMQT QATI
−AIQT 0

]

= sgn det

AIMATI AIME AIA
T
I

ETMATI ETME 0
−AIATI 0 0


Two Laplace expansions of the last determinant show that

sgn det

AIMATI AIME AIA
T
I

ETMATI ETME 0
−AIATI 0 0

 = sgn[(detAIATI )2 detETME].

The choice of I implies that AI is of full row rank, so detAIATI is nonzero. It follows that

sgn det ΛI = sgn det
[
M ATI
−AI 0

]
= sgn detETME,

so the determinant of the matrix ΛI has the same sign as that of the section of the matrix M in kerAI .
Referring to the comments above about the coherent orientation condition here, we see that these two
conditions are equivalent when U0 is a neighborhood of u0 in domS. In fact, [4] and [9] used the SCOC
in the situation in which u0 is in the interior of domS and U0 is a neighborhood of u0 in domS (and
therefore a full neighborhood of u0 in Rm).

4. Necessity of the determinantal condition. Theorem 3.1 showed that a certain determinantal
condition sufficed for the variational inequality (1) to have a locally unique, Lipschitzian solution. We
show here that the condition is also necessary. The proof is in two steps: first we show in Proposition
4.2 that for each u sufficiently close to u0, the determinants of the sections of the matrix M in kerAI
for each I ∈ I0(u) have a common nonzero sign (which might depend on u). Following that, we show in
Theorem 4.1 that this sign is the same for all such u.

In proving Proposition 4.2 we use skelk(u) to denote the k-dimensional skeleton of the normal manifold
of S(u), that is, the union of all k-dimensional faces of C(I, u) for I ∈ I(u). If z 6∈ skeln−2(u), then it
either belongs to the interior of C(I, u) for some I ∈ I(u), or it belongs to the relative interior of a
common facet of C(I, u) and C(J, u) for two distinct I, J ∈ I(u).

We require the fact that for each positive real number ν, the set int B(z0, ν) \ skeln−2(u) is open and
connected. Openness of int B(z0, ν) \ skeln−2(u) is immediate, but connectedness is not. Both Scholtes
[22, p. 40, line 2] and Kuhn and Löwen [8, proof of Lemma 2.2] use the connectedness of Rn \ skeln−2(u),
but neither gives a detailed proof. For completeness, in Proposition 4.1 below we provide a proof of a
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somewhat stronger assertion. Let U be a subset of Rn; a polyhedral path in U is a continuous function
P from the unit interval [0, 1] to U such that there exists a finite set of points t0, t1, · · · , tk where
0 = t0 < t1 < · · · < tk = 1 so that P coincides with an affine function on each interval [ti, ti+1] for
i = 0, · · · , k − 1. We say that U is polyhedral path connected if each two points in U can be joined by a
polyhedral path in U . We will use the notation [y, z] for the closed line segment joining two points y and
z of Rn, and (y, z) for the corresponding relatively open line segment.

Proposition 4.1 Let U be a nonempty, open, polyhedral path connected set in Rn and let F1, . . . , Fk
be closed convex subsets of Rn, each having dimension not more than (n − 2). Then U \ ∪i=1,...,kFi is
polyhedral path connected.

Proof. The proof is in three steps. In the first step we let V be a nonempty open convex subset
of Rn and F be a closed convex subset of Rn of dimension not more than n − 2. Let x1 and x2 be two
points of V ; we show that x1 and x2 are connected by a polyhedral path P : [0, 1]→ V such that for each
t ∈ (0, 1), P (t) /∈ F . If the line segment (x1, x2) does not intersect F , then let P (t) = (1− t)x1 + tx2 and
we are done. Suppose therefore that (x1, x2) intersects F . It is then easy to see that the affine hull of
F ∪ [x1, x2] is contained in some (n− 1)-dimensional hyperplane H. As V is nonempty and open, the set
V \H must be nonempty. Let x0 be a point in V \H and define P (t) = (1− 2t)x1 + 2tx0 for t ∈ [0, 1/2)
and P (t) = (2− 2t)x0 + (2t− 1)x2 for t ∈ [1/2, 1]. The image of P is thus the broken line joining x1 to
x2 via x0, and it lies in V because V is convex. Moreover, for each t ∈ (0, 1) we have P (t) /∈ H because
x1, x2 ∈ H and x0 /∈ H. This P satisfies our requirements, and completes Step 1.

In Step 2, we show that U \ F is polyhedral path connected. Let x1 and x2 be two points of U \ F .
We will show that these points are connected by a polyhedral path P in U \ F . As U is polyhedral path
connected, there exists a polyhedral path P0 : [0, 1] → U with P0(0) = x1 and P0(1) = x2. If the image
of P0 does not intersect F , then let P = P0 and we are done. Suppose therefore that the image of P0

intersects F .

As P0 is a polyhedral path and F is closed and convex, imP0∩F is the union of finitely many (possibly
degenerate) line segments: that is,

imP0 ∩ F = ∪ji=1[P0(t2i−1), P0(t2i)],

where 0 < t1 ≤ t2 ≤ · · · ≤ t2j−1 ≤ t2j < 1 and where for each i the segment [P0(t2i−1), P0(t2i)] lies in F .
Note that 0 < t1 and t2j < 1 because x1 and x2 are not in F . As [P0(t1), P0(t2)] is a compact subset of the
open set U , there is a real number ε > 0 such that U contains the open set V = [P0(t1), P0(t2)] + ε int B.
Choose real numbers t′1, t

′
2 ∈ [0, 1] so that t′1 < t1, t′2 > t2, and both P0(t′1) and P0(t′2) belong to V .

As V is open and convex, by the result of Step 1 there exists a polyhedral path P ′ : [0, 1] → V with
P ′(0) = P0(t′1), P ′(1) = P0(t′2) and P ′(t) 6∈ F for each t ∈ (0, 1). Define a path P1 : [0, 1]→ U by

P1(t) =

{
P0(t) if t ≤ t′1 or t ≥ t′2,
P ′([(t− t′1)/(t′2 − t′1)]) if t′1 < t < t′2.

In other words, we just replace that part of imP0 from P0(t′1) to P0(t′2) by imP ′. The new path P1

lies in U and joins x1 and x2, and it is polyhedral since both P0 and P ′ are polyhedral. Moreover, our
construction ensures that imP1 ∩ F is the union of at most j − 1 line segments, because we eliminated
[P0(t1), P0(t2)] and did not introduce new line segments. Hence, by employing the above process at most
j times we construct a polyhedral path P in U \F joining x1 and x2. This shows that U \F is polyhedral
path connected, and completes Step 2.

For the final step we first apply Step 2 to U and F1 to show that U \F1 is polyhedral path connected.
As it is also open, we can apply Step 2 again to U \ F1 and F2 to show that U \ (F1 ∪ F2) is polyhedral
path connected. It follows by an induction that U \ ∪i=1,...,kFi is polyhedral path connected. �

To obtain the result we need, we note that the ball int B(z0, ν) is open by definition. As it is convex,
it is trivially polyhedral path connected. The definition of skeln−2(u) ensures that it is a union of finitely
many polyhedral convex sets, none of which has dimension greater than n−2. Proposition 4.1 then shows
that the set int B(z0, ν) \ skeln−2(u) is polyhedral path connected and therefore is a fortiori connected.

Proposition 4.2 Let S, L, u0, z0, x0 be as in Theorem 3.1. Suppose that there exist a subset U ′ of
domS containing u0, neighborhoods W ′ of the origin and X ′ of x0 in Rn, and a single-valued function
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x : U ′×W ′ → Rn such that for each (u,w) ∈ U ′×W ′, x(u,w) is the unique solution in X ′ of (1). Then
there exists a neighborhood U ′′ of u0 in U ′ such that for each u ∈ U ′′, the determinant of the section of
the matrix M in kerAI for each I ∈ I0(u) has the same nonzero sign.

Proof. We first construct a suitable neighborhood U ′′ of u0 in U ′, and then show that this U ′′

satisfies the desired condition.

To begin with, let positive real numbers γ and λ be as in Lemma 3.1 and the neighborhood U2 of
u0 in domS be as in Proposition 3.2. The remarks following (35) showed that ΠS(u)(z) and LS(u)(z)
are Lipschitz continuous functions with respect to (u, z) on domS × Rn. As ΠS(u0)(z0) = x0 and
LS(u0)(z0) = 0, there exist a neighborhood U∗ of u0 in domS and a positive real number ν ≤ γ such that
ΠS(u)(z) ∈ X ′ and LS(u)(z) ∈W ′ for each (u, z) ∈ U∗ × int B(z0, ν).

Let U ′′ = U ′ ∩ U2 ∩ U∗ ∩ int B(u0, λ
−1ν). By Lemma 3.1, for each u ∈ U ′′ we have

I ∈ I0(u)⇒ d[z0, C(I, u)] ≤ λ‖u− u0‖ < λ(λ−1ν) = ν ⇒ C(I, u) ∩ int B(z0, ν) 6= ∅ (42)

and
I ∈ I(u) \ I0(u)⇒ d[z0, C(I, u)] > 3γ ≥ 3ν ⇒ C(I, u) ∩ int B(z0, ν) = ∅. (43)

Next, we show by contradiction that this U ′′ satisfies the desired property. Suppose it does not: then
there exists u ∈ U ′′ such that the determinant of the section of the matrix M in kerAI for each I ∈ I0(u)
does not have the same nonzero sign.

For two distinct elements I and J of I0(u), we say that C(I, u) and C(J, u) are adjacent in int B(z0, ν)
if they intersect in a common facet with C(I, u)∩C(J, u)∩ int B(z0, ν) 6= ∅, and we say that C(I, u) and
C(J, u) are joined if there exist an integer k and a chain of n-cells

C(I, u) = C(I1, u), C(I2, u), · · · , C(Ik, u) = C(J, u)

such that for i = 1, . . . , k − 1, C(Ii, u) and C(Ii+1, u) are adjacent in int B(z0, ν). We also stipulate that
each C(I, u) for I ∈ I0(u) is joined with itself. This “joinedness” defines an equivalence relation on all
these C(I, u) for I ∈ I0(u).

Now fix some I ∈ I0(u), and let U be the union of all C(J, u) joined to C(I, u). We show below that
U intersects int B(z0, ν) \ skeln−2(u) in a nonempty open set. The nonemptiness comes from (42) and the
fact that C(I, u) ⊂ U . For the openness, let z belong to this intersection; that is, suppose that z belongs
both to int B(z0, ν) \ skeln−2(u) and to some C(J, u) that is joined to C(I, u). As z /∈ skeln−2(u), there
are only two possible cases:

Case 1. It belongs to the interior of C(J, u), and hence to the interior of U .

Case 2. It belongs to the relative interior of a common facet of C(J, u) and another n-cell C(K,u)
for K ∈ I(u). As z ∈ int B(z0, ν), we must have K ∈ I0(u) in view of (43). The existence of z further
implies that C(K,u) is adjacent to C(J, u) in int B(z0, ν). As C(J, u) is joined to C(I, u), C(K,u) is also
joined to C(I, u). But z belongs to the interior of C(J, u) ∪ C(K,u), so z belongs to the interior of U .

In each of the above cases, z belongs to the interior of U . Since int B(z0, ν) \ skeln−2(u) is open, z
belongs to the interior of U ∩ (int B(z0, ν) \ skeln−2(u)). It follows that the latter set is open.

As the “joinedness” defines an equivalence relation, it divides the collection {C(I, u) : I ∈ I0(u)} into
finitely many, say K, equivalence classes. For each k = 1, · · · ,K, let Uk be the union of sets in the
kth equivalence class; we just showed that Uk ∩ (int B(z0, ν) \ skeln−2(u)) is a nonempty open set. A
similar argument as above can show that for distinct k, j, the two sets Uk ∩ (int B(z0, ν) \ skeln−2(u))
and Uj ∩ (int B(z0, ν) \ skeln−2(u)) are disjoint. Moreover, by (43) the union of all these Uk covers
int B(z0, ν) \ skeln−2(u). Since we have shown that int B(z0, ν) \ skeln−2(u) is connected, there cannot
be more than one such class. This shows that for any two distinct elements I and J of I0(u), the sets
C(I, u) and C(J, u) are joined in the above sense.

Returning to our earlier hypothesis on determinants of sections of the matrix M , we see that there are
two possible cases:

Case 1. The determinants of the sections of the matrix M in kerAI and in kerAJ for two elements
I and J of I0(u) have opposite nonzero signs.
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Case 2. The determinant of the section of the matrix M in kerAI for an element I of I0(u) is zero.

Suppose the first case happens. As C(I, u) and C(J, u) are joined by a chain C(I, u) =
C(I1, u), · · · , C(Ik, u) = C(J, u), there exists some i in {1, · · · , k − 1} such that the determinants of
sections of M in kerAIi

and kerAIi+1 have opposite signs. We may assume without loss of general-
ity that i = 1. In this way we find two n-cells C(I1, u) and C(I2, u) adjacent in int B(z0, ν) while the
determinants of sections of M in kerAI1 and kerAI2 have opposite signs.

For i = 1, 2 the affine map representing LS(u) in C(Ii, u) has the same determinant as the section
of the matrix M in kerAIi

. It follows that the determinants of the affine maps representing LS(u) on
C(Ii, u) for i = 1, 2 have opposite signs.

As C(I1, u) and C(I2, u) are adjacent in int B(z0, ν), there exists a point z ∈ int B(z0, ν) which belongs
to their common facet. Without loss of generality we may assume that z lies in the relative interior of
this facet, since the relative interior of a convex set is dense in that set. By the argument in Robinson [17,
p.260-261], one can find two distinct points arbitrarily close to z, say z1 ∈ intC(I1, u) and z2 ∈ intC(I2, u),
such that LS(u)(z1) = LS(u)(z2). As int B(z0, ν) is open, we may choose z1 and z2 to lie in int B(z0, ν).
For i = 1, 2 write w for the common value of LS(u)(zi), and let xi = ΠS(u)(zi). By the way in which we
have defined the neighborhood U ′′ and the real number ν, we have w ∈ W ′ and xi ∈ X ′ for i = 1, 2.
Moreover, each of these xi solves the variational inequality (1) for this special (u,w) pair. However, as
the zi belong to the interiors of distinct cells of the normal manifold of S(u), their projections xi belong
to the relative interiors of distinct faces of S(u). As the relative interiors of the faces of S(u) partition
it, we see that x1 6= x2. This contradicts the hypothesis that (1) has a unique solution in X ′ for each
(u,w) ∈ U ′ ×W ′.

Suppose next that the second case happens. As the affine map representing LS(u) in C(I, u) has
the same determinant as the section of the matrix M in kerAI , this affine map has zero determinant
and therefore takes the same values along some nontrivial subspace H. By (42) there exists a point
z1 ∈ C(I, u)∩int B(z0, ν). As C(I, u) has nonempty interior, we may assume without loss of generality that
z1 ∈ intC(I, u)∩ int B(z0, ν). Let a point z2 belong to intC(I, u)∩ int B(z0, ν) such that 0 6= z2− z1 ∈ H;
then it satisfies LS(u)(z2) = LS(u)(z1). Define w and xi for i = 1, 2 as we did for the first case. By the
same argument as above we have w ∈ W ′ and xi ∈ X ′ for i = 1, 2 and that each of these xi solves the
variational inequality (1) for this special (u,w) pair. The definition of LS(u) and the facts xi = ΠS(u)(zi)
imply

w = L(x1) + z1 − x1 = L(x2) + z2 − x2,

so if x1 = x2 held then it would imply z1 = z2. As z1 6= z2, we see that x1 6= x2. Again this contradicts
the hypothesis on the local uniqueness of the solution of (1), and thereby completes the proof. �

The above proposition finishes the first step of the proof of necessity. For the second step we need the
following definitions. For a nonempty convex subset P of Rn we define the recession cone rcP of P to be
the set of points v such that P + v ⊂ P , and the lineality space linP of P to be the set of points v such
that P + v ⊂ P and P − v ⊂ P . These are related by the equation linP = rcP ∩ (− rcP ). Moreover,
one has

P = (P ∩ (linP )⊥) + linP.

For more properties of recession cones and lineality spaces see Rockafellar [20]. We say that a set Q is
a translation of another set P if Q = P + q for some point q, and that a function g is a translation of
another function f if g is the sum of f and some constant function.

Lemma 4.1 A nonempty closed convex set P in Rn has a face F that is a translation of linP .

Proof. As P is closed and convex, the set P ∩ (linP )⊥ is a closed convex set containing no line (see
Rockafellar [20, p. 165]) and therefore has at least one extreme point p∗, by Rockafellar [20, Corollary
18.5.3]. Then p∗+ linP is a face of P by the comment following Corollary 18.3.1 of Rockafellar [20]. �

For each u ∈ U1, the definition of S0(u) implies that

rcS0(u) = {x ∈ Rn | 〈ai, x〉 = 0, i ∈ Ic(u), 〈ai, x〉 ≤ 0, i ∈ I0 \ Ic(u)},

and then that
linS0(u) = rcS0(u) ∩ − rcS0(u) = {x ∈ Rn | 〈ai, x〉 = 0, i ∈ I0}.
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Consequently, all these S0(u) have a common lineality space, which we denote by H.

Here is the main result on necessity.

Theorem 4.1 Let S, L, u0, z0, x0 be as in Theorem 3.1. Suppose that there exist a subset U ′ of
domS containing u0, neighborhoods W ′ of the origin and X ′ of x0 in Rn, and a single-valued function
x : U ′×W ′ → Rn such that for each (u,w) ∈ U ′×W ′, x(u,w) is the unique solution in X ′ of (1). Then
there exists a neighborhood U ′′ of u0 in U ′ such that for each I ∈

⋃
u∈U ′′ I0(u) the determinant of the

section of the matrix M in kerAI has the same nonzero sign.

Proof. Let U ′′ be as in Proposition 4.2 and choose u1, u2 ∈ U ′′. Proposition 4.2 shows that for
k = 1, 2, for each I ∈ I0(uk) the determinant of the section of the matrix M in kerAI has the same
nonzero sign; we denote this sign by sk. We need to show that s1 = s2. By the discussion preceding this
theorem, S0(u1) and S0(u2) have a common lineality space H. By Lemma 4.1, for k = 1, 2 the set S0(uk)
has a face that is a translation of H; that is, there exists Ik ∈ I0(uk) such that F0(Ik, uk) is a translation
of H.

Let ΠH denote the orthogonal linear projector on H. For k = 1, 2, by the discussion just before (30),
on C0(Ik, uk) the map ΠS0(uk) coincides with the projection on {x ∈ Rn | 〈ai, x〉 = (uk)i, i ∈ Ik} along
span{ai, i ∈ Ik}. Here the set {x ∈ Rn | 〈ai, x〉 = (uk)i, i ∈ Ik} is just the affine hull of the face F0(Ik, uk).
Since F0(Ik, uk) is a translation of the linear space H, it is an affine set, and is therefore the affine hull
of itself. Hence, the set {x ∈ Rn | 〈ai, x〉 = (uk)i, i ∈ Ik} is a translation of H, and the projection on
it along span{ai, i ∈ Ik} is a translation of ΠH . This shows that on C0(Ik, uk) the projector ΠS0(uk)

coincides with a translation of ΠH ; that is, for each z ∈ C0(Ik, uk) we have ΠS0(uk)(z) = ΠH(z) + dk,
where dk is a constant vector in Rn. Consequently,

LS0(uk)(z) = L[ΠS0(uk
(z)] + z −ΠS0(uk)(z)

= LΠH(z) + z −ΠH(z) + Ldk − dk.

It follows that the affine maps representing LS0(uk) on C0(Ik, uk) for k = 1, 2 are translations of a
common linear map; hence they have the same determinant. At the same time, for each k the affine map
representing LS0(uk) on C0(Ik, uk) has the same determinant as the section of the matrix M in kerAIk

.
Combining these two facts shows that the sections of the matrix M in kerAI1 and kerAI2 have the same
determinant. This shows that s1 = s2 and completes the proof. �

The following theorem combines results in Theorem 3.1 and Theorem 4.1.

Theorem 4.2 Let S, L, u0, z0, x0 be as in Theorem 3.1, and let U0 be a convex subset of domS
containing u0. The following are equivalent:

(i) There exist neighborhoods U ′ of u0 in U0, W ′ of the origin and X ′ of x0 in Rn, and a single-
valued, Lipschitz continuous, piecewise affine function x : U ′ × W ′ → Rn such that for each
(u,w) ∈ U ′ ×W ′, x(u,w) is the unique solution in X ′ of (1).

(ii) There exist neighborhoods U ′ of u0 in U0, W ′ of the origin and X ′ of x0 in Rn, and a single-
valued function x : U ′ ×W ′ → Rn such that for each (u,w) ∈ U ′ ×W ′, x(u,w) is the unique
solution in X ′ of (1).

(iii) For each I ∈
⋃
u∈U0

I0(u) the determinant of the section of the matrix M in kerAI has the same
nonzero sign.

Proof. It is immediate that (i) implies (ii). An application of Theorem 3.1 shows that (iii) implies
(i).

Suppose (ii) holds; note that any neighborhood U ′′ of u0 in U ′ is also a neighborhood of u0 in U0. An
application of Theorem 4.1 then shows the existence of a neighborhood U ′′ of u0 in U0 such that for each
I ∈

⋃
u∈U ′′ I0(u) the determinant of the section of the matrix M in kerAI has the same nonzero sign.

We now claim that
⋃
u∈U ′′ I0(u) =

⋃
u∈U0

I0(u). The “⊂” direction trivially holds because U ′′ ⊂ U0. For
the other direction, let I be an element of

⋃
u∈U0

I0(u), so I ∈ I(u) for some u ∈ U0, with I ⊂ I0 and
z0 − x0 ∈ pos{ai, i ∈ I}. The definition of I(u) then implies the existence of a point x ∈ Rn with

〈ai, x〉 = ui, i ∈ I, 〈aj , x〉 < uj , j ∈ cI.
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For each real number λ ∈ (0, 1), define uλ = (1 − λ)u0 + λu and xλ = (1 − λ)x0 + λx. In view of the
definition of I0 it is straightforward to check that

〈ai, xλ〉 = (uλ)i, i ∈ I, 〈aj , x〉 < (uλ)j , j ∈ cI.
This shows that I ∈ I(uλ). By choosing λ to be sufficiently small, we can guarantee that uλ ∈ U ′′ due to
the convexity of U0. It follows that I ∈

⋃
u∈U ′′ I0(u), and we therefore have

⋃
u∈U ′′ I0(u) =

⋃
u∈U0

I0(u).
This shows that (ii) implies (iii). �

Throughout we have assumed the multifunction S to take the form of (2). We now show how to
generalize this result to the case where S is an arbitrary graph-convex polyhedral multifunction such that

S(u) := {x ∈ Rn | Ax+Du ≤ s} (44)

for each u ∈ Rm where A and D are respectively l × n and l ×m matrices and s is a vector in Rl.

Corollary 4.1 Let S, L, u0, z0, x0 be as in Theorem 3.1 with S given by (44). Let U0 be a polyhedral
convex subset of domS containing u0. Write v = s − Du and v0 = s − Du0. For each v ∈ Rl define
R(v) := {x ∈ Rn | Ax ≤ v}. Define a set E := s−D(U0). The following are equivalent:

(i) There exist neighborhoods U ′ of u0 in U0, W ′ of the origin and X ′ of x0 in Rn, and a single-
valued, Lipschitz continuous, piecewise affine function x : U ′ × W ′ → Rn such that for each
(u,w) ∈ U ′ ×W ′, x(u,w) is the unique solution in X ′ of (1).

(ii) There exist neighborhoods V ′ of v0 in E, W ′ of the origin and X ′ of x0 in Rn, and a single-
valued, Lipschitz continuous, piecewise affine function x′ : V ′ × W ′ → Rn such that for each
(v, w) ∈ V ′ ×W ′, x′(v, w) is the unique solution in X ′ of w ∈ L(x) +NR(v)(x).

(iii) For each I ∈
⋃
v∈E I0(v) the determinant of the section of the matrix M in kerAI has the same

nonzero sign.

Proof. The set E as defined is a polyhedral convex subset of domR, so the equivalence of (ii) and
(iii) is an application of Theorem 4.2.

Now suppose (ii) holds. Choose a neighborhood U ′ of u0 in U0 such that s−Du ∈ V ′ for each u ∈ U ′,
and let x(u,w) = x′(s−Du,w) for each (u,w) ∈ U ′ ×W ′. It follows that (i) holds with these choices.

Next suppose (i) holds. For each v ∈ E define a nonempty set G(v) := {u ∈ U0 | s −Du = v}. Note
that ΠG(v)(u0) is a Lipschitz continuous and piecewise affine function of v on E with ΠG(v0)(u0) = u0 (see
the remarks following (35) regarding the Lipschitz continuity of ΠS(u)(z)). It follows that there exists a
neighborhood V ′ of v0 in E such that ΠG(v)(u0) ∈ U ′ for each v ∈ V ′. For each (v, w) ∈ V ′ ×W ′, define
x′(v, w) = x(ΠG(v)(u0), w). It is easy to check that (ii) holds with these choices. �

5. Nonlinear variational inequalities over polyhedral convex sets. Section 3 and 4 developed
an analysis of solutions of the linear variational inequality (1). We show next how to apply this result to
nonlinear variational inequalities over perturbed polyhedral convex sets. For this we need to state a few
preliminary conventions about terminology.

Suppose that P and T are two topological spaces; let G be a multifunction from P to T , and let
(p0, t0) ∈ gphG. We say that a multifunction G0 from P to T is a graphical localization of G at (p0, t0) if
there is a neighborhood N of (p0, t0) such that gphG0 = N ∩ gphG. If H is also a multifunction from P
to T , then we say G and H coincide locally at (p0, t0) if they have some common graphical localization
there.

Suppose that Q and X are neighborhoods of points q0 and x0 respectively in some normed linear
spaces. We say that a function f : Q × X → Rn is strictly differentiable in (q, x) at (q0, x0) if f(·, ·)
has a Fréchet derivative df(q0, x0) at (q0, x0) and, moreover, for any positive real number ε there exist
neighborhoods Qε of q0 in Q and Xε of x0 in X such that

‖f(q′, x′)− f(q, x)− df(q0, x0)(q′ − q, x′ − x)‖ ≤ ε‖(q′, x′)− (q, x)‖
whenever (q, x) and (q′, x′) belong to Qε × Xε. We say that f is strictly differentiable in x at (q0, x0)
uniformly on Q if f(q0, ·) has a Fréchet derivative dxf(q0, x0) at x0 and, moreover, for any positive real
number ε there exist neighborhoods Qε of q0 in Q and Xε of x0 in X such that

‖f(q, x′)− f(q, x)− dxf(q0, x0)(x′ − x)‖ ≤ ε‖x′ − x‖
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whenever q ∈ Qε and x, x′ ∈ Xε. If f is strictly differentiable in (q, x) at (q0, x0), then it is strictly
differentiable in x at (q0, x0) uniformly on Q; but the converse is not true in general.

Finally, if D is an open subset of Rm, then a continuous function f from D to Rn is a PC1 function on
D if for each x ∈ D there exist an open neighborhood N of x in D and a finite collection of C1 functions
fj : N → Rn, j = 1, · · · , k such that the inclusion f(x′) ∈ {f1(x′), · · · , fk(x′)} holds for each x′ ∈ N .

The following theorem deals with sensitivity of generalized equations involving polyhedral multifunc-
tions. It contains two different parameters, q and u, which play different roles: q affects the function f
in a manner described by requirements of continuity and differentiability, while u affects G in a manner
described by a polyhedrality requirement. Although in the statement and proof of the theorem we keep
these parameters separate because of their different roles, there is no reason whatever why they cannot
be related: for example, either could be a function of the other, or both could be functions of some third
parameter. The properties of Lipschitz continuity or of semidifferentiability in the parameters (q, u) that
this theorem establishes then pass to the third parameter, provided that q and u are Lipschitzian in that
parameter in the first case, or semidifferentiable in the second. For Lipschitz continuity this is immediate,
and for semidifferentiability it is a consequence of Rockafellar and Wets [21, Exercise 10.27(ii)].

Theorem 5.1 Let G be a polyhedral multifunction from Rm × Rn to Rn, and let (u0, x0) be a point of
Rm ×Rn. Let U0 be a convex subset of Rm containing u0, Q0 be a neighborhood of a point q0 in Rj, and
X0 be a polyhedral convex neighborhood of x0 in Rn, and let f be a Lipschitz continuous function from
Q0 × X0 to Rn with modulus φ that is strictly differentiable in x at x0 uniformly on Q0. For x ∈ X0

define
L(x) := f(q0, x0) + dxf(q0, x0)(x− x0).

Assume the following:

(i) The values q0, u0, and x0 satisfy the generalized equation

0 ∈ f(q, x) +G(u, x). (45)

(ii) There is a neighborhood W of the origin in Rn such that for each (u,w) ∈ U0 ×W the quantity
H(u,w) = [L(·) +G(u, ·)]−1(w) is a singleton.

Then there are neighborhoods Q of q0 in Q0, U of u0 in U0, and X of x0 in Rn, and a single-valued,
Lipschitzian function x : Q × U → X, such that for each (q, u) ∈ Q × U the point x(q, u) is the unique
solution in X of (45).

If we assume further that f is strictly differentiable in (q, x) at (q0, x0) and that U0 is a neighborhood of
u0, then the function x(·, ·) is semidifferentiable at (q0, u0) and its semiderivative dx(q0, u0)(r, s) coincides
locally at the origin of Rj × Rm × Rn with

H[u0 + s,−dqf(q0, x0)(r)]− x0.

Finally, if f is C1 on intQ0 × intX0 and U0 is a neighborhood of u0, then the function x(·, ·) is PC1

on intQ× intU .

Proof. We use for a norm on Rm ×Rj the sum of the norms on the component spaces. There is no
loss of generality in assuming W to be convex.

For q ∈ Q0, u ∈ U0 and y ∈ Rn define a function Φ(q,u,y) : X0 → Rn by

Φ(q,u,y)(x) = H[u, L(x)− f(q, x)]− y = [L(·) +G(u, ·)]−1[L(x)− f(q, x)]− y.

As G is polyhedral, so is the operator L(x) +G(u, x) and therefore so is H(u,w). But H is single-valued
on U0 ×W , so by Lemma 3.2 it is Lipschitz continuous on U0 ×W with some modulus λ and piecewise
affine there.

The function L(x)−f(q, x) is continuous at (q0, x0) and it takes the value zero there. We may therefore
select positive radii ρQ, ρU , ρX and ρY and let Q = Q0∩(q0+ρQ B), U = U0∩(u0+ρU B), X = x0+ρX B,
and Y = Rn ∩ ρY B where the radii satisfy the following conditions:

(i) x0 + ρX B ⊂ X0;
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(ii) The strict differentiability property in the hypothesis holds on Q×X for a value of ε such that
α := λε < 1;

(iii) For each (q, x) ∈ Q×X we have L(x)− f(q, x) ∈W ;
(iv) λ(ρU + φρQ) + ρY < (1− α)ρX .

For q ∈ Q, u ∈ U , y ∈ Y and for x and x′ in X, we have

‖Φ(q,u,y)(x)− Φ(q,u,y)(x′)‖ ≤ λ‖[L(x)− f(q, x)]− [L(x′)− f(q, x′)]‖
= λ‖f(q, x′)− [f(q, x) + dxf(q0, x0)(x′ − x)]‖
≤ λε‖x− x′‖
= α‖x− x′‖.

(46)

Therefore the operator Φ(q,u,y) is a strong contraction on X with modulus α.

We also have by hypothesis

0 ∈ f(q0, x0) +G(u0, x0) = L(x0) +G(u0, x0),

so that
x0 = H(u0, 0). (47)

From the definition of Φ(q,u,y) we find that

x1 := Φ(q,u,y)(x0) = [L(·) +G(u, ·)]−1[L(x0)− f(q, x0)]− y = H[u, f(q0, x0)− f(q, x0)]− y.
The Lipschitz continuity of H then implies that

‖x1 − x0‖ ≤ λ‖(u, f(q0, x0)− f(q, x0))− (u0, 0)‖+ ‖y‖
≤ λ‖u− u0‖+ λφ‖q − q0‖+ ‖y‖
≤ λ(ρU + φρQ) + ρY

< (1− α)ρX .

(48)

The bound (48) implies that Φ(q,u,y) is a self-map of the closed ball X, and as it is also strongly
contractive we conclude that it has a fixed point x̄(q, u, y) that is unique in X; indeed, for each (q, u, y) ∈
Q×U×Y the fixed point x̄(q, u, y) belongs to intX as a result of (46) and (48). The definition of Φ(q,u,y)

shows that x = Φ(q,u,0)(x) if and only if 0 ∈ f(q, x) + G(u, x), so we see that x(q, u) := x̄(q, u, 0) is the
unique solution in X of (45).

If (q′, u′, y′) also belongs to Q×U × Y , let us temporarily write x and x′ for x̄(q, u, y) and x̄(q′, u′, y′)
respectively. We then have

‖x− x′‖ = ‖Φ(q,u,y)(x)− Φ(q′,u′,y′)(x′)‖
≤ ‖Φ(q,u,y)(x)− Φ(q,u,y)(x′)‖+ ‖Φ(q,u,y)(x′)− Φ(q′,u′,y′)(x′)‖
≤ α‖x− x′‖+ ‖H[u, L(x′)− f(q, x′)]−H[u′, L(x′)− f(q′, x′)]‖+ ‖y − y′‖
≤ α‖x− x′‖+ λ‖u− u′‖+ λφ‖q − q′‖+ ‖y − y′‖,

from which it follows that

‖x̄(u, q, y)− x̄(u′, q′, y′)‖ ≤ (1− α)−1 max{1, λ, λφ}‖(u, q, y)− (u′, q′, y′)‖,
so that the function x̄(·, ·, ·) is Lipschitzian on Q×U ×Y with modulus (1−α)−1 max{1, λ, λφ}. Indeed,
x(·, ·) is Lipschitzian on Q× U with modulus (1− α)−1λmax{1, φ}.

Now assume the additional hypotheses that f is strictly differentiable in (q, x) at (q0, x0) and that U0

is a neighborhood of u0. If we define a function c(q, x) from Q0 ×X to Rn by

c(q, x) = L(x) + dqf(q0, x0)(q − q0)− f(q, x),

then the definition of strict differentiability implies that

c(q, x) = o[(q, x)− (q0, x0)].

Now for q ∈ Rj and u ∈ Rm define y(q, u) = H[u, v(q)], where v(q) = −dqf(q0, x0)(q − q0). As v(q) is
affine in q, the function y(·, ·) is a polyhedral multifunction. Moreover, as H is single-valued on U0 ×W ,
y is single-valued on a small neighborhood of (q0, u0). Further, (47) shows that

y(q0, u0) = H(u0, 0) = x0.
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Accordingly, the restriction of the graph of y[(q0, u0) + (r, s)] − x0 to a sufficiently small neighborhood
Q′ × U ′ ×W ′ of the origin in Rj × Rm × Rn coincides with the restriction to that neighborhood of a
unique positively homogeneous function dx(q0, u0)(·, ·) : Rj × Rm → Rn, so that y[(q0, u0) + (·, ·)] − x0

and dx(q0, u0)(·, ·) coincide locally at the origin of Rj × Rm × Rn.

For q ∈ q0 +Q′ and u ∈ u0 + U ′ we have
‖x(q, u)−{x0 + dx(q0, u0)(q − q0, u− u0)}‖ = ‖x(q, u)− y(q, u)‖

= ‖H{u, L[x(q, u)]− f [q, x(q, u)]} −H{u,−dqf(q0, x0)(q − q0)}‖
≤ λ‖{L[x(q, u)]− f [q, x(q, u)]} − {−dqf(q0, x0)(q − q0)}‖
= λ‖c[q, x(q, u)]‖
= o{[q, x(q, u)]− [q0, x0]}
= o[(q, u)− (q0, u0)].

Accordingly, x(·, ·) is semidifferentiable at (q0, u0) with semiderivative dx(q0, u0)(·, ·). We established the
local coincidence assertion during the construction of the semiderivative.

Finally, assume that f is C1 on intQ0 × intX0, and continue assuming that U0 is a neighborhood of
u0. Define a function Ψ : intQ× intU × intX → Rj+m+n by

Ψ(q, u, x) = (q, u,H[u, L(x)− f(q, x)]− x).

Note that H[u, L(x)−f(q, x)]−x = y if and only if Φq,u,y(x) = x. By what we have shown, each (q, u, y) ∈
intQ×intU×intY has a unique preimage Ψ−1(q, u, y) = (q, u, x̄(q, u, y)), which is a Lipschitzian function
of (q, u, y). As H is Lipschitz continuous and piecewise affine on U0 ×W , Ψ is Lipschitz continuous and
PC1 on intQ× intU × intX. It follows that the set Ψ−1(intQ× intU × intY ) is open, and that Ψ is a
Lipschitz homeomorphism from Ψ−1(intQ× intU × intY ) to intQ× intU × intY . An application of [22,
Proposition 4.2.1] or [4, Theorem 4.6.5] then shows that Ψ is a PC1 homeomorphism between those two
sets. Accordingly, x̄(·, ·, ·) is PC1 on intQ× intU × intY . In particular, x(·, ·) is PC1 on intQ× intU .
�

The only requirements in Theorem 5.1 that concern the multifunction G(u, x) are the polyhedrality
and single-valuedness of the quantity H(u,w). In the following theorem we specialize it to the case in
which

G(u, x) = NS(u)(x) (49)
where S(u) is as in (44). By Robinson [13, Lemma 2.3], the choice (49) of G is polyhedral. We will use
results from previous sections to ensure the single-valuedness of H.

Theorem 5.2 Let S be a multifunction from Rm to Rn as defined in (44) with (u0, x0) ∈ gphS. Let U0

be a polyhedral convex subset of domS containing u0, Q0 be a neighborhood of a point q0 in Rj and X0 be
a neighborhood of x0 in Rn, and let f be a Lipschitz continuous function from Q0×X0 to Rn with modulus
φ that is strictly differentiable in x at x0 uniformly on Q0. Write z0 = x0− f(q0, x0), v0 = s−Du0, and
define a set E := s−D(U0), a multifunction R : Rl → Rn by R(v) := {x ∈ Rn | Ax ≤ v} and a function
L : Rn → Rn by

L(x) := f(q0, x0) + dxf(q0, x0)(x− x0).
Assume the following:

(i) The values q0, u0, and x0 satisfy the variational inequality

0 ∈ f(q, x) +NS(u)(x). (50)

(ii) For each I ∈ ∪v∈EI0(v) the determinant of the section of the matrix representing the linear
operator dxf(q0, x0) in kerAI has the same nonzero sign.

Then there are neighborhoods Q of q0 in Q0, U of u0 in U0, and X of x0 in Rn, and a single-valued,
Lipschitzian function x : Q × U → X, such that for each (q, u) ∈ Q × U the point x(q, u) is the unique
solution in X of (50).

If we assume further that f is strictly differentiable in (q, x) at (q0, x0) and that U0 is a neighborhood of
u0, then the function x(·, ·) is semidifferentiable at (q0, u0) and its semiderivative dx(q0, u0)(r, s) coincides
locally at the origin of Rj × Rm × Rn with

[L(·) +NS(u0+s)(·)]
−1[−dqf(q0, x0)(r)]− x0. (51)
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Finally, if f is C1 on intQ0×intX0 and U0 is a neighborhood of u0, then x(·, ·) is PC1 on intQ×intU .

Proof. The definition of L implies L(x0) = f(q0, x0), so by hypothesis we have 0 ∈ L(x0) +
NS(u0)(x0). The definition of z0 implies that x0 = ΠS(u0)(z0) and LS(u0)(z0) = 0. We are therefore in
the setting of Corollary 4.1, and the second assumption here is the same as the determinantal condition
in (iii) of that corollary. Accordingly, there exist neighborhoods U ′ of u0 in U0, W ′ of the origin and X ′

of x0 in Rn, and a single-valued, Lipschitz continuous function x′ : U ′ ×W ′ → Rn such that for each
(u,w) ∈ U ′ ×W ′, x′(u,w) is the unique solution in X ′ of (1). In other words, for each (u,w) ∈ U ′ ×W ′
the quantity H(u,w) = [L(·) +NS(u)(·)]−1(w)∩X ′ is a singleton. Further, as the function x′ is Lipschitz
continuous with x′(u0, 0) = x0, we may shrink X ′ such that it is a polyhedral convex set with X ′ ⊂ X0,
and then shrink U ′ and W ′ accordingly so that x′(u,w) ∈ X ′ still holds for each (u,w) ∈ U ′ ×W ′. In
this process, we may also arrange that U ′ is convex.

Apply Theorem 5.1 using the choices (49) for G, U ′ for U0, X ′ for X0 and W ′ for W . We just showed
that the single-valuedness hypothesis concerning H(u,w) in Theorem 5.1 holds with these choices; other
hypotheses in Theorem 5.1 follow directly from hypotheses here. Note also that any neighborhood of u0

in U ′ is also a neighborhood of it in U0, and that U ′ is a neighborhood of u0 if U0 is a neighborhood
of it. The conclusions of the present theorem then follow from those of Theorem 5.1 specialized to the
definition (49) of G. �

The parametric set S(u) in Theorem 5.2 is of the special form (44) in which all constraints are linear.
With this linearity we obtain the existence, uniqueness, and Lipschitz continuity properties of solutions
of (50) without assuming the MFCQ. This is the main difference between Theorem 5.2 and [4, Theorem
5.4.12] and [9, Theorem 4.2.16].
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