ELLIPTIC SELBERG INTEGRALS AND CONFORMAL BLOCKS

G. FELDER * , L. STEVENS ${ }^{\curvearrowright}$, AND A. VARCHENKO ${ }^{\diamond, 1}$
* Departement Mathematik, ETH-Zentrum, 8092 Zürich, Switzerland, felder@math.ethz.ch
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA, lstevens@email.unc.edu, anv@email.unc.edu

October, 2002
Abstract. We present an elliptic version of Selberg's integral formula.

1. Introduction

The Selberg integral is the integral

$$
B_{p}(\alpha, \beta, \gamma)=\int_{\Delta_{p}} \prod_{j=1}^{p} t_{j}^{\alpha-1}\left(1-t_{j}\right)^{\beta-1} \prod_{0 \leq j<k \leq 1}\left(t_{j}-t_{k}\right)^{2 \gamma} d t_{1} \ldots d t_{p}
$$

where $\Delta_{p}=\left\{t \in \mathbb{R}^{p} \mid 0 \leq t_{p} \leq \cdots \leq t_{1} \leq 1\right\}$. The Selberg integral is a generalization of the beta function. It can be calculated explicitly,

$$
B_{p}(\alpha, \beta, \gamma)=\frac{1}{p!} \prod_{j=0}^{p-1} \frac{\Gamma(1+\gamma+j \gamma) \Gamma(\alpha+j \gamma) \Gamma(\beta+j \gamma)}{\Gamma(1+\gamma) \Gamma(\alpha+\beta+(p+j-1) \gamma)}
$$

The Selberg integral has many applications, see A1, A2, As, D, DF1, DF2, M, B]. In this paper, we present elliptic versions of the Selberg integral.

2. Conformal Blocks on the Torus

Let $\tau \in \mathbb{C}$ be such that $\operatorname{Im} \tau>0$. Let κ and p be non-negative integers satisfying $\kappa \geq 2 p+2$. The KZB-heat equation is the partial differential equation

$$
\begin{equation*}
2 \pi i \kappa \frac{\partial u}{\partial \tau}(\lambda, \tau)=\frac{\partial^{2} u}{\partial \lambda^{2}}(\lambda, \tau)+p(p+1) \rho^{\prime}(\lambda, \tau) u(\lambda, \tau) . \tag{1}
\end{equation*}
$$

[^0]Here, the prime denotes the derivative with respect to the first argument, and ρ is defined in terms of the first Jacobi theta function,

$$
\vartheta_{1}(\lambda, \tau)=2 q^{\frac{1}{8}} \sin (\pi \lambda) \prod_{j=1}^{\infty}\left(1-q^{j} e^{2 \pi i \lambda}\right)\left(1-q^{j} e^{-2 \pi i \lambda}\right)\left(1-q^{j}\right), \quad \rho(\lambda, \tau)=\frac{\vartheta_{1}^{\prime}(\lambda, \tau)}{\vartheta_{1}(\lambda, \tau)}
$$

where $q=e^{2 \pi i \tau}$. Holomorphic solutions of the KZB-heat equation with the properties,
(i) $u(\lambda+2, \tau)=u(\lambda, \tau)$,
(ii) $u(\lambda+2 \tau, \tau)=e^{-2 \pi i \kappa(\lambda+\tau)} u(\lambda, \tau)$,
(iii) $u(-\lambda, \tau)=(-1)^{p+1} u(\lambda, \tau)$,
(iv) $u(\lambda, \tau)=\mathcal{O}\left((\lambda-m-n \tau)^{p+1}\right)$ as $\lambda \rightarrow m+n \tau$ for any $m, n \in \mathbb{Z}$
are called conformal blocks (or elliptic hypergeometric functions) associated with the family of elliptic curves $\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ with the marked point $z=0$ and the irreducible $s l_{2}$ representation of dimension $2 p+1$. It is known that the space of conformal blocks has dimension $\kappa-2 p-1$.

3. Integral Representations of Conformal Blocks

Introduce special functions

$$
\sigma_{\lambda}(t, \tau)=\frac{\vartheta_{1}(\lambda-t, \tau) \vartheta_{1}^{\prime}(0, \tau)}{\vartheta_{1}(\lambda, \tau) \vartheta_{1}(t, \tau)}, \quad E(t, \tau)=\frac{\vartheta_{1}(t, \tau)}{\vartheta_{1}^{\prime}(0, \tau)} .
$$

Consider the theta functions

$$
\theta_{\kappa, n}(\lambda, \tau)=\sum_{j \in \mathbb{Z}} e^{2 \pi i \kappa\left(j+\frac{n}{2 \kappa}\right)^{2} \tau+2 \pi i \kappa\left(j+\frac{n}{2 \kappa}\right) \lambda}, \quad n \in \mathbb{Z} / 2 \kappa \mathbb{Z}
$$

They form a basis of the space of theta functions of level κ. They satisfy the equations

$$
\theta_{\kappa, n}(\lambda+1, \tau)=(-1)^{n} \theta_{\kappa, n}(\lambda, \tau), \quad \theta_{\kappa, n}(\lambda+\tau, \tau)=e^{-\pi i \kappa\left(\lambda+\frac{\tau}{2}\right)} \theta_{\kappa, n+\kappa}(\lambda, \tau)
$$

and have the modular properties

$$
\theta_{\kappa, n}(\lambda, \tau+1)=e^{\pi i \frac{n^{2}}{2 \kappa}} \theta_{\kappa, n}(\lambda, \tau), \quad \theta_{\kappa, n}\left(\frac{\lambda}{\tau},-\frac{1}{\tau}\right)=\sqrt{-\frac{i \tau}{2 \kappa}} e^{\pi i \kappa \frac{\lambda^{2}}{2 \tau}} \sum_{m=0}^{2 \kappa-1} e^{-\pi i \frac{m n}{\kappa}} \theta_{\kappa, m}(\lambda, \tau),
$$

where $|\arg (-i \tau)|<\pi / 2$. Let $\theta_{\kappa, n}^{s}$ denote the symmetrization of $\theta_{\kappa, n}$ with respect to λ, $\theta_{\kappa, n}^{s}(\lambda, \tau)=\theta_{\kappa, n}(\lambda, \tau)+\theta_{\kappa, n}(-\lambda, \tau)$.
Define $u_{\kappa, n}$ by

$$
u_{\kappa, n}(\lambda, \tau)=u_{p, \kappa, n}(\lambda, \tau)=J_{p, \kappa, n}(\lambda, \tau)+(-1)^{p+1} J_{p, \kappa, n}(-\lambda, \tau),
$$

where

$$
\begin{aligned}
& J_{p, \kappa, n}(\lambda, \tau)=\int_{\Delta_{p}} \prod_{j=1}^{p} E\left(t_{j}, \tau\right)^{-\frac{2 p}{\kappa}} \prod_{1 \leq j<k \leq p} E\left(t_{j}-t_{k}, \tau\right)^{\frac{2}{\kappa}} \times \\
& \prod_{j=1}^{p} \sigma_{\lambda}\left(t_{j}, \tau\right) \theta_{\kappa, n}\left(\lambda+\frac{2}{\kappa} \sum_{j=1}^{p} t_{j}, \tau\right) d t_{1} \ldots d t_{p} .
\end{aligned}
$$

The branch of the logarithm is chosen in such a way that $\arg (E(t, \tau)) \rightarrow 0$ as $t \rightarrow 0^{+}$, and the integral is understood as the analytic continuation from the region where all of the exponents in the integrand have positive real parts.

Theorem 3.1. FV1 For all n, the integrals $u_{\kappa, n}(\lambda, \tau)$ are solutions of the KZB-heat equation having the properties (i)-(iv).
Theorem 3.2. FSV2 We have
(a) $u_{\kappa, n}=u_{\kappa, n+2 \kappa}$ and $u_{\kappa, n}=-e^{2 \pi i p n / \kappa} u_{\kappa,-n}$.
(b) The set $\left\{u_{\kappa, n}(\lambda, \tau) \mid n=p+1, \ldots, \kappa-p-1\right\}$ is a basis for the space of conformal blocks. The integrals $u_{\kappa, n}$ are identically zero for all other values of n in the interval from 0 to κ.

4. Transformations acting on the space of conformal blocks

Introduce four transformations A, B, T, and S defined by

$$
\begin{gathered}
A u(\lambda, \tau)=u(\lambda+1, \tau), \quad B u(\lambda, \tau)=e^{\pi i \kappa\left(\lambda+\frac{\tau}{2}\right)} u(\lambda+\tau, \tau), \\
T u(\lambda, \tau)=u(\lambda, \tau+1), \quad S u(\lambda, \tau)=e^{-\pi i \kappa \frac{\lambda^{2}}{2 \tau}} \tau^{-\frac{1}{2}-\frac{p(p+1)}{\kappa}} u\left(\frac{\lambda}{\tau},-\frac{1}{\tau}\right),
\end{gathered}
$$

where we fix $\arg \tau \in(0, \pi)$.
Proposition 4.1. If $u(\lambda, \tau)$ is a solution of the KZB-heat equation, then $A u(\lambda, \tau)$, $B u(\lambda, \tau), T u(\lambda, \tau)$, and $S u(\lambda, \tau)$ are solutions too. Moreover, the transformations A, B, T and S preserve the properties (i)-(iv).

The proofs that T and S preserve the space of conformal blocks are given in EK]. The proofs that A and B also preserve this space are straightforward and follow from the equations

$$
\vartheta_{1}(\lambda+1, \tau)=-\vartheta_{1}(\lambda, \tau), \quad \vartheta_{1}(\lambda+\tau, \tau)=-e^{-\pi i(2 \lambda+\tau)} \vartheta_{1}(\lambda, \tau) .
$$

Lemma 4.2. Restricted to the space of conformal blocks, the transformations A, B, T, and S satisfy the relations

$$
\begin{gathered}
A^{2}=I, \quad B^{2}=I, \quad S^{2}=(-1)^{p} i e^{-\pi i \frac{p(p+1)}{\kappa}} I, \quad(S T)^{3}=(-1)^{p} i e^{-\pi i \frac{p(p+1)}{\kappa}} I, \\
S A S^{-1}=B, \quad A B=(-1)^{\kappa} B A, \quad T B=i^{\kappa} B A T,
\end{gathered}
$$

where I denotes the identity transformation.

Lemma 4.3. We have

$$
A u_{\kappa, n}(\lambda, \tau)=(-1)^{n} u_{\kappa, n}(\lambda, \tau), \quad B u_{\kappa, n}(\lambda, \tau)=-e^{2 \pi i \frac{p n}{\kappa}} u_{\kappa, \kappa-n}(\lambda, \tau)
$$

Let $\left(t_{m, n}\right)$ and $\left(s_{m, n}\right)$ be the matrices of the transformations T and S, respectively, with respect to the basis $\left\{u_{\kappa, n}(\lambda, \tau) \mid p+1 \leq n \leq \kappa-p-1\right\}$, namely, $T u_{\kappa, n}=$ $\sum_{m=p+1}^{\kappa-p-1} t_{m, n} u_{\kappa, m}, S u_{\kappa, n}=\sum_{m=p+1}^{\kappa-p-1} s_{m, n} u_{\kappa, m}$. In Theorem 4.4, we give formulas for the matrices of T and S in terms of Macdonald polynomials of type A_{1}.

The Macdonald polynomials Ma of type A_{1} are x-even polynomials in terms of $\epsilon^{m x}$, where $m \in \mathbb{Z}$. They depend on two parameters k and n, where k and n are non-negative integers. They are defined by the conditions:
(1) $P_{n}^{(k)}(x)=\epsilon^{n x}+\epsilon^{-n x}+$ lower order terms, except for $P_{0}^{(k)}(x)=1$,
(2) $\left\langle P_{m}^{(k)}, P_{n}^{(k)}\right\rangle=0$ for $m \neq n$, where

$$
\langle f, g\rangle=\frac{1}{2} \text { Const Term }\left(f g \prod_{j=0}^{k-1}\left(1-\epsilon^{2(j+x)}\right)\left(1-\epsilon^{2(j-x)}\right)\right) .
$$

Theorem 4.4. FSV2 Let $\epsilon=e^{\pi i / \kappa}$. For $p+1 \leq m, n \leq \kappa-p-1$, we have

$$
\begin{gathered}
t_{m, n}=\epsilon^{\frac{n^{2}}{2}} \delta_{m n}, \\
s_{m, n}=\frac{e^{-\frac{\pi i}{4}}}{\sqrt{2 \kappa}} \epsilon^{p(n-m)-\frac{p(p+1)}{2}}\left(\epsilon^{-m}-\epsilon^{m}\right)\left(\prod_{j=1}^{p}\left(\epsilon^{-n+j}-\epsilon^{n-j}\right)\right) P_{n-p-1}^{(p+1)}(m),
\end{gathered}
$$

where $\delta_{m n}=1$ for $m=n$ and 0 otherwise.

5. Integral identities

To formulate our main result, we need functions η, ϕ_{1}, ϕ_{2}, and ϕ_{3}. The Dedekind η function is the function $\eta(\tau)=q^{1 / 24} \prod_{j=1}^{\infty}\left(1-q^{j}\right)$. We have $\vartheta_{1}^{\prime}(0, \tau)=2 \pi \eta^{3}(\tau)$. Consider the functions (W]

$$
\begin{gathered}
\phi_{1}(\tau)=\frac{\eta(\tau)^{2}}{\eta\left(\frac{\tau}{2}\right) \eta(2 \tau)}=q^{-\frac{1}{48}} \prod_{j=1}^{\infty}\left(1+q^{j-\frac{1}{2}}\right), \quad \phi_{2}(\tau)=\frac{\eta\left(\frac{\tau}{2}\right)}{\eta(\tau)}=q^{-\frac{1}{48}} \prod_{j=1}^{\infty}\left(1-q^{j-\frac{1}{2}}\right), \\
\phi_{3}(\tau)=\sqrt{2} \frac{\eta(2 \tau)}{\eta(\tau)}=\sqrt{2} q^{\frac{1}{24}} \prod_{j=1}^{\infty}\left(1+q^{j}\right) .
\end{gathered}
$$

We have

$$
\begin{gathered}
\phi_{1}\left(-\frac{1}{\tau}\right)=\phi_{1}(\tau), \quad \phi_{2}\left(-\frac{1}{\tau}\right)=\phi_{3}(\tau), \quad \phi_{3}\left(-\frac{1}{\tau}\right)=\phi_{2}(\tau), \\
\phi_{1}(\tau+1)=e^{-\frac{\pi i}{24}} \phi_{2}(\tau), \quad \phi_{2}(\tau+1)=e^{-\frac{\pi i}{24}} \phi_{1}(\tau), \quad \phi_{3}(\tau+1)=e^{\frac{\pi i}{12}} \phi_{3}(\tau) .
\end{gathered}
$$

Let

$$
c_{\kappa, n}=c_{p, \kappa, n}=(2 \pi)^{\frac{p(p+1)}{\kappa}} e^{-\pi i \frac{p(3 p-1)}{2 \kappa}} e^{\pi i \frac{p+1}{2}} B_{p}\left(\frac{n+1}{\kappa},-\frac{2 p}{\kappa}, \frac{1}{\kappa}\right) \prod_{j=1}^{p}\left(1-e^{2 \pi i \frac{n+j}{\kappa}}\right) .
$$

Here, $B_{p}(\alpha, \beta, \gamma)$ is the Selberg integral.
Theorem 5.1. We have ten series of identities,

$$
\begin{gather*}
u_{2 p+2, p+1}(\lambda, \tau)=c_{2 p+2, p+1} \vartheta_{1}(\lambda, \tau)^{p+1}, \tag{2}\\
u_{2 p+3, p+1}(\lambda, \tau)=c_{2 p+3, p+1} \eta(\tau)^{-\frac{3(p+1)}{2 p+3}} \vartheta_{1}^{p+1}(\lambda, \tau) \theta_{1,0}(\lambda, \tau), \tag{3}\\
u_{2 p+3, p+2}(\lambda, \tau)=c_{2 p+3, p+2} \eta(\tau)^{-\frac{3(p+1)}{2 p+3}} \vartheta_{1}^{p+1}(\lambda, \tau) \theta_{1,1}(\lambda, \tau), \tag{4}\\
u_{2 p+4, p+2}(\lambda, \tau)=2^{-\frac{2(p+1)}{2 p+4}} c_{2 p+4, p+2}\left(\phi_{3}(\tau) \eta(\tau)^{-1}\right)^{\frac{4(p+1)}{2 p+4}} \vartheta_{1}^{p+1}(\lambda, \tau) \theta_{2,1}^{s}(\lambda, \tau), \tag{5}\\
u_{2 p+4, p+1}(\lambda, \tau)+(-1)^{p+1} e^{2 \pi i \frac{p(p+1)}{2 p+4}} u_{2 p+4, p+3}(\lambda, \tau)= \tag{6}\\
c_{2 p+4, p+1}\left(\phi_{2}(\tau) \eta(\tau)^{-1}\right)^{\frac{4(p+1)}{2 p+4}} \vartheta_{1}^{p+1}(\lambda, \tau)\left(\theta_{2,0}(\lambda, \tau)-\theta_{2,2}(\lambda, \tau)\right), \\
u_{2 p+4, p+1}(\lambda, \tau)+(-1)^{p} e^{2 \pi i \frac{p(p+1)}{2 p+4}} u_{2 p+4, p+3}(\lambda, \tau)= \tag{7}\\
c_{2 p+4, p+1}\left(\phi_{1}(\tau) \eta(\tau)^{-1}\right)^{\frac{4(p+1)}{2 p+4}} \vartheta_{1}^{p+1}(\lambda, \tau)\left(\theta_{2,0}(\lambda, \tau)+\theta_{2,2}(\lambda, \tau)\right), \\
u_{2 p+6, p+1}(\lambda, \tau)+(-1)^{p+1} e^{2 \pi i \frac{p(p+1)}{2 p+6}} u_{2 p+6, p+5}(\lambda, \tau)= \tag{8}\\
2^{\frac{3(p+1)}{2 p+6}} c_{2 p+6, p+1}\left(\phi_{3}(\tau) \eta(\tau)\right)^{-\frac{6(p+1)}{2 p+6}} \vartheta_{1}^{p+1}(\lambda, \tau)\left(\theta_{4,0}(\lambda, \tau)-\theta_{4,4}(\lambda, \tau)\right), \\
u_{2 p+6, p+2}(\lambda, \tau)+(-1)^{p} e^{2 \pi i \frac{p(p+2)}{2 p+6}} u_{2 p+6, p+4}(\lambda, \tau)= \tag{9}\\
c_{2 p+6, p+2}\left(\phi_{2}(\tau) \eta(\tau)\right)^{-\frac{6(p+1)}{2 p+6}} \vartheta_{1}^{p+1}(\lambda, \tau)\left(\theta_{4,1}^{s}(\lambda, \tau)+\theta_{4,3}^{s}(\lambda, \tau)\right), \\
u_{2 p+6, p+2}(\lambda, \tau)+(-1)^{p+1} e^{2 \pi i \frac{p(p+2)}{2 p+6}} u_{2 p+6, p+4}(\lambda, \tau)= \tag{10}\\
c_{2 p+6, p+2}\left(\phi_{1}(\tau) \eta(\tau)\right)^{-\frac{6(p+1)}{2 p+6}} \vartheta_{1}^{p+1}(\lambda, \tau)\left(\theta_{4,1}^{s}(\lambda, \tau)-\theta_{4,3}^{s}(\lambda, \tau)\right), \\
u_{2 p+8, p+2}(\lambda, \tau)+(-1)^{p+1} e^{2 \pi i \frac{p(p+2)}{2 p+8}} u_{2 p+8, p+6}(\lambda, \tau)= \tag{11}\\
c_{2 p+8, p+2} \eta(\tau)^{\frac{-8(p+1)}{2 p+8}} \vartheta_{1}^{p+1}(\lambda, \tau)\left(\theta_{6,1}^{s}(\lambda, \tau)-\theta_{6,5}^{s}(\lambda, \tau)\right) .
\end{gather*}
$$

The integrals in Theorem 5.1 are appropriately called the elliptic Selberg integrals. The identity (2) appears in [FSV1] and in [FV1] for $p=1$.

6. Differential equations

In Lemmas 6.1 6.3, let ' denote the derivative with respect to λ, let ${ }^{\text {' denote the }}$ derivative with respect to τ, and let $v(\lambda, \tau)=\vartheta_{1}^{p+1}(\lambda, \tau) \sum_{j=0}^{\kappa-2 p-2} c_{j}(\tau) \theta_{\kappa-2 p-2, j}^{s}(\lambda, \tau)$.

Lemma 6.1. The function $v(\lambda, \tau)$ is a solution of the KZB-heat equation if and only if the differential equation

$$
\begin{align*}
\frac{\kappa}{p+1} \sum_{j=0}^{\kappa-2 p-2}\left(\frac{d}{d \tau} c_{j}\right) \theta_{\kappa-2 p-2, j}^{s}= & (2 p+2-\kappa) \frac{\dot{\vartheta_{1}}}{\vartheta_{1}} \sum_{j=0}^{\kappa-2 p-2} c_{j} \theta_{\kappa-2 p-2, j}^{s} \tag{12}\\
& -2 \sum_{j=0}^{\kappa-2 p-2} c_{j} \dot{\theta}_{\kappa-2 p-2, j}^{s}+\frac{1}{\pi i} \frac{\vartheta_{1}^{\prime}}{\vartheta_{1}} \sum_{j=0}^{\kappa-2 p-2} c_{j}\left(\theta_{\kappa-2 p-2, j}^{s}\right)^{\prime}
\end{align*}
$$

holds.
The proof of Lemma 6.1 uses the identities

$$
\begin{gather*}
2 \pi i(2 p+2)\left(\vartheta_{1}^{p+1}\right)(\lambda, \tau)=\left(\vartheta_{1}^{p+1}\right)^{\prime \prime}(\lambda, \tau)+p(p+1) \rho^{\prime}(\lambda, \tau) \vartheta_{1}^{p+1}(\lambda, \tau), \tag{13}\\
2 \pi i \kappa \dot{\theta}_{\kappa, m}^{s}(\lambda, \tau)=\left(\theta_{\kappa, m}^{s}\right)^{\prime \prime}(\lambda, \tau) . \tag{14}
\end{gather*}
$$

Proof of Lemma 6.1. Applying the differential operator $2 \pi i \kappa \partial / \partial \tau$ to $v(\lambda, \tau)$ gives

$$
\begin{aligned}
2 \pi i \kappa\left[(p+1) \dot{\vartheta}_{1} \vartheta_{1}^{p} \sum_{j=0}^{\kappa-2 p-2} c_{j} \theta_{\kappa-2 p-2, j}^{s}+\vartheta_{1}^{p+1} \sum_{j=0}^{\kappa-2 p-2}\left(\frac{d}{d \tau} c_{j}\right)\right. & \theta_{\kappa-2 p-2, j}^{s} \\
& \left.+\vartheta_{1}^{p+1} \sum_{j=0}^{\kappa-2 p-2} c_{j} \dot{\theta}_{\kappa-2 p-2, j}^{s}\right]
\end{aligned}
$$

Applying the differential operator $\partial^{2} / \partial \lambda^{2}+p(p+1) \rho^{\prime}(\lambda, \tau)$ to $v(\lambda, \tau)$ gives

$$
\begin{aligned}
\left(\vartheta_{1}^{p+1}\right)^{\prime \prime} \sum_{j=0}^{\kappa-2 p-2} c_{j} \theta_{\kappa-2 p-2, j}^{s} & +2(p+1) \vartheta_{1}^{\prime} \vartheta_{1}^{p} \sum_{j=0}^{\kappa-2 p-2} c_{j}\left(\theta_{\kappa-2 p-2, j}^{s}\right)^{\prime} \\
& +\vartheta_{1}^{p+1} \sum_{j=0}^{\kappa-2 p-2} c_{j}\left(\theta_{\kappa-2 p-2, j}^{s}\right)^{\prime \prime}+p(p+1) \rho^{\prime} \vartheta_{1}^{p+1} \sum_{j=0}^{\kappa-2 p-2} c_{j} \theta_{\kappa-2 p-2, j}^{s}
\end{aligned}
$$

Applying (13) and (14), we obtain the result.

Lemma 6.2. If $v(\lambda, \tau)$ is a solution of the KZB-heat equation, then the functions $c_{j}(\tau)$ satisfy the differential equation

$$
\begin{aligned}
& \frac{\kappa}{p+1} \sum_{j=0}^{\kappa-2 p-2}\left(\frac{d}{d \tau} c_{j}(\tau)\right) \theta_{\kappa-2 p-2, j}(0, \tau)= \\
&(2 p+2-\kappa)\left(\frac{d}{d \tau} \ln \vartheta_{1}^{\prime}(0, \tau)\right) \sum_{j=0}^{\kappa-2 p-2} c_{j}(\tau) \theta_{\kappa-2 p-2, j}(0, \tau) \\
&+2(\kappa-2 p-3) \sum_{j=0}^{\kappa-2 p-2} c_{j}(\tau) \frac{d}{d \tau} \theta_{\kappa-2 p-2, j}(0, \tau)
\end{aligned}
$$

Proof. For any fixed λ, equation (12) gives a differential equation for the functions $c_{j}(\tau)$. We take the limit of that equation as $\lambda \rightarrow 0$. In the ratio $\dot{\vartheta}_{1} / \vartheta_{1}$, both the numerator and denominator tend to zero, so the limit of this term as $\lambda \rightarrow 0$ is equal to the limit of the ratio of the derivatives of the numerator and the denominator. The limit of the ratio $\left(\sum_{j=0}^{\kappa-2 p-2} c_{j}\left(\theta_{\kappa-2 p-2, j}^{s}\right)^{\prime}\right) / \vartheta_{1}$ is calculated in the same way, since each $\theta_{\kappa-2 p-2, j}^{s}$ is a symmetric function and therefore $\left(\theta_{\kappa-2 p-2, j}^{s}\right)^{\prime}(0, \tau)=0$. Then the result follows from (14).

Lemma 6.3. If $v(\lambda, \tau)$ is a solution of the KZB-heat equation, then the functions $c_{j}(\tau)$ satisfy the differential equation

$$
\begin{aligned}
& \frac{\kappa}{p+1} \sum_{j=0}^{\kappa-2 p-2}\left(\frac{d}{d \tau} c_{j}(\tau)\right) \theta_{\kappa-2 p-2, \kappa-2 p-2-j}(0, \tau)= \\
& (2 p+2-\kappa)\left(\frac{d}{d \tau} \ln \vartheta_{1}^{\prime}(0, \tau)\right)^{\kappa-2 p-2} c_{j=0}(\tau) \theta_{\kappa-2 p-2, \kappa-2 p-2-j}(0, \tau) \\
& +2(\kappa-2 p-3)
\end{aligned} \begin{aligned}
& \sum_{j=0}^{\kappa-2 p-2} c_{j}(\tau) \frac{d}{d \tau} \theta_{\kappa-2 p-2, \kappa-2 p-2-j}(0, \tau)
\end{aligned}
$$

Proof. We take the limit of (12) as $\lambda \rightarrow \tau$. This limit is calculated in terms of the limit $\lambda \rightarrow 0$ using the formulas

$$
\begin{gathered}
\left.\frac{\partial}{\partial z} \theta_{1}(z, \tau)\right|_{z=\lambda+\tau}=e^{-2 \pi i \lambda-\pi i \tau}\left(2 \pi i \theta_{1}(\lambda, \tau)-\theta_{1}^{\prime}(\lambda, \tau)\right) \\
\left.\frac{\partial}{\partial z} \theta_{1}(\lambda+\tau, z)\right|_{z=\tau}=e^{-2 \pi i \lambda-\pi i \tau}\left(-\pi i \theta_{1}(\lambda, \tau)+\theta_{1}^{\prime}(\lambda, \tau)-\dot{\theta}_{1}(\lambda, \tau)\right) \\
\left.\frac{\partial}{\partial z} \theta_{\kappa, m}^{s}(z, \tau)\right|_{z=\lambda+\tau}=e^{-\pi i \kappa \lambda-\pi i \kappa \frac{\tau}{2}}\left(-\pi i \kappa \theta_{\kappa, \kappa-m}^{s}(\lambda, \tau)+\left(\theta_{\kappa, \kappa-m}^{s}\right)^{\prime}(\lambda, \tau)\right) \\
\left.\frac{\partial}{\partial z} \theta_{\kappa, m}^{s}(\lambda+\tau, z)\right|_{z=\tau}=e^{-\pi i \kappa \lambda-\pi i \kappa \frac{\tau}{2}}\left(\pi i \frac{\kappa}{2} \theta_{\kappa, \kappa-m}^{s}(\lambda, \tau)-\left(\theta_{\kappa, \kappa-m}^{s}\right)^{\prime}(\lambda, \tau)+\dot{\theta}_{\kappa, \kappa-m}^{s}(\lambda, \tau)\right) .
\end{gathered}
$$

It is straightforward to calculate the limit of the left hand side. Using the above formulas, the limit as $\lambda \rightarrow \tau$ of the right hand side is equal to the limit as $\lambda \rightarrow 0$ of the expression

$$
\begin{aligned}
& e^{\pi i(2 p+2-\kappa)\left(\lambda+\frac{\tau}{2}\right)}\left((2 p+2-\kappa) \frac{\dot{\vartheta_{1}}}{\vartheta_{1}} \sum_{j=0}^{\kappa-2 p-2} c_{j} \theta_{\kappa-2 p-2, \kappa-2 p-2-j}^{s}\right. \\
& \left.\quad-2 \sum_{j=0}^{\kappa-2 p-2} c_{j} \dot{\theta}_{\kappa-2 p-2, \kappa-2 p-2-j}^{s}+\frac{1}{\pi i} \frac{\vartheta_{1}^{\prime}}{\vartheta_{1}} \sum_{j=0}^{\kappa-2 p-2} c_{j}\left(\theta_{\kappa-2 p-2, \kappa-2 p-2-j}^{s}\right)^{\prime}\right) .
\end{aligned}
$$

This limit is calculated using L'Hôpital's rule.

7. Identities for theta functions

In the next section, we give the proofs of the integral identities in Theorem 5.1. We will use the following results.

Lemma 7.1. We have $\theta_{2,1}^{s}(\lambda)=\vartheta_{1}(\lambda+1 / 2)$.
Lemma 7.1 is proved by comparing the Fourier series expansions of the functions.
Corollary 7.2. We have $2 \theta_{2,1}(0)=\eta(\tau) \phi_{3}(\tau)^{2}$.
Lemma 7.3. Let

$$
f_{1}(\tau)=\frac{\theta_{4,1}(0)-\theta_{4,3}(0)}{\eta(\tau)}, \quad f_{2}(\tau)=\frac{\theta_{4,1}(0)+\theta_{4,3}(0)}{\eta(\tau)}, \quad f_{3}(\tau)=\frac{\theta_{4,0}(0)-\theta_{4,4}(0)}{\sqrt{2} \eta(\tau)} .
$$

Then $f_{1}(\tau)=\phi_{1}(\tau)^{-1}, f_{2}(\tau)=\phi_{2}(\tau)^{-1}, f_{3}(\tau)=\phi_{3}(\tau)^{-1}$.
The proof of Lemma 7.3 is based on the following result.
Lemma 7.4. [W] Suppose $g_{1}(\tau), g_{2}(\tau)$, and $g_{3}(\tau)$ are holomorphic functions on the upper half plane \mathbb{C}_{+}satisfying the following conditions.

P1. The functions g_{1}, g_{2}, and g_{3} can be written in the forms

$$
g_{1}(\tau)=q^{-\frac{a}{48}} \sum_{j=0}^{\infty} a_{j} q^{\frac{j}{2}}, \quad g_{2}(\tau)=q^{-\frac{a}{48}} \sum_{j=0}^{\infty}(-1)^{j} a_{j} q^{\frac{j}{2}}, \quad g_{3}(\tau)=q^{\frac{a}{24}} \sum_{j=0}^{\infty} b_{j} q^{j}
$$

where a is an integer, $a_{j}, b_{j} \in \mathbb{C}$, and $a_{0}=1$.
P 2 . The functions g_{1}, g_{2}, and g_{3} have the modular properties

$$
g_{1}\left(-\frac{1}{\tau}\right)=g_{1}(\tau), \quad g_{2}\left(-\frac{1}{\tau}\right)=g_{3}(\tau), \quad g_{3}\left(-\frac{1}{\tau}\right)=g_{2}(\tau) .
$$

Then $g_{i}(\tau)=\phi_{i}(\tau)^{a}$, for $i=1,2,3$.

Proof of Proposition 7.2. We have

$$
\begin{gathered}
\theta_{4,1}(0)=\sum_{j \in \mathbb{Z}} q^{4\left(j+\frac{1}{8}\right)^{2}}=q^{\frac{1}{16}} \sum_{j \in \mathbb{Z}} q^{\frac{1}{2}\left(8 j^{2}+2 j\right)}, \quad \theta_{4,3}(0)=\sum_{j \in \mathbb{Z}} q^{4\left(j+\frac{3}{8}\right)^{2}}=q^{\frac{1}{16}} \sum_{j \in \mathbb{Z}} q^{\frac{1}{2}\left(8 j^{2}+6 j+1\right)}, \\
\theta_{4,0}(0)=\sum_{j \in \mathbb{Z}} q^{4 j^{2}}=\sum_{j \in \mathbb{Z}} q^{(2 j)^{2}}, \quad \theta_{4,4}(0)=\sum_{j \in \mathbb{Z}} q^{4\left(j+\frac{1}{2}\right)^{2}}=\sum_{j \in \mathbb{Z}} q^{(2 j+1)^{2}}
\end{gathered}
$$

Hence, the functions

$$
\begin{gathered}
\tilde{f}_{1}(\tau)=q^{-\frac{1}{24}}\left(\theta_{4,1}(0)-\theta_{4,3}(0)\right), \quad \tilde{f}_{2}(\tau)=q^{-\frac{1}{24}}\left(\theta_{4,1}(0)+\theta_{4,3}(0)\right) \\
\tilde{f}_{3}(\tau)=2^{-\frac{1}{2}} q^{-\frac{1}{24}}\left(\theta_{4,0}(0)-\theta_{4,4}(0)\right)
\end{gathered}
$$

are holomorphic functions on \mathbb{C}_{+}with the property P 1 for $a=-1$ and $g_{i}=\tilde{f}_{i}$. Let $y(q)=\sum_{j=1}^{\infty} c_{j} q^{j}$ be defined by the condition $1+y(q)=q^{-1 / 24} \eta(\tau)$. Then for $i=1,2,3$,

$$
f_{i}(\tau)=\frac{\tilde{f}_{i}(\tau)}{1+y(q)}=\tilde{f}_{i}(\tau)\left(1-y(q)+y(q)^{2}+\ldots\right)
$$

are holomorphic functions on \mathbb{C}_{+}with the property P1 for $a=-1$ and $g_{i}=f_{i}$. One checks that f_{1}, f_{2} and f_{3} have the property P2 using the modular properties of $\theta_{4, n}(0)$ and $\eta(\tau)$.

Lemma 7.5. We have $\theta_{6,1}(0)-\theta_{6,5}(0)=\eta(\tau)$.
Lemma 7.5 is proved by comparing the infinite series expansions of the functions.

8. The proof of Theorem 5.1

8.1. Proof of (2). For $\kappa=2 p+2$, the space of conformal blocks is one-dimensional. The right hand side of (27) is a solution of (11) with the properties (i)-(iv) FV1. According to Theorem 3.1, the left hand side also has these properties. Thus the two functions are proportional. The coefficient of proportionality is calculated by comparing the leading terms of ϑ_{1}^{p+1} and $u_{\kappa, p+1}$ in the limit as $\tau \rightarrow i \infty$. The leading term of ϑ_{1}^{p+1} is $(-i)^{p+1} q^{(p+1) / 8}\left(e^{\pi i \lambda}-e^{-\pi i \lambda}\right)^{p+1}$. Let $d t=d t_{1} \ldots d t_{p}$. The leading term of $u_{\kappa, p+1}$ is

$$
\begin{aligned}
& \int_{\Delta_{p}} \prod_{j=1}^{p}\left(\frac{e^{\pi i t_{j}}-e^{-\pi i t_{j}}}{2 \pi e^{\frac{\pi i}{2}}}\right)^{-\frac{2 p}{2 p+2}-1} \prod_{1 \leq j<k \leq p}\left(\frac{e^{\pi i\left(t_{j}-t_{k}\right)}-e^{-\pi i\left(t_{j}-t_{k}\right)}}{2 \pi e^{\frac{\pi i}{2}}}\right)^{\frac{2}{2 p+2}} \\
&\left(\left(\prod_{j=1}^{p} \frac{e^{\pi i\left(\lambda-t_{j}\right)}-e^{-\pi i\left(\lambda-t_{j}\right)}}{e^{\pi i \lambda}-e^{-\pi i \lambda}}\right) q^{\frac{(p+1)^{2}}{4(2 p+2)}} e^{\pi i(p+1)\left(\lambda+\frac{2}{2 p+2} \sum_{j=1}^{p} t_{j}\right)}\right. \\
&+\left.(-1)^{p+1}\left(\prod_{j=1}^{p} \frac{e^{\pi i\left(\lambda+t_{j}\right)}-e^{-\pi i\left(\lambda+t_{j}\right)}}{e^{\pi i \lambda}-e^{-\pi i \lambda}}\right) q^{\frac{(p+1)^{2}}{4(2 p+2)}} e^{\pi i(p+1)\left(-\lambda+\frac{2}{2 p+2} \sum_{j=1}^{p} t_{j}\right)}\right) d t .
\end{aligned}
$$

The above expression is equal to

$$
\left(2 \pi e^{\frac{\pi i}{2}}\right)^{\frac{p(p+1)}{2 p+2}+p} e^{-\pi i\left(\frac{2 p^{2}}{2 p+2}+p\right)} q^{\frac{p+1}{8}}\left(e^{\pi i \lambda}-e^{-\pi i \lambda}\right)^{-p} \sum_{l=0}^{p} I_{l}\left(e^{\pi i(2 l+1) \lambda}-e^{-\pi i(2 l+1) \lambda}\right),
$$

where

$$
I_{l}=\int_{\Delta_{p}} f_{l}\left(t_{1}, \ldots, t_{p}\right) \prod_{j=1}^{p} e^{2 \pi i t_{j}\left(\frac{p+2}{2 p+2}+\frac{1}{2}\right)}\left(1-e^{2 \pi i t_{j}}\right)^{-\frac{2 p}{2 p+2}-1} \prod_{1 \leq j<k \leq p}\left(e^{2 \pi i t_{j}}-e^{2 \pi i t_{k}}\right)^{\frac{2}{2 p+2}} d t
$$

for some function f_{l}, symmetric in the variables t_{1}, \ldots, t_{p}. Comparing the coefficients of $e^{\pi i(p+1) \lambda}$ in the leading terms, we find that $u_{\kappa, p+1}=i^{p+1}\left(2 \pi e^{\frac{\pi i}{2}}\right)^{\frac{p(p+1)}{2 p+2}+p} e^{-\pi i\left(\frac{2 p^{2}}{2 p+2}+p\right)} I_{p} \vartheta_{1}^{p+1}$. To complete the proof, it remains to compute I_{p}. It is not difficult to show that $f_{p}\left(t_{1}, \ldots, t_{p}\right)=\prod_{j=1}^{p} e^{-\pi i t_{j}}$. Let $x_{j}=e^{2 \pi i t_{j}}$. Let $\tilde{\Delta}_{p}$ be the image of Δ_{p} under the $\operatorname{map} t_{j} \mapsto x_{j}$. We have

$$
I_{p}=(2 \pi i)^{-p} \int_{\tilde{\Delta}_{p}} \prod_{j=1}^{p} x_{j}^{\frac{p+2}{2 p+2}-1}\left(1-x_{j}\right)^{-\frac{2 p}{2 p+2}-1} \prod_{1 \leq j<k \leq p}\left(x_{j}-x_{k}\right)^{\frac{2}{2 p+2}} d x
$$

Applying the Stokes theorem, we deform the contour $\tilde{\Delta}_{p}$ to get

$$
I_{p}=(2 \pi i)^{-p} \prod_{j=1}^{p}\left(e^{2 \pi i \frac{j+p+1}{2 p+2}}-1\right) \int_{\Delta_{p}} \prod_{j=1}^{p} x_{j}^{\frac{p+2}{2 p+2}-1}\left(1-x_{j}\right)^{-\frac{2 p}{2 p+2}-1} \prod_{1 \leq j<k \leq p}\left(x_{j}-x_{k}\right)^{\frac{2}{2 p+2}} d x .
$$

Observe that

$$
\int_{\Delta_{p}} \prod_{j=1}^{p} x_{j}^{\frac{p+2}{2 p+2}-1}\left(1-x_{j}\right)^{-\frac{2 p}{2 p+2}-1} \prod_{1 \leq j<k \leq p}\left(x_{j}-x_{k}\right)^{\frac{2}{2 p+2}} d x
$$

is the Selberg integral $B_{p}((p+2) /(2 p+2),-2 p /(2 p+2), 1 /(2 p+2))$. This completes the proof.
8.2. Proof of (3) and (4). Let $\kappa=2 p+3$. Then any solution of (1) with the properties (i)-(iv) has the form $v(\lambda, \tau)=\vartheta_{1}^{p+1}(\lambda, \tau)\left(c_{0}(\tau) \theta_{1,0}(\lambda, \tau)+c_{1}(\tau) \theta_{1,1}(\lambda, \tau)\right)$. Let A be the transformation introduced in section 4. By Proposition 4.1, $A v(\lambda, \tau)=$ $(-1)^{p+1} \vartheta_{1}^{p+1}(\lambda, \tau)\left(c_{0}(\tau) \theta_{1,0}(\lambda, \tau)-c_{1}(\tau) \theta_{1,1}(\lambda, \tau)\right)$ is also a solution. Hence, for $j=0$ or 1 , the function $v_{j}(\lambda, \tau)=c_{j}(\tau) \vartheta_{1}^{p+1}(\lambda, \tau) \theta_{1, j}(\lambda, \tau)$ gives a solution too. Moreover, $A v_{j}=(-1)^{p+1+j} v_{j}$. By Theorem 3.2, the integrals $u_{\kappa, p+1}$ and $u_{\kappa, p+2}$ span the space of conformal blocks. By Lemma 4.3, $A u_{\kappa, p+1}=(-1)^{p+1} u_{\kappa, p+1}$ and $A u_{\kappa, p+2}=(-1)^{p} u_{\kappa, p+2}$. So for $j=0$ or 1 , the integral $u_{\kappa, p+1+j}$ is proportional to v_{j}. By Lemma 6.2, $c_{j}(\tau)$ must satisfy the differential equation

$$
\frac{\kappa}{p+1}\left(\frac{d}{d \tau} c_{j}(\tau)\right) \theta_{1, j}(0, \tau)=-\left(\frac{d}{d \tau} \ln \vartheta_{1}^{\prime}(0, \tau)\right) c_{j}(\tau) \theta_{1, j}(0, \tau)
$$

The function $c_{j}(\tau)=\left((2 \pi)^{-1} \vartheta_{1}^{\prime}(0, \tau)\right)^{-(p+1) / \kappa}=\eta(\tau)^{-3(p+1) / \kappa}$ is a solution of this equation for $j=0$ and $j=1$. The coefficients of proportionality are computed in the limit as $\tau \rightarrow i \infty$, cf. the proof of (21). This completes the proof.
8.3. Proof of (5), (6), and (7). Let $\kappa=2 p+4$. Let $v_{j}(\lambda, \tau)=\vartheta_{1}^{p+1}(\lambda, \tau) \theta_{2, j}^{s}(\lambda, \tau), 0 \leq$ $j \leq 2$. Any solution of (11) with the properties (i)-(iv) has the form $v(\lambda, \tau)=$ $\sum_{j=0}^{2} c_{j}(\tau) v_{j}(\lambda, \tau)$. Let A be the transformation in section 4. By Proposition 4.1, $A v=\sum_{j=0}^{2}(-1)^{p+j+1} c_{j} v_{j}$ is also a solution. Hence the function $c_{1} v_{1}$ gives a solution too. Moreover, it is an eigenvector of A with eigenvalue $(-1)^{p}$. By Theorem 3.2, the space of conformal blocks is three-dimensional with spanning set $\left\{u_{\kappa, n} \mid p+1 \leq n \leq p+3\right\}$. According to Lemma 4.3, the eigenspace of A corresponding to the eigenvalue $(-1)^{p}$ is one-dimensional and is spanned by $u_{\kappa, p+2}$. It follows that $u_{\kappa, p+2}$ is proportional to $c_{1} v_{1}$. By Lemma 6.2, $c_{1}(\tau)$ must satisfy the differential equation

$$
\frac{\kappa}{p+1}\left(\frac{d}{d \tau} c_{1}(\tau)\right) \theta_{2,1}(0, \tau)=-2\left(\frac{d}{d \tau} \ln \vartheta_{1}^{\prime}(0, \tau)\right) c_{1}(\tau) \theta_{2,1}(0, \tau)+2 c_{1}(\tau) \frac{d}{d \tau} \theta_{2,1}(0, \tau)
$$

The function $c_{1}(\tau)=\left(4 \pi \theta_{2,1}(0, \tau) \vartheta_{1}^{\prime}(0, \tau)^{-1}\right)^{2(p+1) / \kappa}$ is a solution of the above equation. By Corollary 7.2, $c_{1}(\tau)=\left(\phi_{3}(\tau) \eta(\tau)^{-1}\right)^{4(p+1) / \kappa}$. The coefficient of proportionality is computed in the limit $\tau \rightarrow i \infty$, cf. the proof of (2). This proves (5). To prove (6), we apply the transformation S to both sides of (5). To prove (7), we apply the transformation T to both sides of (6). This completes the proof.
8.4. Proof of (8), (9), and (10). Let $\kappa=2 p+6$. Let $v_{j}(\lambda, \tau)=\vartheta_{1}^{p+1}(\lambda, \tau) \theta_{4, j}^{s}(\lambda, \tau), 0 \leq$ $j \leq 4$. Any solution of (11) with the properties (i)-(iv) has the form $v(\lambda, \tau)=$ $\sum_{j=0}^{4} c_{j}(\tau) v_{j}(\lambda, \tau)$. Let A and B be the transformations in section 4. By Proposition 4.1, $A v=\sum_{j=0}^{4}(-1)^{p+j+1} c_{j} v_{j}$ is also a solution. Hence the function $c_{0} v_{0}+c_{2} v_{2}+c_{4} v_{4}$ gives a solution too. Moreover, $B\left(c_{0} v_{0}+c_{2} v_{2}+c_{4} v_{4}\right)=(-1)^{p+1}\left(c_{4} v_{0}+c_{2} v_{2}+c_{0} v_{4}\right)$ is also a solution. So there exists a solution of the form $c(\tau)\left(v_{0}-v_{4}\right)$. It is an eigenvector of A with eigenvalue $(-1)^{p+1}$ and an eigenvector of B with eigenvalue $(-1)^{p}$. We show that the subspace of conformal blocks with this property is one-dimensional. By Theorem 3.2, the space of conformal blocks is five-dimensional with spanning set $\left\{u_{\kappa, n} \mid p+1 \leq n \leq p+5\right\}$. By Lemma 4.3, the eigenspace of A corresponding to the eigenvalue $(-1)^{p+1}$ is three-dimensional and is spanned by $u_{\kappa, p+1}, u_{\kappa, p+3}$, and $u_{\kappa, p+5}$. By Lemma 4.3, the transformation B preserves the subspace $\left\langle u_{\kappa, p+1}, u_{\kappa, p+3}, u_{\kappa, p+5}\right\rangle$. The matrix of B restricted to this subspace is

$$
\left(\begin{array}{ccc}
0 & 0 & -e^{2 \pi i \frac{p(p+5)}{\kappa}} \\
0 & (-1)^{p+1} & 0 \\
-e^{2 \pi i \frac{p(p+1)}{\kappa}} & 0 & 0
\end{array}\right) .
$$

Thus the restriction of B to $\left\langle u_{\kappa, p+1}, u_{\kappa, p+3}, u_{\kappa, p+5}\right\rangle$ has eigenvalues $(-1)^{p}$ and $(-1)^{p+1}$ of multiplicities 1 and 2 , respectively. The eigenspace corresponding to the eigenvalue
$(-1)^{p}$ is spanned by the vector $u_{\kappa, p+1}+(-1)^{p+1} e^{2 \pi i p(p+1) / \kappa} u_{\kappa, p+5}$. It follows that this vector is proportional to $c(\tau)\left(v_{0}-v_{4}\right)$. By Lemma 6.2, $c(\tau)$ must satisfy the differential equation

$$
\begin{aligned}
& \frac{\kappa}{p+1}\left(\frac{d}{d \tau} c(\tau)\right)\left(\theta_{4,0}(0, \tau)-\theta_{4,4}(0, \tau)\right)= \\
& \quad-4\left(\frac{d}{d \tau} \ln \vartheta_{1}^{\prime}(0, \tau)\right) c(\tau)\left(\theta_{4,0}(0, \tau)-\theta_{4,4}(0, \tau)\right)+6 c(\tau) \frac{d}{d \tau}\left(\theta_{4,0}(0, \tau)-\theta_{4,4}(0, \tau)\right)
\end{aligned}
$$

The function $c(\tau)=\left((2 \pi)^{2}\left(\theta_{4,0}(0, \tau)-\theta_{4,4}(0, \tau)\right)^{3} \vartheta_{1}^{\prime}(0, \tau)^{-2}\right)^{2(p+1) / \kappa}$ is a solution of the above equation. By Lemma 7.3, we have $c(\tau)=2^{3(p+1) / \kappa}\left(\phi_{3}(\tau) \eta(\tau)\right)^{-6(p+1) / \kappa}$. The coefficient of proportionality is computed as in the proof of (2) . This proves (8). To prove (9) and (10), apply the transformations S and $T S$, respectively, to both sides of (图). This completes the proof.
8.5. Proof of (11). Let $\kappa=2 p+8$. Let $v_{j}(\lambda, \tau)=\vartheta_{1}^{p+1}(\lambda, \tau) \theta_{6, j}^{s}(\lambda, \tau), 0 \leq j \leq 6$. Any solution of (四) with the properties (i)-(iv) has the form $v(\lambda, \tau)=\sum_{j=0}^{6} c_{j}(\tau) v_{j}(\lambda, \tau)$. Let A and B be as in section 4. By Proposition 4.1, $A v=\sum_{j=0}^{6}(-1)^{p+j+1} c_{j} v_{j}$ is also a solution. Hence the function $c_{1} v_{1}+c_{3} v_{3}+c_{5} v_{5}$ gives a solution too. The function $B\left(c_{1} v_{1}+c_{3} v_{3}+c_{5} v_{5}\right)=(-1)^{p+1}\left(c_{5} v_{1}+c_{3} v_{3}+c_{1} v_{5}\right)$ also gives a solution. So there is a solution of the form $c(\tau)\left(v_{1}-v_{5}\right)$ which is an eigenvector of A and B with eigenvalue $(-1)^{p}$ under both transformations. We show that the subspace of conformal blocks with this property is one-dimensional. By Theorem 3.2, the space of conformal blocks is seven-dimensional with spanning set $\left\{u_{\kappa, n} \mid p+1 \leq n \leq p+7\right\}$. By Lemma 4.3, the three-dimensional eigenspace of A corresponding to the eigenvalue $(-1)^{p}$ is spanned by $u_{\kappa, p+2}, u_{\kappa, p+4}$, and $u_{\kappa, p+6}$. The matrix of B restricted to $\left\langle u_{\kappa, p+2}, u_{\kappa, p+4}, u_{\kappa, p+6}\right\rangle$ is

$$
\left(\begin{array}{ccc}
0 & 0 & -e^{2 \pi i \frac{p(p+6)}{\kappa}} \\
0 & (-1)^{p+1} & 0 \\
-e^{2 \pi i \frac{p(p+2)}{\kappa}} & 0 & 0
\end{array}\right) .
$$

Thus, B has eigenvalues $(-1)^{p}$ and $(-1)^{p+1}$ of multiplicities 1 and 2 , respectively. The eigenspace corresponding to the eigenvalue $(-1)^{p}$ is spanned by the vector $u_{\kappa, p+2}+$ $(-1)^{p+1} e^{2 \pi i p(p+2) / \kappa} u_{\kappa, p+6}$. So this vector is proportional to $c(\tau)\left(v_{1}-v_{5}\right)$. By Lemma 6.2, $c(\tau)$ must be a solution of the differential equation

$$
\begin{aligned}
& \frac{\kappa}{p+1}\left(\frac{d}{d \tau} c(\tau)\right)\left(\theta_{6,1}(0, \tau)-\theta_{6,5}(0, \tau)\right)= \\
& \quad-6\left(\frac{d}{d \tau} \ln \vartheta_{1}^{\prime}(0, \tau)\right) c(\tau)\left(\theta_{6,1}(0, \tau)-\theta_{6,5}(0, \tau)\right)+10 c(\tau) \frac{d}{d \tau}\left(\theta_{6,1}(0, \tau)-\theta_{6,5}(0, \tau)\right)
\end{aligned}
$$

The function $c(\tau)=\left((2 \pi)^{3}\left(\theta_{6,1}(0, \tau)-\theta_{6,5}(0, \tau)\right)^{5} \vartheta_{1}^{\prime}(0, \tau)^{-3}\right)^{2(p+1) / \kappa}$ is a solution of the preceding equation. By Lemma 7.5, $c(\tau)=(\eta(\tau))^{-8(p+1) / \kappa}$. The coefficient of proportionality is computed as in the proof of (2). Notice that the solution in (11) is invariant with respect to the action of the modular group.

References

[A1] K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal., 1987, N. 18, 545-549.
[A2] K. Aomoto, On the complex Selberg integral, Q. J. Math. Oxford, 1987, N. 38, 385-399.
[As] R. S. Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. , 1980, N. 11, 938-951.
[D] V. Dotsenko, Solving the $S U(2)$ Conformal Field Theory with the Wakimoto Free-Field Representation, (in Russian), Moscow, 1990, 1-31.
[DF1] V. Dotsenko and V. Fateev, Conformal algebra and multipoint correlation functions in 2-D statistical models, Nucl. Phys., 1984, N. B240, 312-348.
[DF2] V. Dotsenko and V. Fateev, Four-point correlation functions and the operator algebra in 2-D conformal invariant theories with central charge $C \leq 1$, Nucl. Phys., 1985, N. B251, 691-734.
[EK] P. Etingof, A. Kirillov, Jr., On the affine analogue of Jack's and Macdonald's polynomials, Duke Math J. 78 (1995), no. 2, 229-256.
[FSV1] G. Felder, L. Stevens, and A. Varchenko, Elliptic Selberg integrals, math. QA/0103227.
[FSV2] G. Felder, L. Stevens, and A. Varchenko, Modular transformations of the elliptic hypergeometric functions, Macdonald polynomials, and the shift operator, math. QA/0203049, to appear in Moscow Math J.
[FV1] G.Felder and A.Varchenko, Integral Representations of the elliptic Knizhnik-ZamolodchikovBernard equations, Int. Math. Res. notices, 1995, N. 5, 221-233.
[FV2] G. Felder and A. Varchenko, The q-Deformed KZB-heat Equation, math. QA/9809139.
[HM] J. Harnad and J. McKay, Modular Solutions to Equations of Generalized Halphen Type, math.MP/9804006.
[Ma] I.G. Macdonald, Symmetric Functions and Orthogonal Polynomials, American Mathematical Society, 1998.
[M] M.L. Mehta, Random Matrices, Academic Press, 1991.
[S] A. Selberg, Bemerkninger om et multiplet integral, Norsk Mat. Tidsskr., 1944, N. 26, 71-78.
[W] M. Wakimoto, Infinite-Dimensional Lie Algebras, American Mathematical Society, 1999.
[WW] E.T. Whittaker and G.N. Watson, Modern Analysis, Cambridge University Press, 1927.

[^0]: ${ }^{1}$ Supported in part by NSF grant DMS-9801582.

