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1. Introduction

Let Ω ⊂ Rn be a bounded, connected domain, with b + 1 boundary components, ∂Ω =
Γ0∪· · ·∪Γb. SayO0, . . . ,Ob are the connected components of Rn\Ω, O0 being the unbounded
component, and Γj = ∂Oj . If b > 0, pick yj ∈ Oj , 1 ≤ j ≤ b, and set

(1.1) gj(x) :=
x− yj

|x− yj |n
, x ∈ Rn \ {yj}.

Let Hs,p denote the usual scale of Lp-Sobolev spaces, and denote by div and Div the
divergence of 1-tensors (i.e., vector fields) and 2-tensors, respectively.

Given a divergence-free vector field u on Ω, possessing a certain regularity, e.g., u ∈
Hs,p(Ω), we want to investigate two closely related problems. One is to extend u to a
divergence-free vector field ũ defined on a neighborhood of Ω (in fact, defined on Rn \{yj}),
such that ũ is as smooth as u. The second is to produce an anti-symmetric 2-tensor field v
such that

(1.2) u = Div v +
∑

j≥1

λjgj ,

for some constants λj ∈ R, and such that

(1.3) v ∈ Hs+1,p(Ω).

Note that if we can solve the second problem, then we need merely extend v to ṽ (a familiar
task) and set

(1.4) ũ = Div ṽ +
∑

λjgj .

Note that we can arrange that ṽ be supported on an arbitrarily small neighborhood of Ω.
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We expect these results to be useful in a variety of situations such as in the study of
the motion of incompressible fluids and in elasticity. For example, consider the boundary
value problem (BVP) for an incompressible fluid (ideal or viscous) in Ω. One could attempt
to estimate the influence of the boundary on the solution by removing a portion of the
boundary, extending the data to the new domain, and comparing the solution of this new
BVP (or initial value problem if the whole boundary is removed) to the original one.

Another application of our results is the solution of a useful subspace (complex) interpo-
lation problem. Specifically, if Ω is a bounded Lipschitz domain and Lp

σ(Ω) stands for the
(closed) subspace of Lp-vector fields which are also divergence free in Ω, then

(1.5)
[

Lp0
σ (Ω), Lp1

σ (Ω)
]

θ
= Lp∗

σ (Ω)

provided 1 < p0, p1 < ∞, 0 < θ < 1, and 1/p∗ = (1− θ)/p0 + θ/p1. Indeed, ultimately this
is a consequence of the fact the operator

(1.6) T : H1,p(Ω)× Rb → Lp
σ(Ω), T (v, {λj}j) := Div v +

∑

j

λjgj

is onto. Other variants (e.g., for more regular fields and domains) are, of course, possible.
The plan of the paper is as follows. We will first treat the case where ∂Ω is smooth,

in §§2–3, and then extend these results to cases where ∂Ω has minimal regularity. In §2
we treat divergence-free u ∈ Lp(Ω), 1 < p < ∞. In this case we first solve the extension
problem, obtaining ũ ∈ Lp

loc(Rn \ {yj}), and use this to find v ∈ H1,p(Ω) satisfying (1.2).
In §3 we treat divergence-free u ∈ Hs,p(Ω), for s ≥ 0 and 1 < p < ∞. Here we obtain

the representation (1.2) as a consequence of the Hodge decomposition for differential forms
on bounded domains, as worked out by Friedrichs and by Morrey and Eells (cf. [Mor],
Chapter 7), together with other known results on elliptic boundary problems satisfying the
Lopatinski condition. While the results of §3 formally contain those of §2, it is convenient
to have §2 in order to dispose quickly of a technical point that arises when Hs,p(Ω) is not
contained in H1,2(Ω).

In §4 we extend the results of §3 to the situation where ∂Ω is of class Ck,σ, for some
k ∈ Z+ and σ ∈ (0, 1] (as long as k + σ ≥ 1). We accomplish this via a change of variables
and use of the Hodge star operator. Section 5 discusses further extensions, such as to fields
of class Ck−1,σ and to exterior domains.

Acknowledgment. Thanks are due to the referee for the careful reading and some useful
suggestions.

2. Lp-fields

Let Ω ⊂ Rn, be as in §1, and assume ∂Ω is smooth. As stated in the introduction, we
start with an extension result.
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Proposition 2.1. Let B ⊂ Rn be a smoothly bounded open set containing Ω. Given 1 <
p < ∞ and a vector field u ∈ Lp(Ω) such that div u = 0, there exist λj ∈ R (uniquely
determined by u) and there exists u# ∈ Lp(Rn) such that supp u# ⊂ B, div u# = 0 on Rn,
and

(2.1) u# = u−
∑

λjgj on Ω.

Furthermore, we can take u# = Tu with T : Lp(Ω) → Lp(Rn) bounded.

Proof. Denote by ν the outward unit normal to ∂Ω, by dσ the surface measure on ∂Ω and
fix λj ∈ R such that

(2.2) f := ν · u− ν ·
(
∑

j

λjgj

)

∈ Bp,p
−1/p(∂Ω)

satisfies

(2.3)
∫

Γj

f dσ = 0, ∀ j ≥ 1.

Here the normal component ν ·u, of an Lp-field u whose divergence is also in Lp, is defined in
the sense of distributions and Bp,q

s stands for the Besov scale. Note that (2.3) determines the
numbers λj uniquely and that

∑

|λj | ≤ C‖u‖Lp(Ω). Moreover, as a result of the divergence
theorem,

∫

Γ0
f dσ = 0 also.

Set D := B \ Ω̄. Also, extend f to ∂D by zero on ∂B. Then we can solve the Neumann
problem

(2.4)















∆w = 0 in D,
∂w
∂ν

= f ∈ Bp,p
−1/p(∂D),

w ∈ H1,p(D).

Since the domain is smooth, this follows from Theorem 4.3.3 on pp. 233-234 of [Tr]. For an
extension to the class of Lipschitz domains, the interested reader may also consult [MT].
The function w in (2.4) is uniquely determined if we impose the conditions

∫

Dj
w = 0 where

Dj are the connected components of D.
If we now consider

(2.5) u# :=











u−
∑

j λjgj in Ω,

∇w in D,
0 in Rn \B,

then u# ∈ Lp(Rn), has compact support and, in the sense of distributions, div u# = 0 in
Rn.

Now we use Proposition 2.1 to establish the following representation result.
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Proposition 2.2. Assume 1 < p < ∞. For any vector field u ∈ Lp(Ω) satisfying div u = 0
there exist an antisymmetric 2-tensor field v ∈ H1,p(Rn) which satisfies dv = 0 and numbers
λj ∈ R such that

(2.6) u = Div v +
∑

j≥1

λjgj in Ω.

Furthermore, the numbers λj are unique and

(2.7)
∑

j≥1

|λj | ≤ C‖u‖Lp(Ω)

where C > 0 depends only on p, Ω and the collection {yj}j. Also, v can be chosen to depend
linearly on u and such that ‖v‖H1,p(Rn) ≤ C‖u‖Lp(Ω).

Proof. Take u# as given above and let Π := ∆−1 stand for the harmonic Newtonian potential
in Rn. Then

(2.8)
u# = ∆Πu# = −d divΠu# −Div dΠu#

= −dΠdiv u# −Div dΠu# = −Div dΠu#.

Set now v := −dΠu# so that v ∈ H1,p(Rn) and ‖v‖H1,p(Rn) ≤ C‖u#‖Lp(Rn) ≤ C‖u‖Lp(Ω),
by standard Calderón-Zygmund theory (cf., e.g., [St]). Moreover, dv = 0 and u# = Div v in
Rn, so that v does the job advertised in Proposition 2.2.

With regard to the uniqueness part, note that if u = 0 can be decomposed as in (2.6),
then ∆v = 0, so that v ∈ C∞. Let ∗ stand for the usual Hodge star isomorphism. Then,
for any closed, smooth surface γj ⊂ Ω, surrounding (sufficiently tightly) Γj , j ≥ 1, Stokes’s
theorem gives

(2.9) 0 =
∫

γj

∗(Div v) = λj

∫

γj

∗ gj = cnλj ,

for some (nonzero) dimensional constant cn. Thus, λj = 0 for each j ≥ 1, as desired.

We mention one simple consequence of Proposition 2.2, which will be of use in §3.

Corollary 2.3. For Ω and p as in Proposition 2.1, given u ∈ Lp(Ω), div u = 0 on Ω, there
exists a neighborhood O of Ω, and uν ∈ C∞(O) satisfying div uν = 0 on O and uν → u on
Ω in Lp-norm.

Proof. Apply a Friedrichs mollifier to the extension u# +
∑

λjgj of u constructed above.

3. Hs,p-fields

Let Ω ⊂ Rn be as in §2. We aim to establish the following result.
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Proposition 3.1. Take p ∈ (1,∞) and s ≥ 0. Assume u ∈ Hs,p(Ω) is a vector field
satisfying divu = 0. Then there exist an antisymmetric 2-tensor field v ∈ Hs+1,p(Ω) and
λj ∈ R such that

(3.1) u = Div v +
∑

j≥1

λjgj .

Corollary 3.2. In the context of the previous result, the vector field v has an extension
ṽ ∈ Hs+1,p(Rn), supported on a small neighborhood of Ω, and if ũ is defined by

(3.2) ũ = Div ṽ +
∑

λjgj ,

then this is a divergence-free extension of u on Rn \ {y1, . . . , yb} (on all of Rn if b = 0).

Proof of Proposition 3.1. Proposition 3.1 is related to the Hodge decomposition as follows.
If we pass from vector fields to differential forms, we are looking at a 1-form u satisfying
δu = 0 and we claim that

(3.3) u = δv +
∑

λjhj ,

where v is a 2-form and hj are harmonic forms. The underlying Hodge decomposition, in
the notation used in Chapter 5, §9 of [Ta], is

(3.4) u = dδGRu + δdGRu + PR
h u,

valid for general `-forms on Ω. Here PR
h is a projection onto a space HR

` of harmonic `-forms,
which has dimension b for ` = 1. Since GR is the solution operator for an elliptic boundary
problem satisfying the Lopatinski condition, we have

(3.5) GR : Hs,p(Ω) −→ Hs+2,p(Ω), s ≥ 0, 1 < p < ∞.

Furthermore, we claim that

(3.6) δu = 0 =⇒ dδGRu = 0 =⇒ u = δdGRu + PR
h u.

For u ∈ H1,2(Ω) this is well known. See, e.g., Theorem 7.7.5 in Chapter 7 of [Mor], or
Proposition 9.8 (plus (9.48)) in Chapter 5 of [Ta]. We are now claiming this implication
holds whenever u ∈ Lp(Ω), 1 < p < ∞. To see this (at least for 1-forms), use Corollary
2.3 to produce uν ∈ C∞(Ω) such that δuν = 0 and uν → u in Lp(Ω). By the results cited
above,

δuν = 0 =⇒ dδGRuν = 0,

but (3.5) implies GRuν → GRu in H2,p(Ω), so dδGRuν → dδGRu in Lp(Ω), and we have
(3.6).
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Thus we have (3.3), with v = dGRu. To prove (3.1), pick λj such that the flux of
u −

∑

λjgj is zero across each boundary component Γj . Using this in place of u in (3.4),
we have no harmonic form component, and hence (3.6) gives u−

∑

λjgj = Div v.
To see that we have no harmonic form component when the flux is zero across each

component, we make use of the connection between the Hodge decomposition and topology,
which we now recall. First, a Hodge decomposition complementary to (3.4) is

(3.7) u = dδGAu + δdGAu + PA
h u.

In fact, the Hodge star operator applied to an `-form decomposed via (3.4) takes it to an
(n− `)-form decomposing via (3.7).

The following is a punch line for Hodge theory. If HA
` denotes the range of PA

h on `-forms
and HR

` the range of PR
h on `-forms, we have

(3.8) HR
` ≈ HA

n−` ≈ Hn−`(Ω),

the last space denoting the cohomology of Ω with real coefficients. One also has

(3.9) Hn−`(Ω) ≈ Hn−`(Ω),

the homology group. The cycles Γ1, . . . , Γb provide a basis of Hn−1(Ω), which explains the
argument in the paragraph above (3.7). In detail, applying the Hodge star operator to
u = δdGRu + PR

h u yields for ub = ∗u the decomposition

(3.10) ub = dδGAub + PA
h ub.

Now
∫

Γj
u · ν dσ =

∫

Γj
ub. We see that

∫

Γj
dδGAub = 0, by Stokes theorem, and for a

harmonic form hA = PA
h ub, we have

(3.11) hA = 0 ⇐⇒
∫

Γj

hA = 0, 1 ≤ j ≤ b.

For use in §4, we note the following variant of Corollary 3.2.

Corollary 3.3. Assume Ω, s, and p are as in Proposition 3.1. There is a neighborhood O
of Ω with the following property. Given an (n− 1)-form w ∈ Hs,p(Ω) such that dw = 0 on
Ω, there is an extension to an (n− 1)-form w̃ ∈ Hs,p(O) such that dw̃ = 0 on O.

Proof. Given such w, apply Corollary 3.2 to the 1-form u = ∗w, obtaining ũ. Then take
w̃ = (−1)n−1 ∗ ũ.

4. Lipschitz and Ck,σ domains
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We now consider a domain whose boundary has limited regularity, of class Ck,σ, with
k = 0, 1, 2, . . . and σ ∈ (0, 1]. The case C0,1 defines the class of Lipschitz domains. Given a
bounded domain Ω ⊂ Rn of class Ck,σ, provided k + σ ≥ 1 (i.e., either k > 0 or σ = 1) one
can produce a homeomorphism ϕ : O → O1 on a neighborhood O of Ω such that ϕ and its
inverse ϕ−1 are of class Ck,σ and Ω1 = ϕ(Ω) has C∞ boundary.

The pull-back operation ϕ∗ on differential forms (whose formula involves first-order
derivatives of ϕ) takes Lp-forms to Lp-forms as long as ϕ is of class C0,1, and more generally
ϕ∗ takes Hs,p-forms to Hs,p-forms as long as either

(4.1) s ∈ Z+ and k + σ ≥ s + 1,

or

(4.2) k + σ > s + 1.

Using this we can extend the results of §3 as follows:

Proposition 4.1. The results of Proposition 3.1 and Corollary 3.2 hold when ∂Ω is of class
Ck,σ, with k ∈ Z+, σ ∈ (0, 1], as long as either (4.1) or (4.2) hold.

Proof. It suffices to produce an extension ũ ∈ Hs,p(O) satisfying δũ = 0 on some neigh-
borhood O of Ω. Indeed, we can then produce Ω2 with smooth boundary such that
Ω ⊂ Ω2 ⊂ Ω2 ⊂ O and apply the results of §3 to u|Ω2 .

To accomplish this, we proceed as follows. Consider the (n− 1)-form w = ∗u, satisfying
dw = 0 on Ω. Pick ϕ as above, mapping Ω bijectively onto the smoothly bounded domain
Ω1, and take w1 = (ϕ−1)∗w. Thus w1 is an (n − 1)-form in Hs,p(Ω1), satisfying dw1 = 0
on Ω1. By Corollary 3.3, w1 has an extension w̃1 ∈ Hs,p(O1), for some neighborhood O1

of Ω1, satisfying dw̃1 = 0 on O1. Now w̃ = ϕ∗w̃1 is an (n − 1)-form in Hs,p(O) satisfying
dw̃ = 0 in O, and agreeing with w on Ω. Hence ũ = (−1)n−1 ∗ w̃ is the desired extension of
u.

Remark. In particular we extend divergence-free vector fields in Lp(Ω) whenever Ω is a
Lipschitz domain and 1 < p < ∞. The approach taken in §2 works in this situation, given
results established in [MT] on the Neumann problem, but only for 3/2− ε < p < 3 + ε, for
some ε = ε(Ω) > 0, or when ∂Ω is C1 and 1 < p < ∞. This direct approach via (2.4) also
holds when n = 2 and 4/3− ε < p < 4 + ε, via work of [MD].

5. Further extensions

We have analogues of Proposition 4.1 when the divergence-free vector field u belongs to
Ck−1,σ(Ω), given k ≥ 1 and σ ∈ (0, 1). When ∂Ω is of class Ck,σ, one has (3.1) for some
v ∈ Ck,σ(Ω) and then ũ in (3.2) can be chosen to belong to Ck−1,σ

loc (Rn \ {yj}). To establish
this we need merely note that, parallel to (3.5), one has (for smoothly bounded Ω)

(5.1) GR : C`,σ(Ω) −→ C`+2,σ(Ω), ` ∈ Z+, 0 < σ < 1,
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and that ϕ∗ and (ϕ−1)∗ preserve the category of differential forms of class Ck−1,σ.
Also, we can extend a divergence-free field u on an exterior domain Ω = Rn \K, where

K is compact and ∂K of class Ck,σ. Indeed, take a ball B ⊃ K, set Ω0 = B \ K, apply
Proposition 4.1 to u|Ω0 , and then merely make the extension of u effective on K.

Finally, an inspection of the arguments in the previous sections shows that the extension
property alluded to above also holds on subdomains of a smooth manifold M , equipped
with a sufficiently smooth metric tensor.
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