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Abstract

The Euler graph has vertices labelled (n, k) for n = 0, 1, 2, ... and k = 0, 1, ..., n, with

k + 1 edges from (n, k) to (n + 1, k) and n − k + 1 edges from (n, k) to (n + 1, k + 1).

The number of paths from (0,0) to (n, k) is the Eulerian number A(n, k), the number of

permutations of 1,2,...,n + 1 with exactly n − k falls and k rises. We prove that the adic

(Bratteli-Vershik) transformation on the space of infinite paths in this graph is ergodic

with respect to the symmetric measure.

1. The Euler Graph

The Euler graph is an infinite directed graph such that at level n there are n + 1

vertices labelled (n, 0) through (n, n). The vertex (n, k) has n + 2 total edges leaving it,

with k + 1 edges connecting it to vertex (n + 1, k) and n − k + 1 edges connecting it to

vertex (n + 1, k + 1).

Define X to be the space of infinite edge paths on the Euler graph. X is a compact

metric space in a natural way: if two paths x = x0x1x2... and y = y0y1y2... agree for all

n less than j and xj 6= yj , then define d(x, y) = 2−j . The number of paths from the root

vertex (0,0) to the vertex (n, k) is the Eulerian number, A(n, k), which is the number of
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Fig. 1. The first three levels of the Euler graph. The numbers on the diagonals give the
number of edges coming out of each vertex, and k represents the label on each vertex.

permutations of 0, 1, ..., n with exactly k rises and n− k falls. These numbers satisfy the

recursion

A(n + 1, k) = (n − k + 2)A(n, k − 1) + (k + 1)A(n, k). (1·1)

n − k + 2

k + 1

n − k + 1

A(n, k − 1) A(n, k)

A(n + 1, k)

Fig. 2. The Euler Graph gives rise to Equation 1·1.

We put a partial order on the set of paths in X. The edges e0 through en+1 into the

fixed vertex (n, k) with 0 < k < n are completely ordered; we illustrate it so that the

ordering increases from left to right. If x, y are paths in X, we say that x is less than y

if there exists an N such that both x and y pass through vertex (N + 1, k), xn = yn for

all n > N , and xN < yN with respect to the edge ordering.

(2,0) (2,1)

(3,1)

e0

e1

e2 e3

e4

Fig. 3. The order on the edges coming into vertex (3,1): e0 < e1 < e2 < e3 < e4.

Define kn : X → {0, 1, . . . , n − 1} by agreeing that if a path x passes through vertex

(n, k), then kn(x) = k. We then say that x has a left turn at level n if kn+1(x) = kn(x)

and a right turn if kn+1(x) = kn(x) + 1. Then define Xmax to be the set of paths in X

such that there are no greater paths with respect to the above ordering: Xmax= { the

path with no left turns, the path with no right turns}∪{x ∈ X|there is a j such that x has

a unique left turn at xj and for all n ≥ j, xn is the maximal edge into (n, j + 1)}. Xmin

is the set of paths in X such that there are no smaller paths with respect to the above

ordering: Xmin= { the path with no left turns, the path with no right turns}∪{x ∈ X|

there is a j such that x has a unique right turn at xj and for all n ≥ j, xn is the minimal

edge into (n, n − j)} Both Xmax and Xmin are countable.
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Fig. 4. The dashed paths are maximal, and the dotted paths are minimal. In addition, the
paths following the far left edge and the far right edge are both maximal and minimal.

If x ∈ X \ Xmax, consider the first non-maximal edge, xj , of x and let yj be the

next greatest edge with respect to the edge ordering. Then define y0y1...yj−1 to be the

minimal path into the source of yj and let T (x) = y0...yjxj+1xj+2...(so T (x)i = xi for

all i = j + 1, j + 2, . . . ). Then T : X \ Xmax → X \ Xmin is the Euler adic.

Fig. 5. T maps the dotted path into the dashed path.

Since both Xmax and Xmin are countable, for any T -invariant, nonatomic measure µ,

µ(Xmax) = µ(Xmin) = 0.

2. The Symmetric Invariant Measure

A cylinder set C = [c0c1...cn−1] is {x ∈ X|xi = ci for all i = 0, 1, ..., n − 1}. Given

any T−invariant Borel measure, µ, on X, define the weight wn on an edge cn connecting

level n and n+1 to be µ([c0...cn]|[c0...cn−1]) for n greater than 0 and w0 = µ([c0]). Then

µ[c0...cn] = w0...wn, where wi is the weight on the edge ci. There are two conditions

which together are necessary and sufficient to ensure that a measure on X is T -invariant.

The first is that if e0 and e1 have the same source vertex and the same terminal vertex,

then their weights are equal. The second is the diamond law. If u1 is the weight associated

with the edges connecting vertex (n, k) to (n + 1, k), u2 is the weight associated to the

edges connecting (n, k) to (n+1, k+1), v1 is the weight on the edges connecting (n+1, k)

to (n+2, k+1), and v2 is the weight on the edges connecting (n+1, k+1) to (n+2, k+1),

then u1v1 = u2v2.

Definition. The symmetric measure, η, is determined by assigning weights 1/(n+2)

on each edge connecting level n to level n + 1.
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v1

u1 u2

v2

u1v1 = u2v2

(n + 2, k + 1)

(n + 1, k) (n + 1, k + 1)

(n, k)

Fig. 6. The diamond law.

This measure clearly satisfies both of the above conditions and hence is T -invariant.

1

2

1

2

1

3

1

3
1

3

1

3

1

3 1

3

1
4 1

4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4 1

4

Fig. 7. The Symmetric Measure

3. The Cutting and Stacking Representation

We can also view the transformation T as a map on the unit interval defined by “cutting

and stacking” which preserves Lebesgue measure, m. Each stage of cutting and stacking

corresponds to a level in the Euler graph. At each stage n = 0, 1, 2, . . . we have n + 1

stacks Sn,0, Sn,1, . . . , Sn,n (corresponding to the vertices (n, k), 0 ≤ k ≤ n, of the Euler

graph). Stack Sn,k consists of A(n, k) subintervals of [0, 1]. Each subinterval corresponds

to a cylinder set determined by a path of length n, terminating in vertex (n, k). The

transformation T̃ is defined by mapping each level of the stack, except the topmost one,

linearly onto the one above it. This corresponds to mapping each non-maximal path

of length n to its successor. To proceed to the next stage in the cutting and stacking

construction, each stack Sn,k is cut into n + 2 equal substacks. These are recombined

into new stacks in the order prescribed by the way T maps their corresponding cylinder

sets. In this way, we obtain a Lebesgue measure-preserving transformation defined almost

everywhere on [0, 1].

Fig. 8. The Euler adic as a cutting and stacking transformation.
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4. Ergodicity

In order to prove that the Euler adic T is ergodic with respect to the symmetric

measure η, we adapt the proof in [5] of ergodicity of the B(1/2, 1/2) measure for the

Pascal adic. For previous proofs of the ergodicity of Bernoulli measures for the Pascal

adic, see [4],[10], [8],[6],[7] and the references that they contain.

Proposition 1. For each x ∈ X, denote by In(x) the cylinder set determined by

x0x1...xn−1. Then for each measurable A ⊆ X,

η(A ∩ In(x))

η(In(x))
→ χA(x) almost everywhere.

Proof. In view of the isomorphism of (X, η) and ([0, 1],m), this is just the Lebesgue

Density Theorem.

Denote by ρ the measure η × η on X × X.

Proposition 2. For ρ-almost every (x, y) ∈ X ×X, there are infinitely many n such

that In(x) and In(y) end in the same vertex of the Euler graph, equivalently (n, kn(x)) =

(n, kn(y)).

This is equivalent to saying that for infinitely many n the number of left turns in

x1...xn equals the number of left turns in y1...yn, or that in the cutting and stacking

representation the subintervals of [0,1] corresponding to In(x) and In(y) are in the same

stack. This happens because the symmetric measure has a central tendency: if a path is

not near the center of the graph at level n, there is a greater probability that at level

n + 1 it will be closer to the center than before (and the farther from the center, the

greater the probability). We defer momentarily the proof of Proposition 2 in order to

show how it immediately implies the main result.

Theorem. The Euler adic T is ergodic with respect to the symmetric measure, η.

Proof. Suppose that A ⊆ X is measurable and T -invariant and that 0 < η(A) < 1. By

Proposition 1,

η(A ∩ In(x))

η(In(x))
→ 1 and

η(Ac ∩ In(y))

η(In(y))
→ 1 for ρ-almost every (x, y) ∈ A × Ac.

Hence for almost every (x, y) ∈ A × Ac we can pick an n0 = n0(x, y) such that for all

n ≥ n0,

η(A ∩ In(x))

η(In(x))
>

1

2
and

η(Ac ∩ In(y))

η(In(y))
>

1

2
. (4·1)

Then, by Proposition 2, we can choose n ≥ n0 such that In(x) and In(y) end in the same

vertex, and hence there is j ∈ Z such that T j(In(x)) = In(y). Since A is T -invariant, this

contradicts (4·1). Then we must have η(A) = 0 or η(A) = 1, and so T is ergodic with

respect to η.

It remains to prove Proposition 2.

Lemma 1. On (X × X, ρ), for each n = 1, 2, . . . let Dn(x, x′) = |kn(x) − kn(x′)|, and

let F = B((x1, x
′

1), . . . , (xn, x′

n)) denote the σ-algebra generated by (x1, x
′

1), . . . , (xn, x′

n).
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Let σ(x, x′) be a stopping time with respect to (Fn) such that Dσ(x,x′)(x, x′) > 0. Fix

M > 0 and let

τ(x, x′) = inf{n > σ(x, x′) : Dn ∈ {0,M}}.

For n = 0, 1, 2, . . . , let

Yn(x, x′) =







Dσ(x,x′)(x, x′) if 0 ≤ n ≤ σ(x, x′)

Dn(x, x′) if σ(x, x′) < n ≤ τ(x, x′)

Dτ(x,x′)(x, x′) if n ≥ τ(x, x′)

Then (Yn(x, x′) : n = 0, 1, 2, . . . ) is a supermartingale with respect to (Fn).

Proof. We have to check the defining inequality for supermartingales only for the range

of n where Yn = Dn, since otherwise Yn(x, x′) is constant in n.

If x turns to the left at stage n, then kn+1(x) = kn(x), but if x turns to the right

kn+1(x) = kn(x) + 1. From Figure 2 we see that

η{kn+1(x) = kn(x)|x1...xn} =
kn(x) + 1

n + 2
(4·2)

and

η{kn+1(x) = kn(x) + 1|x1...xn} =
n − kn(x) + 1

n + 2
. (4·3)

Without loss of generality assume that kn(x′) > kn(x). Note that

Dn+1 =















Dn on the set A = {kn+1(x) = kn(x), kn+1(x
′) = kn(x′)} ∪

{kn+1(x) = kn(x) + 1, kn+1(x
′) = kn(x′) + 1}

Dn + 1 on the set B = {kn+1(x) = kn(x), kn+1(x
′) = kn(x) + 1}

Dn − 1 on the set C = {kn+1(x) = kn(x) + 1, kn+1(x
′) = kn(x′)}.

From (4·2) and (4·3),

Eρ(Dn+1 − Dn|Fn) = 0 · ρ(A|Fn) + 1 · ρ(B|Fn) − 1 · ρ(C|Fn)

=
1

n + 2
[(kn(x) + 1)(n − kn(x′) + 1) − (kn(x′) + 1)(n − kn(x) − 1)] ≤ 0.

Hence Eρ(Dn+1|Fn) ≤ Dn.

Lemma 2.
kn(x)

n
→

1

2
in measure.

Proof. Let un(x) = 2kn(x)− n for all n. We will show that un/n → 0 in measure. We

begin by computing the variance of un. Note that if kn+1(x) = kn(x) then un+1 = un−1,

and if kn+1(x) = kn(x) + 1 then un+1 = un + 1. Following the calculations in [9], and

using (4·2) and (4·3),

Eη(un+1|un) = (n + 1)/(n + 2)un;

so, since u0 = 0, E(un) = 0 for all n = 1, 2, . . . . Similarly,

Eη(u2
n+1|un) = (un − 1)2

(

kn(x) + 1

n + 2

)

+ (un + 1)2
(

n − kn(x) + 1

n + 2

)
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= (un − 1)2
(

un + n + 2

2(n + 2)

)

+ (un + 1)2
(

n − un + 2

2(n + 2)

)

=
nu2

n

n + 2
+ 1.

Then

Eη(u2
n+1|un−1) =

n

n + 2

(

(n − 1)u2
n−1

n + 1
+ 1

)

+ 1,

and continuing this recursively we see that

V (un+1) = Eη(u2
n+1) =

1

(n + 1)(n + 2)

n
∑

i=0

(i + 1)(i + 2)

=
n + 3

3
.

Then by Chebyshev’s Inequality,

η
{

∣

∣

∣

un

n

∣

∣

∣
≥ ǫ

}

≤
c

nǫ2
→ 0 as n → ∞,

so that
un

n
→ 0 in measure, i.e.

kn(x)

n
→

1

2
in measure.

Proof of Proposition 2. From Lemma 1, (Dn) is a supermartingale with respect

to Fn = (B((x1, x
′

1), . . . , (xn, x′

n))). Fix M > 0 and define stopping times σ(x, x′) =

inf{n|kn(x) 6= kn(x′)} and τ(x, x′) = inf{n > σ(x, x′)|Dn ∈ {0,M}}. Then Eρ(Dτ ) ≤

Eρ(Dσ) = 1. If τ is finite almost everywhere, then

Eρ(Dτ ) = M(ρ{Dτ = M}) + 0(ρ{Dτ = 0}), so that

ρ{Dn 6= 0 for any n > σ(x, x′)} ≤ ρ{Dτ = M} ≤ 1/M for all M . Letting M → ∞ im-

plies that ρ{Dn 6= 0 for any n > σ(x, x′)} = 0. Hence with ρ-probability 1 there is an n0

for which kn0
(x) = kn0

(x′). Repeat this process with σ(x, x′) = inf{n > n0(x, x′)|kn(x) 6=

kn(x′)} to see that with ρ-probability 1, kn(x) = kn(x′) infinitely many times. It remains

to show that τ is finite almost everywhere.

We have a fixed M ; fix also a large L. Fix a small enough ǫ so that if kn(x)/n, kn(x′)/n

are in the interval (1/2 − ǫ, 1/2 + ǫ), then

kn+i(x)

n + i
,
n − kn+i(x)

n + i
,
kn+i(x

′)

n + i
,
n − kn+i(x

′)

n + i
≥

1

4
for i = 0, 1, . . . ,ML.

In other words, starting from (n, kn(x)) all the probabilities of going left or right for both

x and x′ are at least 1/4 for ML steps. Let An = {(x, x′) ∈ X × X|kn(x)/n, kn(x′)/n ∈

(1/2 − ǫ, 1/2 + ǫ)}, and note that ρ(An) → 1 as n → ∞, by the convergence in measure.

Let Bn = {(x, x′) ∈ X×X|kn+i(x) = kn(x), kn+i(x
′) = kn(x′)+i for all i = 0, 1 . . . ,M}.

For every n, {x|τ(x) = ∞} ∩ An ⊂ An ∩ Bc
n ∩ Bc

n+M ∩ · · · ∩ Bc
n+(L−1)M = Gn, since

(x, x′) in Bn implies Dn+i(x, x′) is either 0 or M for some i ≤ M . Conditioned on the

set An, the sets Bn, Bn+M , . . . , Bn+(L−1)M are not independent, because at each step

the probabilities of going left or right, given by sums of the weights on the edges, are

changing. But since the probabilities of going left or right at each step are all near 1/2,

so that the probability of each event we are considering is near the probability that it
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would be assigned by a genuine symmetric random walk, we can estimate the measure

of Gn.
For each j = 0, 1, . . . , L − 1, abbreviate Ej = Bc

n+jM . Then for each pair of vertices

v = ((jM − 1, k), (jM − 1, k′)),we have ρ(Ej |v) ≤ (1 − 1/42M ). Thus

ρ(Ej |Ej−1 ∩ · · · ∩ E0 ∩ An) =
∑

vertices v at

level jM − 1

ρ(Ej |v)ρ(v|Ej−1 ∩ · · · ∩ E0 ∩ An) ≤ (1 − 1/42M ),

and iterating gives ρ(EL−1 ∩ · · · ∩ E0|An) ≤
(

1 − 1/42M
)L

.
Therefore ρ(τ = ∞|An) ≤ (1 − 1/42M )L for all L. Letting n → ∞ and then L → ∞,

we conclude that ρ{τ = ∞} = 0.

Remark 1. In fact kn(x)/n → 1/2 almost everywhere. We can see this as follows.

Continue to let un(x) = 2kn(x) − n as in Lemma 2. Since E((n + 2)un+1|(n + 1)un) =

(n + 1)un, Sn = (n + 1)un forms a mean-0 martingale. If Xn = Sn − Sn−1, then the Xn

are a martingale difference sequence in L2, thus mean 0 and orthogonal. The variance of

Xn is

E(X2
n) = E(S2

n) − E(S2
n−1) =

3n2 + 5n

3
.

If we let bn = n2, then
∑

E(X2
n)/b2

n < ∞, so by the extension to martingales of Kol-

mogrov’s Criterion for the Strong Law of Large Numbers (see [3, p.238]) Sn/bn → 0

almost everywhere, that is to say, un/n → 0 almost everywhere.

Remark 2. It would be interesting to determine further dynamical properties of this

system, such as weak mixing, rigidity, singularity of the spectrum, and whether the rank

is infinite. So far we can show that the symmetric measure (η) is the only fully supported

invariant ergodic measure [2], and that (X,T, η) is totally ergodic and loosely Bernoulli,

[1].

We thank the referee for helpful comments.
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